CERN Accelerating science

002770762 001__ 2770762
002770762 003__ SzGeCERN
002770762 005__ 20210602191043.0
002770762 0248_ $$aoai:inspirehep.net:1859283$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002770762 0247_ $$2DOI$$9bibmatch$$a10.1109/TASC.2021.3057573
002770762 035__ $$9OSTI$$a1779491
002770762 037__ $$aFERMILAB-PUB-21-127-TD
002770762 035__ $$9http://old.inspirehep.net/oai2d$$aoai:inspirehep.net:1859283$$d2021-05-28T14:25:41Z$$h2021-05-29T06:43:04Z$$mmarcxml
002770762 035__ $$9Inspire$$a1859283
002770762 041__ $$aeng
002770762 100__ $$aTakala, E$$uCERN
002770762 245__ $$9IEEE$$aMechanical Comparison of Short Models of Nb$_3$ Sn Low-$\beta$ Quadrupole for the Hi-Lumi LHC
002770762 246__ $$9submitter$$aMechanical Comparison of Short Models of Nb$_3$ Sn Low-β Quadrupole for the Hi-Lumi LHC
002770762 260__ $$c2021
002770762 300__ $$a6 p
002770762 520__ $$9submitter$$aMQXF is the Nb 3 Sn Low-β quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 to increase the LHC integrated luminosity. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configurations, five short model magnets, called MQXFS, were fabricated, assembled and tested. We compare the mechanical behavior of short model magnets using experimental data and new numerical models that take into account the measured coil sizes as a function of position.
002770762 520__ $$9IEEE$$a-MQXF is the Nb3Sn Low-β quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 to increase the LHC integrated luminosity. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configurations, five short model magnets, called MQXFS, were fabricated, assembled and tested. We compare the mechanical behavior of short model magnets using experimental data and new numerical models that take into account the measured coil sizes as a function of position.
002770762 542__ $$dIEEE$$g2021
002770762 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002770762 6531_ $$9author$$aFinite element analysis
002770762 6531_ $$9author$$aMagnetomechanical effects
002770762 6531_ $$9author$$aSuperconducting magnets
002770762 6531_ $$9author$$aStress
002770762 6531_ $$9author$$aLarge Hadron Collider
002770762 6531_ $$9author$$aStress measurement
002770762 6531_ $$9author$$aShape
002770762 6531_ $$9author$$aaccelerator cavities
002770762 6531_ $$9author$$aaccelerator magnets
002770762 6531_ $$9author$$acolliding beam accelerators
002770762 6531_ $$9author$$aniobium compounds
002770762 6531_ $$9author$$aproton accelerators
002770762 6531_ $$9author$$astorage rings
002770762 6531_ $$9author$$asuperconducting magnets
002770762 6531_ $$9author$$aNb3Sn Low-beta quadrupole magnet
002770762 6531_ $$9author$$anumerical models
002770762 6531_ $$9author$$amechanical behavior
002770762 6531_ $$9author$$ashort model magnets
002770762 6531_ $$9author$$adifferent conductors
002770762 6531_ $$9author$$amagnet design
002770762 6531_ $$9author$$aAccelerator Upgrade Project
002770762 6531_ $$9author$$aLHC integrated luminosity
002770762 6531_ $$9author$$aLHC interaction regions
002770762 6531_ $$9author$$aHL-LHC project
002770762 6531_ $$9author$$aHi-Lumi LHC
002770762 6531_ $$9author$$amechanical comparison
002770762 6531_ $$9author$$aNb $_{\text{3}}$ Sn wire
002770762 6531_ $$9author$$astrain measurement
002770762 6531_ $$9author$$astress measurement
002770762 6531_ $$9author$$afiber bragg grating
002770762 6531_ $$9author$$aoptical fiber
002770762 690C_ $$aCERN
002770762 690C_ $$aARTICLE
002770762 693__ $$aLARP
002770762 693__ $$aCERN LHC$$pCERN HL-LHC
002770762 700__ $$aAmbrosio, G$$jORCID:0000-0002-5342-2480$$uFermilab
002770762 700__ $$aBourcey, N$$jORCID:0000-0001-9103-1264$$uCERN
002770762 700__ $$aBianchi, L$$uCERN
002770762 700__ $$aCheng, D W$$jORCID:0000-0003-4557-2830$$uLBL, Berkeley
002770762 700__ $$aFerracin, P$$jORCID:0000-0003-0415-8895$$uLBL, Berkeley
002770762 700__ $$aGuinchard, M$$uCERN
002770762 700__ $$aIzquierdo Bermudez, S$$jORCID:0000-0003-2157-4751$$uCERN
002770762 700__ $$aMangiarotti, F$$jORCID:0000-0001-8299-0711$$uCERN
002770762 700__ $$aPan, H$$jORCID:0000-0001-9620-0573$$uLBL, Berkeley
002770762 700__ $$aPerez, J C$$uCERN
002770762 700__ $$aPrestemon, S$$jORCID:0000-0002-1937-4040$$uLBL, Berkeley
002770762 700__ $$aFerradas Troitino, J$$jORCID:0000-0001-7874-9722$$uCERN
002770762 700__ $$aVallone, G$$jORCID:0000-0003-0716-8116$$uLBL, Berkeley
002770762 700__ $$aSequeiro, C  Castro$$uCERN
002770762 700__ $$aFerradas Troitino, S$$jORCID:0000-0002-2278-5481$$uCERN
002770762 710__ $$gLARP Collaboration
002770762 773__ $$c4000306$$n5$$pIEEE Trans. Appl. Supercond.$$v31$$wC20-10-24$$y2021
002770762 8564_ $$uhttps://lss.fnal.gov/archive/2021/pub/fermilab-pub-21-127-td.pdf$$yFermilab Accepted Manuscript
002770762 8564_ $$82299415$$s5005706$$uhttps://cds.cern.ch/record/2770762/files/fermilab-pub-21-127-td.pdf$$yFulltext
002770762 960__ $$a13
002770762 962__ $$b2759316$$nonline20201024
002770762 980__ $$aARTICLE
002770762 980__ $$aConferencePaper