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Abstract
The Fermi effective theory of the weak interaction helped identify the structure of the electroweak sector of
the Standard Model, and the chiral effective Lagrangian pointed towards QCD as the theory of the strong
interactions. The Standard Model Effective Field Theory (SMEFT) is a systematic and model-independent
framework for characterizing experimental deviations from the predictions of the Standard Model and
pointing towards the structures of its possible extensions that is complementary to direct searches for new
physics beyond the Standard Model. This talk summarizes results from the first global fit to data from LHC
Run 2 and earlier experiments including dimension-6 SMEFT operators, and gives examples how it can be
used to constrain scenarios for new physics beyond the Standard Model. In addition, some windows for
probing dimension-8 SMEFT operators are also mentioned.
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1. INTRODUCTION
Since its formulation 54 years ago, many experiments have verified predictions of the Standard Model (SM). The
SU(3)×SU(2)×U(1) structure of its gauge interactions has been well established, as have the representations and quantum numbers
of the matter fermions. Predictions based on these properties were tested below the 0.1% level by experiments at LEP and other
accelerators before the LHC was put into operation [1]. However, there was no direct evidence for the existence of the Higgs field,
its effective potential and its Yukawa interactions with matter fermions before LHC operations started. Following the discovery of
the Higgs boson in 2012 [2], these aspects of the SM are now also being studied, and measured with increasing precision.

So far, all LHC measurements of cross sections for the production of SM particles are in agreement with theoretical predictions,
within the uncertainties in both theory and experiment. These include the production of W and Z bosons alone or with multi-
ple QCD jets, diboson pairs, triple-boson combinations, tt̄ pairs (also with a γ, W or Z boson), and single t production alone or
accompanied by a γ, W or Z boson [3].

The SM has also been successful with its predictions for the production of the Higgs boson by gluon collisions, vector-boson
fusion, in association with a W or Z, or together with a tt̄ pairs. The SM predictions for many Higgs decays have also been success-
ful. These have enabled the couplings of the Higgs boson to many SM particles, including the µ, τ, b, W, Z and t to be measured.
So far, the measurements are consistent with being proportional to the corresponding particle masses, as expected in the SM [4].
As we wrote a few years back ”it walks and quacks like a Higgs boson” [5].

However, everything about the Higgs boson is puzzling. Consider the terms in the SM Lagrangian that involve the Higgs field:

L = yHψ̄ψ + µ2|H|2 λ|H|4 −V0 + . . . . (1)

The pattern of Yukawa couplings y is completely mysterious, and intimately related to the flavour problems of the SM: what is the
origin of the hierarchies of fermion masses, the undeciphered matrix of quark mixing and the origin of CP violation in the quark
sector? The sign and magnitude of the coefficient µ2 of the second term in (1) is equally baffling: in particular, how and why is
|µ| many orders of magnitude than the Planck scale? This is often termed the naturalness or hierarchy problem. The magnitude
of the quartic coupling λ is also baffling. According to SM calculations, λ is so small that it would get renormalized to negative
values at high scales [6] by the Higgs coupling to the top quark, in which case the current electroweak vacuum would in principle
be unstable, and most of the Universe would not have reached it during the evolution of the Universe [7]. The V0 term in (1) is
equivalent to Einstein’s cosmological constant or today’s dark energy. This receives contributions from spontaneous symmetry
breaking and non-perturbative QCD effects that are many orders of magnitude larger than the measured value. Here the mystery
is not why V0 6= 0, but rather why it is so small, over 120 orders of magnitude smaller than the “natural” gravitational scale.

How should we search for new physics beyond the Standard Model? This where the . . . in (1) come in. There could be additional
interactions beyond those in the SM, of dimension 6 or more, which could be generated by the exchanges of massive particles as
yet undetected. These might involve the Higgs field alone, or in combination with other SM fields, or only other fields. They should
all be analyzed together in order for the indirect search for new physics beyond the SM via higher-dimensional interactions to be
as powerful and model-independent as possible.
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In looking for new physics, we may keep in mind the advice of the Chinese strategist Sun Tzu [8]:
“...the direct method may be used...but indirect methods will be needed in order to secure victory.... The direct and the indirect lead on to each
other in turn. It is like moving in a circle.... Who can exhaust the possibilities of their combination?”
This is the philosophy behind the use of the Standard Model Effective Field Theory described in the following.

2. THE STANDARD MODEL EFFECTIVE FIELD THEORY (SMEFT)
Effective Field Theories (EFTs) have a long and glorious history in particle physics.

Back in the 1930s, the interaction between radiation and electrons was described by an embryonic form of QED, described
by a dimension-4 Lagrangian term. However, the weak interactions fell outside this framework, and Fermi proposed an effective
four-fermion interaction to describe them [9], described by some combination of operators of dimension 6. The natural expectation
was that this interaction was mediated by the exchange of massive bosons. However, for many years the Lorentz structure of the
four-fermion interaction was unclear: scalar/pseudoscalar, vector/axial vector or tensor, and hence also the spins of the exchanged
bosons. Finally, it was established in the 1950s that the interaction was of V − A form [10], so that the intermediate boson(s)
should have spin one. This observation pointed towards gauge theory, but for a decade it was unknown how to give masses to the
bosons. This problem was solved in the 1960s by the discovery of the Englert-Brout-Higgs mechanism [11] and its application in
the Standard Model.

In parallel during the 1930s, Yukawa proposed a theory of the strong nucleon-nucleon force according to which it was mediated
by mesons, of which the lightest was the pion that was discovered in the 1940s. It was later discovered that the interactions of the
pions involved field derivatives, e.g., the dominant contribution to ππ scattering is an interaction of the form ∂π∂πππ. This
structure is a manifestation of an underlying chiral dynamics, which is an important clue to the nature of the structure of the
underlying forces between quarks. In particular, it implied that the exchanged gluons should also be vector (rather than scalar)
bosons, pointing the way towards QCD.

Will the EFT approach now provide us hints how to progress beyond the Standard Model? Many extensions of the Standard
Model postulate heavy particles whose exchanges could generate effective interactions of dimensions higher than 4 whose struc-
ture may give valuable information about the structure about extensions of the Standard Model. A first example is provided by
the light neutrino masses, which can be described by an effective interaction of dimension 5 [12] likely to be generated by the ex-
changes of massive fermions. The experimental fact that neutrino flavours mix in a very different way from quarks is presumably
a consequence of this underlying structure, and may give us a hint about new physics far above the electroweak scale.

The Standard Model Effective Field Theory (SMEFT) [13, 14] provides a very powerful framework for analyzing in a global
way many LHC and other measurements. One assumes that the Standard Model assignments of the quantum numbers of the
Standard Model particles are correct, which determine the structure of the dimension≤ 4 terms in the Lagrangian, but accepts that
it is incomplete. One allows for additional higher-order interactions between the known particles that respect the symmetries of
the Standard Model, and constrains their strengths via a joint analysis of Higgs data together with electroweak precision measure-
ments, diboson [15] and top data [16]. This analysis can then be used to look in a general and model-independent way for possible
physics beyond the Standard Model.

There are 2499 possible operators Oi in the dimension-6 part of the SMEFT Lagrangian:

LSMEFT = LSM +
2499

∑
i=1

Ci
Λ2Oi , (2)

where Λ is the new physics scale, which is assumed to be much larger than the masses of the Standard Model particles and
the kinematic scales of the processes studied, and the Ci are operator coefficients whose magnitudes depend, e.g., whether the
underlying massive particles are weakly- or strongly-interacting. It is clearly impractical to include 2499 parameters in a global fit,
so one generally makes simplifying assumptions about the flavour structure of the operators involving fermions. In the following
we consider two possibilities [16]: a flavour-universal scenario in which their coefficients have an SU(3)5 symmetry, and a top-
specific scenario in which the symmetry is reduced to SU(2)2×SU(3)3. When making our global fit, we treat GF, MZ and the fine
structure constant α as input parameters, and work to linear order in the operator coefficients, i.e, we consider only the interferences
of the Oi with the Standard Model interactions. Thus, we work to order 1/Λ2 and neglect consistently dimension-8 interactions
that would contribute at O(1/Λ4).

The Table below lists all the relevant dimension-6 SMEFT operators, including those containing two and four fermions, which
are important when considering top observables. The grey cells contain operators that violate SU(3)5 universality. If we impose
universality, the following 20 operators affect primarily electroweak precision observables, bosonic observables and Yukawa cou-
plings, respectively:

EWPO: OHWB , OHD , Oll , O(3)
Hl , O(1)

Hl , OHe , O(3)
Hq , O(1)

Hq , OHd , OHu ,

Bosonic: OH� , OHG , OHW , OHB , OW , OG ,

Yukawa: OτH , OµH , ObH , OtH . (3)
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X3 H6 and H4D2 ψ2H3

OG f ABCGAν
µ GBρ

ν GCµ
ρ OH (H† H)3 OeH (H† H)(l̄per H)

OG̃ f ABCG̃Aν
µ GBρ

ν GCµ
ρ OH� (H† H)�(H† H) OuH (H† H)(q̄pur H̃)

OW εI JKW Iν
µ W Jρ

ν WKµ
ρ OHD

(
H†Dµ H

)? (H†Dµ H
)

OdH (H† H)(q̄pdr H)

OW̃ εI JKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2H2 ψ2XH ψ2H2D

OHG H† H GA
µνGAµν OeW (l̄pσµνer)τ I HW I

µν O(1)
Hl (H†i

↔
Dµ H)(l̄pγµlr)

OHG̃ H† H G̃A
µνGAµν OeB (l̄pσµνer)HBµν O(3)

Hl (H†i
↔
D I

µ H)(l̄pτ Iγµlr)

OHW H† H W I
µνW Iµν OuG (q̄pσµνTAur)H̃ GA

µν OHe (H†i
↔
Dµ H)(ēpγµer)

OHW̃ H† H W̃ I
µνW Iµν OuW (q̄pσµνur)τ I H̃ W I

µν O(1)
Hq (H†i

↔
Dµ H)(q̄pγµqr)

OHB H† H BµνBµν OuB (q̄pσµνur)H̃ Bµν O(3)
Hq (H†i

↔
D I

µ H)(q̄pτ Iγµqr)

OHB̃ H† H B̃µνBµν OdG (q̄pσµνTAdr)H GA
µν OHu (H†i

↔
Dµ H)(ūpγµur)

OHWB H†τ I H W I
µνBµν OdW (q̄pσµνdr)τ I H W I

µν OHd (H†i
↔
Dµ H)(d̄pγµdr)

OHW̃B H†τ I H W̃ I
µνBµν OdB (q̄pσµνdr)H Bµν OHud i(H̃†Dµ H)(ūpγµdr)

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)
Oll (l̄pγµlr)(l̄sγµlt) Oee (ēpγµer)(ēsγµet) Ole (l̄pγµlr)(ēsγµet)
O(1)

qq (q̄pγµqr)(q̄sγµqt) Ouu (ūpγµur)(ūsγµut) Olu (l̄pγµlr)(ūsγµut)
O(3)

qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Odd (d̄pγµdr)(d̄sγµdt) Old (l̄pγµlr)(d̄sγµdt)

O(1)
lq (l̄pγµlr)(q̄sγµqt) Oeu (ēpγµer)(ūsγµut) Oqe (q̄pγµqr)(ēsγµet)
O(3)

lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Oed (ēpγµer)(d̄sγµdt) O(1)
qu (q̄pγµqr)(ūsγµut)

O(1)
ud (ūpγµur)(d̄sγµdt) O(8)

qu (q̄pγµTAqr)(ūsγµTAut)

O(8)
ud (ūpγµTAur)(d̄sγµTAdt) O(1)

qd (q̄pγµqr)(d̄sγµdt)
O(8)

qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Oledq (l̄ j
per)(d̄sqj

t) Oduq εαβγε jk

[
(dα

p)
TCuβ

r

] [
(qγj

s )TClk
t

]
O(1)

quqd (q̄j
pur)ε jk(q̄k

s dt) Oqqu εαβγε jk

[
(qαj

p )TCqβk
r

] [
(uγ

s )
TCet

]
O(8)

quqd (q̄j
pTAur)ε jk(q̄k

s TAdt) Oqqq εαβγε jnεkm

[
(qαj

p )TCqβk
r

] [
(qγm

s )TCln
t
]

O(1)
lequ (l̄ j

per)ε jk(q̄k
s ut) Oduu εαβγ

[
(dα

p)
TCuβ

r

] [
(uγ

s )
TCet

]
O(3)

lequ (l̄ j
pσµνer)ε jk(q̄k

s σµνut)

Dimension-6 operators considered in [16]. The operators in cells shaded grey break flavour SU(3)5 explicitly.

Another 14 two- and four-fermion operators appear when we break the flavour universality down to SU(2)2×SU(3)3 in the top-
specific scenario:

Top 2F: O(3)
HQ , O(1)

HQ , OHt , OtG , OtW , OtB ,

Top 4F: O3,1
Qq , O3,8

Qq , O1,8
Qq , O8

Qu , O8
Qd , O8

tQ , O8
tu , O8

td . (4)

Results from global fits under these two flavour assumptions are discussed in the following Section.

3. GLOBAL SMEFT FITS TO TO ELECTROWEAK, DIBOSON, HIGGS AND TOP DATA
This Section presents some of the results from global fits to the dimension-6 operators listed above, using precision electroweak
data and W+W− data from LEP, as well as Higgs, diboson and top data from Runs 1 and 2 of the LHC: please see [16] for the
complete results. Fig. 1 shows schematically how the different operators contribute to various sets of measurements. It emphasizes
their interdependence, and hence the need for a global analysis taking all the data sets into consideration. Overall, we included 328
individual data points in our analysis, including separate bins characterizing kinematic variables in many differential distributions.

Fig. 2 shows the overall results from our flavour-universal SU(3)5-symmetric fit. The upper pair of panels shows the constraints
we obtain on the operators when they are each switched on individually, whereas in the lower pair of panels all the 20 operators
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C(1)

HQ

C(3)

HQ

CHdC(1)

HqC(3)

Hq CHu

CHD

CHe C(1)

HlC(3)

Hl

CHW B Cll

CHt

C3,1
Qq

CtB

CtW

CW

C8
QdC1,8

Qq C3,8
Qq C8

Qu

C8
td

C8
tqC8

tu

CG

CtG

CbH

CHB

CH⇤

CHG

CHW

C⌧H

CtH

CµH

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW
Higgs tt̄ Diboson EWPO tt̄V top EW

FIGURE 1: An illustration [16] how various classes of observables depend on the 34 dimension-6 operators (3, 4).

are switched on simultaneously, and the constraints on the operators are those obtained by marginalizing over the coefficients of
all the other operators. The upper panel in each pairs shows the constraints on the numerical coefficients Ci scaled for an operator
scale Λ = 1 TeV, and the lower panel in each pair shows the constraints on Λ obtained for various indicated values of the Ci. The
colours in the histograms show the effects of including only Run-1 Higgs data, also Run-2 data, kinematic information denoted by
STXS [17], and dropping data on Z + dijet data.

In the case of the individual fit we see that the obtained constraints on Λ are all in the multi-TeV range in the strong-coupling
limit Ci = (4π)2, in which case whereas the linear treatment of the EFT approximation used here should be quite accurate. For
Ci = 1, the individual limits are still & 1 TeV, except for CG, which is better constrained by a quadratic treatment of multi-jet data.
On the other hand, several of the constraints on other operator scales get weaker than 1 TeV in the weak-coupling case Ci = 0.01.
Also we see in the lower panels of Fig. 2 that all the constraints are significantly weaker in the marginalized fit, as could be expected
in a fit with more parameters.

Fig. 3 shows corresponding results for the top-specific SU(2)2×SU(3)3-symmetric fit with 34 operators. We see that the con-
straints in the electroweak, bosonic and Yukawa sectors are similar to those in the universal SU(3)5-symmetric fit. However, the
constraints in the two- and four-fermion sectors are generally weaker. The constraints on Λ are generally& 10 TeV in the individual
strong-coupling fit, but fall to& 300 GeV in the marginalized fit with Ci = 1. The linear EFT approximation is likely to break down
in the top sector for the weak-coupling case Ci = 0.01. 1

As seen in Fig. 1, many SMEFT operators contribute to the same data sectors, introducing correlations between the constraints
on their coefficients. Moreover, many also contribute to multiple data sectors, introducing correlations between sectors. Fig. 4 dis-
plays the full 34×34 correlation matrix for the operator coefficients in the marginalized top-specific fit. We see substantial operator
correlations within the EWPO and bosonic sectors, and also within the two- and four-fermion top sectors, as could be expected.
However, correlations between operators in these sectors and in the Yukawa sector can also be significant, as reflected in the nu-
merical values in off-diagonal squares in the matrix.

Fig. 5 illustrates an example of the interplay between the different constraints on a subset of operator coefficients, namely
{CtH , CtG, CG, CHG}. The Higgs data provide only weak constraints (yellow shading) before the tt̄H measurements are included
(green shading), and substantial further improvements are provided by including all the top data (pink shading) and four-fermion
constraints (blue shading). Two points to note are the strong correlations between pairs of operators, and the fact that the Standard
Model point is slightly outside the 95% confidence level region. As discussed in [16], this effect is largely driven by the measurement
of the tt̄ cross section close to threshold, which favours a non-zero value of CG. However, multijet data impose a strong upper
limit on CG when analyzed at quadratic order (not considered here), suggesting that an alternative explanation of the apparent tt̄
threshold discrepancy may be needed.

Fig. 6 shows the results of a principal component analysis of the correlated constraints. The constraints on the scales Λ of
eigenvectors of the global likelihood function, normalizing the associated coefficient to unity, are shown in the left panel, in order of
decreasing sensitivity. The relative constraining powers of different data sectors are shown in the right panel, and the compositions

1For results in the quadratic EFT approximation assuming that the precision electroweak data agree perfectly with the Standard Model and ignoring possible
dimension-8 operator contributions, see [18].
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FIGURE 2: Constraints at the 95% confidence level in the flavour-universal SU(3)5 scenario on individual and marginalized operator coefficients
Ci(1 TeV)2/Λ2 (top and third panels) and the corresponding scales Λ for the indicated values of the Ci (second and bottom panels), from a
combined linear fit to the Higgs, diboson and electroweak precision observables using the data sets indicated by colour coding [16].

of the eigenvectors are colour-coded in the central panel. We see that the least-constrained eigenvectors are only constrained by data
on tt̄ production, single top production, and tt̄V production. This reflects the fact that, as we already saw in Fig. 3, the precision of
top data currently lags behind that in the other data sectors.

4. SINGLE-FIELD EXTENSIONS OF THE STANDARD MODEL
As a first example of the constraints that our analysis places on specific scenarios for physics beyond the Standard Model, we
considered in [16] the single-field extensions of the Standard Model catalogued in the Table below. As indicated, each of these
models may be characterized by the mass of the additional field and a coupling constant. The tree-level contributions of each of
these single-field extensions to dimension-6 operator coefficients is given in [19]. These results can be combined with our global
analysis to constrain the mass of the additional field (assuming that the corresponding coupling is unity) or the coupling (assuming
that the corresponding mass is 1 TeV), as shown in Fig. 7. As noted, there is just a handful of instances where there is a deviation
from the Standard Model that exceeds 1 σ, none of which is significant. We find, in particular, that in all the possible extensions
with a single spin-zero field the particle mass must exceed about 800 GeV, while the mass of any extra vector field must exceed
about 1.5 TeV, if the corresponding coupling is unity.
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FIGURE 3: Constraints at the 95% confidence level in the top-specific SU(2)2×SU(3)3 scenario on individual and marginalized operator
coefficients Ci(1 TeV)2/Λ2 (top and third panels) and the corresponding scales Λ for the indicated values of the Ci (second and bottom panels),
from a combined linear fit to the Higgs, diboson and electroweak precision observables using the data sets indicated by colour coding [16].

5. SMEFT CONSTRAINTS ON LIGHT STOPS
Another example of a search for new physics beyond the Standard Model using the SMEFT is provided by light stop squarks in
supersymmetric models conserving R-parity [20]. In this case there is no tree-level contribution to any operator coefficients, but
four coefficients receive one-loop contributions from stop squarks [21]:

CHG =
g2

s
12

h2
t

(4π)2

[
(1 +

1
12

c2βg
′2

h2
t

)− 1
2

X2
t

m2
t̃

]
,

CHB =
17g

′2

144
h2

t
(4π)2

[
(1 +

31
102

c2βg
′2

h2
t

)− 38
85

X2
t

m2
t̃

]
,

CHW =
g2

16
h2

t
(4π)2

[
(1− 1

6
c2βg

′2

h2
t

)− 2
5

X2
t

m2
t̃

]
,

CHWB = − gg′

24
h2

t
(4π)2

[
(1 +

1
2

c2βg2

h2
t

)− 4
5

X2
t

m2
t̃

]
,

(5)

where ht is the top quark Yukawa coupling, the supersymmetric partners of the left- and right-handed quarks are assumed to have
the same mass mt̃, Xt is the off-diagonal term in their mass matrix, and c2β ≡ cos 2β, where tan β is the ratio of supersymmetric
Higgs vacuum expectation values.
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FIGURE 4: The correlation matrix for the 34 operator coefficients in the marginalized top-specific fit [16]. The entries are colour-coded according
to the magnitudes of the correlation coefficients.

Name Spin SU(3) SU(2) U(1) Param. Name Spin SU(3) SU(2) U(1) Param.

S 0 1 1 0 (MS, κS) ∆1
1
2 1 2 − 1

2 (M∆1 ,λ∆1 )
S1 0 1 1 1 (MS1 ,yS1 ) ∆3

1
2 1 2 − 1

2 (M∆3 ,λ∆3 )
ϕ 0 1 2 1

2 (Mϕ,Z6 cos β) Σ 1
2 1 3 0 (MΣ,λΣ)

Ξ 0 1 3 0 (MΞ,κΞ) Σ1
1
2 1 3 -1 (MΣ1 ,λΣ1 )

Ξ1 0 1 3 1 (MΞ1 ,κΞ1 ) U 1
2 3 1 2

3 (MU ,λU)
B 1 1 1 0 (MB,ĝB

H) D 1
2 3 1 − 1

3 (MD,λD)
B1 1 1 1 1 (MB1 ,gB1 ) Q1

1
2 3 2 1

6 (MQ1 ,λQ1 )
W 1 1 3 0 (MW ,ĝW

H ) Q5
1
2 3 2 − 5

6 (MQ5 ,λQ5 )
W1 1 1 3 1 (MW1 ,ĝϕ

W1
) Q7

1
2 3 2 7

6 (MQ7 ,λQ7 )
N 1

2 1 1 0 (MN ,λN) T1
1
2 3 3 − 1

3 (MT1 ,λT1 )
E 1

2 1 1 -1 (ME,λE) T2
1
2 3 3 2

3 (MT2 ,λT2 )
T 1

2 3 1 2
3 (MT ,st

L) TB 1
2 3 2 1

6 (MTB,st,b
L )

Single-field extensions of the SM analyzed in [16].

Fig. 8 shows the constraint in the (Xt, mt̃) plane for tan β = 20 that is imposed by our SMEFT analysis. We see that values of
mt̃ & 300 GeV are favoured for most values of Xt. It is interesting to compare this indirect constraint with constraints from direct
searches for stop squarks at the LHC. These are quite complex, since the production and decays of stop squarks depend on several
othe supersymmetric model parameters, and some decay modes can be difficult to distinguish from Standard Model backgrounds.
On the other hand, the indirect search using the SMEFT is relatively model-independent and of comparable strength.
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FIGURE 5: Constraints on pairs of operator coefficients at the 95% confidence level, marginalized over the other degrees of freedom in the ‘Higgs
only’ operator set, obtained using the sets of data indicated by colour coding [16].

6. MODEL-INDEPENDENT BSM SURVEY
In addition to these searches for specific extensions of the Standard Model, we have also made a broad-band search for generic
models that contribute to arbitrary combinations of 2, 3, 4 or 5 operator coefficients. For all of these 61, 5984, 46736 and 278256
combinations, we were able to calculate the corresponding improvement in the global fit they provide in the forms of their pulls.
The resulting pull distributions are shown in Fig. 9 as histograms for combinations containing only tt̄ operators (blue), no tt̄
operators (yellow) and both types of operator (green). The expected 95% ranges for the pull distributions are shown as dashed
vertical lines. As expected, some pulls lie outside these range, particularly those containing tt̄ operators. However, these tails of the
distributions are not excessively large, and we again see no significant evidence for new physics beyond the Standard Model.

7. CONSTRAINING DIMENSION-8 TERMS IN THE SMEFT
What about the contributions of SMEFT operators with dimension 8? These are difficult to isolate, as their contributions are usually
smothered by those of dimension 6. However, there are three interesting processes where the leading SMEFT operators have
dimension 8, providing novel windows on possible new physics beyond the Standard Model.

The first of these is light-by-light scattering, γγ → γγ, which was first observed in peripheral heavy-ion collisions at the
LHC [22]. This process can arise from loop diagrams in the Standard Model, as was first calculated by Heisenberg and Euler in the
1930s [23]. Almost simultaneously, Born and Infeld [24] suggested that there might be nonlinearities in QED capable of generating
light-by-light scattering, which they motivated by the idea that there should be a maximum electromagnetic field, just as there is
a maximum velocity, that of light. Some 50 years later it was shown that such nonlinearities arise in string theory [25], and then it
was shown in the 1990s that in brane models they are due to brane velocities being bounded by that of light [26] - a remarkable
vindication of the insight of Born and Infeld! In the SMEFT language, the leading nonlinearity in the Born-Infeld Lagrangian is a
term of dimension 8. The LHC measurements were consistent with loop calculations in the Standard Model, and could be used to
constrain the mass parameter M =

√
β appearing in Born-Infeld theory to be & 200 GeV, as seen in Fig. 10 [27], which is the first

significant experimental constraint on this parameter.
A second probe of dimension-8 terms in the SMEFT was provided by the process gg→ γγ, which could arise from Born-Infeld

terms in the Standard Model [28]. The appearance of such terms has been constrained by measurements of γγ final states in pp
collisions at the LHC [29]. As seen in Fig. 11, there are 8 dimension-8 operators that could contribute to this process. The first
analysis using early LHC Run 2 data shown in Fig. 11 provided lower limits & 1000 GeV on the scale parameters of all of these
operators, and the sensitivity could be improved to & 2 TeV with data from HL-LHC and & 7 TeV at FCC-hh [28].
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not affect tt̄ production (orange), and the rest (green) [16]. The dashed vertical lines mark the expected 95% ranges for the pull distributions.

Another opportunity to probe dimension-8 operators at future accelerators is provided by measurements of neutral triple-
gauge-boson vertices (nTGVs), e.g., via the process e+e− → Zγ [30, 31]. The ZZγ and Zγγ nTGVs are absent in the Standard
Model Lagrangian, and are not generated by dimension-6 SMEFT terms, either. However, several types of nTGVs are generated by
dimension-8 SMEFT operators, and generate Zγ final states in e + e− collisions with distinctive angular distributions that enable
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FIGURE 10: The fiducial cross section for light-by-light scattering in relativistic heavy-ion collisions, σ(Pb + Pb(γγ) → Pb(∗) + Pb(∗)γγ)
as a function of M =

√
β in Born-Infeld theory obtained with different theoretical assumptions (green and blue lines) is compared with the

95% CL ATLAS upper limit [22], which excludes the range shaded pink [27].
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FIGURE 11: Sensitivities to the new physics scales Λ of the indicated dimension-8 operators contributing to gg→ γγ in (a) early LHC Run 2
data and (b) possible future data at the LHC and proposed pp colliders [28].

them to be distinguished from Standard Model backgrounds. Fig. 12 summarizes the potential 2- and 5-σ sensitivities to the scales
of dimension-8 operators provided by 2 ab−1 of integrated luminosity in unpolarized (left panel) and polarized (right panel) e+e−

collisions at a range of centre-of-mass energies from 250 GeV (corresponding to FCC-ee, CEPC or the initial stage of the ILC) to
3 TeV (the target of CLIC) and above [31]. The possible sensitivities reach into the multi-TeV range, depending on the operator
considered, and improve if the e± beams are polarized.
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collision energy
√

s at the 2- and 5-σ levels (solid and dashed lines), assuming an integrated luminosity of 2 ab−1 and (a) unpolarized and (b)
polarized beams [31].

8. SUMMARY
Effective field theories have served particle physics well in the past, indicating the direction to follow in constructing the elec-
troweak sector of the Standard Model, and also the structure of the gluon interactions underlying the strong force. Many exten-
sions of the Standard Model predict new particles and/or interactions at scales beyond the masses of the known particles, which
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FIGURE 13: Will the Standard Model soon be sunk by SMEFT interactions with dimensions > 4?

may show up first as additional interactions in the Standard Model Effective Field Theory (SMEFT) that indicate the direction in
which new physics may lie. The most prominent among these new interactions are likely to be those of dimension 6, but there
are also opportunities to search directly for possible new interactions of dimension 8. This talk has summarized key features of a
first global analysis of data from Run 2 of the LHC and previous experiments incorporating dimension-6 operators [16], and how
its results can be used to constrain possible extensions of the Standard Model. In addition, some of the opportunities for studying
dimension-8 SMEFT operators have also been mentioned.

So far, these SMEFT analyses have not provided any significant indication of possible physics beyond the Standard Model.
However, one may still hope that the far greater integrated luminosity to be provided by future runs of the LHC will reveal
significant deviations from the Standard Model, and indicate how Nature has chosen to go beyond it. The prospects for the future
are summarized in Fig. 13. The dimension-4 Lagrangian of the Standard Model is only an infinitesimal part of the full set of possible
interactions between its particles that are represented by the SMEFT interactions with dimensions > 4. So far, the Standard Model
has been cruising along untroubled, but it may soon collide with the SMEFT and sink, to be replaced by a more complete theory.
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