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Quantum computers are invaluable tools to explore the properties of complex quantum systems.
We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum
coherent phenomenon, can be simulated on actual, small-scale quantum processors. Our results
demonstrate that quantum computing of dynamical localization may become a convenient tool for
evaluating advances in quantum hardware performances.

ar
X

iv
:2

10
5.

10
81

3v
1 

 [
qu

an
t-

ph
] 

 2
2 

M
ay

 2
02

1



2

I. INTRODUCTION

The simulation of complex systems is expected to be one of the main applications of future quantum computers [1].
The special role of quantum mechanics in simulation was pointed out long time ago by Feynman [2]. He observed
that, while in a classical computer the memory requirements for the simulation of a many-body quantum system can
grow exponentially with the number of particles, the growth is only polynomial in a quantum computer, which is itself
a many-body quantum system. Lloyd [3] then validated the conjecture of an exponential speedup in the simulation
of quantum systems by means of a quantum computer, with respect to a classical computer. Applications have been
discussed for many physical models, so far (see, e.g., Refs. [4–13], and references therein). An ideal quantum computer
operating with more than fifty qubits could outperform a classical computer, and the quantum advantage for specific
problems has been recently claimed [14, 15]. However, quantum advantage can only be reached with a high enough
quantum gate precision and through processes generating a large enough amount of entanglement, otherwise they can
be efficiently simulated via tensor network methods [16]. On the other hand, present-day quantum computers suffer
from significant decoherence and the effects of various noise sources, such that the amount of entanglement that can
be reached is still limited. Therefore, achieving the quantum advantage in complex, practically relevant problems
such as chemical reactions, new materials design, or biological processes, is still an imposing challenge. It is then
important to benchmark the progress of currently available quantum computers by simulating less demanding but
still physically significant tasks.

Dynamical localization is one of the most interesting phenomena that characterize the quantum behavior of clas-
sically chaotic systems: quantum interference effects suppress the diffusion taking place in the underlying classical
model, leading to exponentially localized wave functions. This phenomenon, first discovered in the quantum kicked-
rotor model [17, 18], has been observed experimentally in the microwave ionization of Rydberg atoms [19], in atom-
optic systems [20–22], and in nuclear magnetic resonance quantum ensemble computation [23]. Dynamical localization
has deep analogies with Anderson localization of electronic transport in disordered materials [24]. Localization is in-
deed ubiquitous in wave physics, since it originates from the interference between multiple scattering paths. It has
been shown that in a quantum computer simulating dynamical localization the amount of entanglement is deeply
connected with the localization length of the system being simulated [25].

In this paper, we simulate dynamical localization with three qubits by means of several IBM quantum processors,
with the aim of analyzing the performances of current noisy quantum hardware, freely available for cloud quantum
computing. In particular, we use the known quantum algorithm for the quantum sawtooth map [26, 27], which is
the ideal model to investigate dynamical localization, and more generally quantum chaotic dynamics on a quantum
computer. This is because all of the qubits are actually used to simulate dynamics, without the need for auxiliary
qubits. Moreover, the quantum algorithm performs forward-backward Fourier transform, thus exploring the entire
Hilbert space of the quantum register in a complex multiple-path interferometer that leads to wave-function local-
ization. As such, dynamical localization is a very fragile quantum phenomenon, extremely sensitive to noise. Its
effective simulation on an actual quantum hardware is therefore a potentially ideal test bench to illustrate the power
of quantum computation.

Here we show that it is possible to detect quantum localization with n = 3 qubits and a single step of the sawtooth
map, requiring 4n = 12 single-qubit and 2(n2 − n) = 12 two-qubit quantum gates. We find that the height of the
localization peak is smaller than the value expected for a noiseless quantum computing machine. Moreover, the peak
reduction in real quantum processors is significantly larger than expected from the Qiskit simulator, which only takes
into account a limited number of noise channels. Our results show that for the best performing and freely available
IBM quantum processors the localization peak does emerge from noise for about 3 map steps.

The paper is organized as follows. In Section II we recall the main steps of the quantum algorithm for simulating
dynamical localization (see Refs. [26, 27] for a detailed description). In Section III results obtained from IBM quantum
processors are shown and compared with those from the IBM simulator and with the exact, noiseless evolution. Our
conclusions are finally drawn in Section IV.
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II. QUANTUM ALGORITHM FOR THE DYNAMICAL LOCALIZATION

A. Quantum Algorithm for the Sawtooth Map

The most convenient model to simulate dynamical localization on a quantum computer is the quantum sawtooth
map. This map describes the dynamics of a periodically driven system, as derived from the Hamiltonian

H(θ, I; τ) =
I2

2
+ V (θ)

+∞∑
j=−∞

δ(τ − jT ) , (1)

where (I, θ) are conjugate action-angle variables (0 ≤ θ < 2π), with the usual quantization rules, θ → θ and
I → I = −i∂/∂θ (we set ~ = 1) and V (θ) = −k(θ − π)2/2. This Hamiltonian is the sum of two terms, H(θ, I; τ) =
H0(I) +Hk(θ; τ), where H0(I) = I2/2 is the Hamiltonian of a particle freely moving on a circle parameterized by the
coordinate θ, while Hk(θ; τ) = V (θ)

∑
j δ(τ − jT ) represents a force acting on the particle and switched on and off

instantaneously (kicking potential) at time intervals T . The evolution from time tT− (prior to the t-th kick) to time
(t+ 1)T− (prior to the (t+ 1)-th kick) is described by a unitary operator U acting on the wave function ψ:

ψt+1 = U ψt = UTUk ψt ;

UT = e−iTI
2/2 , Uk = eik(θ−π)

2/2 . (2)

This map is known as quantum sawtooth map, since the force F (θ) = −dV (θ)/dθ = k(θ − π) has a sawtooth shape,
with a discontinuity at θ = 0.

The map (2) can be efficiently simulated on a quantum computer. The quantum algorithm simulating the sawtooth
map dynamics is based on the forward/backward quantum Fourier transform between action (momentum) and angle
bases. Such an approach is convenient since the operator U , introduced in Equation (2), is the product of two
operators, Uk and UT , diagonal in the θ and I representations, respectively. This quantum algorithm requires the
following steps for one map iteration:

• We apply Uk to the wave function ψ(θ). In order to decompose the operator Uk into one- and two-qubit gates,
first of all we write θ in binary notation:

θ = 2π

n∑
j=1

αj2
−j , (3)

with αj ∈ {0, 1}. As n is the number of qubits, the total number of levels in the quantum sawtooth map is
N = 2n. Using expansion (3), we can decompose Uk into a product of n2 two-qubit operations, each acting
non-trivially only on the qubits j1 and j2. In the computational basis {|αj1αj2〉} each two-qubit gate can be
written as exp(i2π2kDj1,j2), where Dj1,j2 is a diagonal matrix:

Dj1,j2 =


1

4n2 0 0 0
0 − 1

2n

(
1

2j1
− 1

2n

)
0 0

0 0 − 1
2n

(
1

2j2
− 1

2n

)
0

0 0 0
(

1
2j1
− 1

2n

) (
1

2j2
− 1

2n

)
. (4)

Neglecting a global phase factor of no physical significance, we can decompose exp(i2π2kDj1,j2) in terms of
quantum gates (P and CP) available in the IBM Qiskit interface:

ei2π
2kDj1,j2 =


1 0 0 0

0 e
− iπ2k

2j1n 0 0
0 0 1 0

0 0 0 e
− iπ2k

2j1n




1 0 0 0
0 1 0 0

0 0 e
− iπ2k

2j2n 0

0 0 0 e
− iπ2k

2j2n




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
iπ2k

2j1+j2−1

 . (5)

The first two factors in the product correspond to phase-shift gates (P gates) applied to qubit j1 and j2,
respectively, while the last one corresponds to a controlled phase-shift gate (CP gates) applied on both qubits,
if j1 6= j2, and to a P gate if j1 = j2. Overall we need then n2 − n CP e 2n2 + n P gates to implement Uk.
As Uk is the product of diagonal matrices in the θ representation, the order of P and CP gates is irrelevant.
Therefore, changing their order allows combining gates applied to the same qubits, thus improving the efficiency
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of the quantum algorithm. We then reduce the number of quantum gates needed to implement Uk to n(n−1)/2
CP and n P gates. We note that the above decomposition for Uk is possible thanks to the particular form of
V (θ) for the sawtooth map. This is the reason for which the quantum sawtooth map is the most convenient
model to simulate dynamical localization. For other potentials, like V (θ) = cos θ corresponding to the kicked-
rotor model [17, 18], auxiliary qubits are introduced to efficiently compute Uk [9], thus increasing the overall
simulation cost.

• The change from the θ to the I representation is obtained by means of the quantum Fourier transform (QFT),
which requires n Hadamard (H) gates and 1

2n(n − 1) CP gates. The correct order of qubits after the Fourier
transform is obtained by simply relabeling qubits, thus avoiding bn/2c physical SWAP gates.

• In the I representation, the operator UT has essentially the same form as the operator Uk in the θ representation
and can therefore be similarly decomposed.

• We return to the initial θ representation by application of the inverse QFT.

Overall, this quantum algorithm requires O(n2) gates per map iteration. This number is to be compared with the
O(n2n) operations required by a classical computer to simulate one map iteration using the fast Fourier transform. The
quantum simulation of the quantum sawtooth map dynamics is then exponentially faster than any known classical
algorithm. Note that the resources required to the quantum computer to simulate the sawtooth map are only
logarithmic in the system size N . With the above discussed improvements of the quantum circuit, we need 2(n2 − n)
CP, 2n P, and 2n Hadamard (H) gates to simulate one step of the quantum sawtooth map. Which corresponds to
24 quantum gates (12 single-qubit a 12 two-qubit gates) for the case n = 3 which we have simulated on the IBM
quantum hardware. The angles used in the P gates are obtained by changing order of the gates and combining them.
The explicit formulas for the angles are given as the following:

θjk = −2π2k

2j
+

π2k

22j−1
, θjT =

2N2T

2j+2
− N2T

22j+1
, φj1,j2k =

2π2k

2j1+j2−1
, φj1,j2T = − 2N2T

2j1+j2+1
. (6)

The circuit (see Fig. 1) avoids SWAP gates via relabeling of qubits after the QFT and the inverse QFT.
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Figure 1. Quantum circuit of sawtooth map with n = 3.
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K = kT. The classical motion is chaotic for K < −4 and K > 0. Although the sawtooth map
is a deterministic system, in this regime the motion along the momentum direction is in practice
indistinguishable from a random walk, with diffusion in the momentum variable. If we consider
a classical ensemble of trajectories with fixed initial momentum m0 and random initial angle θ, the
second moment of the distribution grows linearly with the number t of map iterations,

〈(∆m)2〉 ≈ Dt, (7)

with the diffusion coefficient D(k) ≈ (π2/3)k2 for K > 1.88

The quantum sawtooth map, in agreement with the correspondence principle, initially exhibits
diffusive behavior, with the classical diffusion coefficient D. However, after a break time t?, quantum

FIG. 1. Quantum circuit of sawtooth map with n = 3.

B. Dynamical Localization for the Sawtooth Map

The classical limit of the quantum sawtooth map is obtained for k → ∞ and T → 0, at constant K = kT . The
classical motion is chaotic for K < −4 and K > 0. Although the sawtooth map is a deterministic system, in this
regime the motion along the momentum direction is in practice indistinguishable from a random walk, with diffusion
in the momentum variable. If we consider a classical ensemble of trajectories with fixed initial momentum m0 and
random initial angle θ, the second moment of the distribution grows linearly with the number t of map iterations,

〈(∆m)2〉 ≈ Dt, (7)

with the diffusion coefficient D(k) ≈ (π2/3)k2 for K > 1.
The quantum sawtooth map, in agreement with the correspondence principle, initially exhibits diffusive behavior,

with the classical diffusion coefficient D. However, after a break time t?, quantum interference leads to suppres-
sion of diffusion. For t > t? the quantum distribution reaches a steady state which decays exponentially over the
momentum eigenbasis:

Wm ≡
∣∣〈m|ψ〉∣∣2 ≈ 1

`
exp

[
−2|m−m0|

`

]
, (8)
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where the index m singles out the momentum eigenstates (I|m〉 = m|m〉) and the system is initially prepared in the
eigenstate |m0〉. Therefore, for t > t? only √

〈(∆m)2〉 ≈
√
Dt? ≈ ` (9)

levels are populated.
An estimate of t? and ` can be obtained by means of a heuristic argument [28]. Since the number of levels involved

grows diffusively, ∝
√
t, and, due to the Heisenberg principle, the discreteness of levels is resolved down to an energy

spacing ∝ 1/t, then the discreteness of spectrum eventually dominates. The localized wavefunction has significant
projection over about ` eigenstates of the Floquet operator U , which determines the evolution of the system over
one map step. This operator is unitary and therefore its eigenvalues can be written as exp(iλi), with λi (known
as quasienergies) distributed in the interval [0, 2π]. The mean level spacing between quasienergy eigenstates which
significantly determine the dynamics is ∆E ≈ 2π/`. The Heisenberg principle tells us that the minimum time required
to the dynamics to resolve this energy spacing is given by

t? ≈ 1/∆E ≈ `. (10)

Relations (9) and (10) imply

t? ≈ ` ≈ D. (11)

The quantum localization can be detected if ` is smaller than the system size N .

III. QUANTUM COMPUTING OF DYNAMICAL LOCALIZATION

We simulate dynamical localization with n = 3 qubits on a real quantum hardware. The initial condition is peaked
in momentum, ψ0(m) = δm,m0

, with m0 = 0. The quantum algorithm for the sawtooth map allows us to compute
the wave vector ψt(m) as a function of the number of map steps, and then the momentum probability distribution
Wt(m) = |ψt(m)|2. We consider k ≈ 0.273 < 1, so that the distribution is already localized after a single map step.
On the other hand, we use K = 1.5, corresponding to diffusive behavior for the underlying classical dynamics. In
Figure 2 we compare after t = 1 map step the ideal, noiseless distribution (green curve) with the Qiskit simulator
(blue curve), used to test the quantum algorithm before submitting it to a real quantum hardware (red curve). Data
for the quantum hardware are for the recently released (8th January 2021) lima quantum processor. This machine has
a nominal quantum volume VQ = 8 (i.e., a single number meant to encapsulate the quantum computer performance
[29]), which is equal or smaller than the quantum volume of other freely available quantum processors. Nevertheless,
in our simulation we obtained the best results for the localization problem with this machine (see discussion below).

As we can see in Figure 2, the quantum hardware exhibits a localization peak after a single map step. On the
other hand, the height of the peak, W1(0) ≈ 0.56, is significantly smaller than the noiseless value, W1(0) ≈ 0.83,
and the prediction of the Qiskit simulator, W1(0) ≈ 0.74. These results show that the Qiskit simulator may at least
underestimate some of the relevant noise channels. It is also interesting to remark that, while the ideal distribution is
symmetric around its peak, the noisy ones are markedly asymmetric. We interpret this asymmetry as a consequence of
the binary coding of momentum eigenstates. For instance, a noise channel leading to a flipping of the most significant
qubit would induce a probability transfer from the peak (m = 0, corresponding to the state |100〉 of the three qubits)
to the state |000〉 (corresponding to m = −4).

To compare the performance of different freely available quantum machines, we ran the sawtooth quantum algorithm
for one map step for several days (from 24th February to 5th March 2021). In Fig. 3, we show data for lima, belem, and
quito (relase date 8th January 2021, nominal quantum volume VQ = 16), santiago (3rd June 2020, VQ = 32), athens
(3rd March 2020, VQ = 32), and ibmqx2-yorktown (24th January 2017, VQ = 8). This latter is an old machine having
a low quantum volume (nominally), but its bow-tie layout is in principle more favorable for the present application,
as it allows direct connectivity between all the three qubits involved in the algorithm. Actually the unfavorable layout
of the other machines is not very relevant for our 3-qubit simulations. Indeed, the number of extra quantum gates
needed to relate non-physically connected qubits, in order to make the quantum algorithm work on these devices, is
such that the execution time of the algorithm never exceeds the minimum decoherence time of the qubits used for all
the machines. For such qubits, the algorithm run time for yorktown is ≈11.1 µs, while for the other devices requiring
extra gates it increases only up to ≈16.7 µs on average. By comparing the height of the localization peak for several
days of runs on the available quantum processors, we conclude that lima is to be considered the best performing
machine at time of writing, both in terms of the best achieved absolute performance (W1(0) ≈ 0.56) and stability of
the results obtained.
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FIG. 2. Dynamical localization in the quantum sawtooth map with n = 3 qubits, K = 1.5, k ≈ 0.273 (T = 2πL/N , with L = 7).
Hereafter data from the quantum processors (here lima) are obtained after averaging over 10 repetitions of 8192 experimental
runs. Data taken on 26th February 2021.
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FIG. 3. Height of the localization peak after one map step for several quantum processors. Data taken from 24th February to
5th March 2021.

In order to quantitatively relate the effectiveness of the dynamical localization quantum algorithm to the error rate,
we compare the height of the localization peak to the noise level in each of the analyzed devices, as measured from
the day-to-day calibrations (nominally given on the IBM Q website). As a measure of the quality of the qubits, we
define an average decoherence time 〈Tdec〉, obtained after averaging over the n = 3 qubits used in a given simulation,
Tdec = min{T1, T2}, where T1 and T2 are the standard relaxation and dephasing times, respectively. Then, we also
estimate the overall relative error of a quantum computer run, defined as Etot, as the sum of the relative errors of
each quantum gate and of the final readout error. Results are then reported in Figure 4, where we use a color code
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from red to violet to quantify 〈Tdec〉, while Etot is proportional to the size of the symbols. It can be seen that the
height of the localization peak is larger for larger 〈Tdec〉 and smaller Etot, i.e., corresponding to small violet circles
(in particular, see data for the lima processor). On the other hand, the worst performances are obtained for smaller
〈Tdec〉 and larger Etot, i.e., corresponding to large red circles (in particular, see data for the yorktown processor).
However, large fluctuations around this average behavior can be noticed. This is expected, since the data from the
Qiskit simulator that are obtained by assuming the same nominal parameters used to define 〈Tdec〉 and Etot, largely
underestimate noise, as it is shown in Figure 2. In particular, fluctuations of the qubit quality parameters between
different calibration procedures, memory effects, and cross-talks between qubits (even not specifically employed in a
given simulation) could also affect the performance of a quantum processor, and may not be fully captured by the
currently implemented noise models.

0.2 0.3 0.4 0.5
W1(0)

athens

belem

lima

quito

santiago

yorktown

tot

0.32 
0.54 
0.88 

40

50

60

70

80

90

T d
ec

[
s]

FIG. 4. Height of the localization peak for the six quantum processors used in this work. For all the data from Figure 3,
we show the average decoherence time, 〈Tdec〉 (color coded from red to violet), and the overall relative error, Etot (size of the
circles), as defined in the text.

Finally, with the aim of further testing the capabilities of quantum processors to simulate dynamical localization,
we show in Figure 5 the localization peak value as a function of the number of kicks. For the noiseless case the
distribution remains localized with fluctuations of Wt(0) around 0.9. For the ibmqx2 - yorktown quantum processor
the peak at m = 0 does not emerge from noise already at t = 2. On the other hand, for the lima quantum processor the
peak is visible up to t = 3 kicks. Evidently, the Qiskit simulator underestimates the level of noise in the corresponding
devices, and predicts a peak decay in 3–5 map steps (for ibmx2-yorktown) and in 10–15 kicks for lima. Overall, the
data of Figures 3 and 5 testify the significant improvement of quantum hardware performance in the last few years.
As a closing remark, it is worth reminding that error mitigation techniques can be applied to reduce the impact of
various sources of noise on near term quantum processors [30–32]. We have applied an error mitigation procedure
based on Ref. [31] in combination with the Qiskit noise model, and only found a limited effect in improving the specific
quantum localization algorithm (results not shown). A more detailed characterization of noise in such devices is by
itself an interesting problem, which goes, however, beyond the scope of the present work.
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FIG. 5. Height of the localization peak as a function of the number of map steps, for parameter values as in Figure 2. Data
are for lima (red) and ibmqx2-yorktown (black). Data taken on 14th February (ibmqx2-yorktown) and 5th March 2021 (lima).

IV. CONCLUSIONS

We have simulated the dynamical localization phenomenon of the quantum sawtooth map by means of several freely
available IBM quantum processors, remotely accessed through cloud quantum programming. The localization peak
emerges from noise, even though significantly reduced with respect to the noiseless dynamics, with up to three steps
of the sawtooth map model for three qubits. Our results demonstrate a significant improvement of the performances
of the available quantum processors over the past few years. This study shows that quantum computing of dynamical
localization may be employed as a fast and convenient benchmark to check the performance of future generations of
quantum processors. In particular, we could envision studying the maximum number n of qubits for which the peak
height after one kick is reproduced with a given accuracy. Since the number of elementary quantum gates required
to simulate a single step of the map scales as n2, in this “localization test” both the number of qubits and the circuit
depth grow with n. The results of this work show that, for n = 3, the localization test does not necessarily agree with
the quantum volume measure.
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