
INTEGRATING IoT DEVICES INTO THE CERN CONTROL 
AND MONITORING PLATFORM

B. Copy∗, M. Bräger, A. Papageorgiou Koufidis, E. Piselli, I. Prieto Barreiro
CERN, Geneva, Switzerland

Abstract
The CERN Control and Monitoring Platform (C2MON)

offers interesting features required in the industrial controls
domain to support Internet of Things (IoT) scenarios. This
paper aims to highlight the main advantages of a cloud de-
ployment solution, in order to support large-scale embedded
data acquisition and edge computing. Several IoT use cases
will be explained, illustrated by real examples carried out in
collaboration with CERN Knowledge Transfer programme.

INTRODUCTION
C2MON [1] is a monitoring platform developed at CERN

and since 2016 made available under an LGPL3 open source
license. C2MON is at the heart of the CERN Technical
Infrastructure Monitoring (TIM) that supervises the cor-
rect functioning of CERN’s technical and safety infrastruc-
ture. TIM handles about three million messages per day, and
serves as the central alarm management system for more than
one hundred and fifty thousand alarms. C2MON relies on
Java Messaging Services (JMS) [2], as well as caching and
clustering technologies, to deliver transactional fail-safe data
distribution. C2MON exhibits features specifically targeted
at industrial control systems [3]. The Publisher-Subscriber
pattern enabled thus, is key to a scalable and robust IoT in-
frastructure [4]. As exposed in the form of a development
roadmap in 2017 [5] and thanks to recent development in
cloud technologies, the C2MON deployment model was
transitioned to adopt more agile runtime platforms, which
had the immediate effect of simplifying the investigation
and resolution of complex JMS issues encountered in pro-
duction. The transition to a cloud deployment model based
on Kubernetes [6] also makes C2MON more suitable for
instant deployment on commercial hosting platforms such
as provided by Amazon or Google.

C2MON ARCHITECTURE OVER
KUBERNETES

Kubernetes as a deployment platform [6] provides a clean
and efficient abstraction for scaling concerns and orches-
tration: individual units of process execution (called pods)
are added or removed as required by runtime health metrics
(such as CPU load, memory usage or the presence of critical
errors), while process configuration and stateful require-
ments (such as data persistence or process cluster ordering)
are transparently provided to individual pods according to
templates. The recent introduction of tools such as Kus-
tomize [7] makes it even simpler to tailor and combine a
∗ brice.copy@cern.ch

common set of Kubernetes templates for multiple scenarios,
injecting configuration and writing scaling directives in a
much more efficient and reproducible manner than tradi-
tional cluster management tools such as Ansible [8], due
to the fact that the deployment environment is completely
factored out and dissociated from hardware and operating
system concerns.

ADAPTING C2MON FOR BETTER
INTEGRATION TESTING AND

DEPLOYMENT

Simplifying Adoption for C2MON Users
C2MON aims to make it easier for new and existing users

to (leverage its monitoring value) by focusing on the follow-
ing points:

• Shipping a one click deployment.
• Allowing extension and (re)configuration of a running

stack.
• Maximizing service resilience and fault tolerance.

One Click Deployment Kubernetes is the project of
the Cloud Native Computing Foundation with the highest
percentage of production usage, as of October, 2018 [9].
C2MON users can bootstrap a complete stack, such as the
one specified below in Fig. 1, using a single command.

Configuring the C2MON Stack Managing the YAML
[10] files for a Kubernetes stack can grow to quite a complex
task, since the format provides no support for extension, or
any form of versioning. YAML is also criticized for being
unsafe and producing unexpected behaviors [11]. Address-
ing some of these issues, Kustomize [7] is an open source
tool which provides:

• A declarative approach to configuration management.
• Component reuse capabilities.
• Integration into existing version control workflows.
By complying with Kustomize workflows, the C2MON

Kubernetes deployment has been modularized into directo-
ries which correspond to layers. Additional configuration
options, such as resource properties files can be added in
those directories and they are automatically converted into
Kubernetes ConfigMaps [12] and Secrets [13], which are
then used in the pods. Thus, every component of C2MON
software can be customized over the same base image and
even reconfigured during runtime by applying a rolling up-
date [14].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA125

Device Control and Integrating Diverse Systems
WEPHA125

1385

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Combining Docker images, Kubernetes templates and Kustomize directives to produce Test and Production
deployments, including redundancy and dependency on external services

Enabling GitOps
GitOps [15], is the practice of using a version control

system as a single source of truth for managing Kubernetes
clusters. The primary objective is to manage deployments
using the same modern standardized practices that are ap-
plied to the code base, such as pull requests and code reviews.
Maintaining all deployment information in the code reposi-
tory provides a clear and coherent history of deployments, a
direct view into important production configuration details
and the ability to apply updates in a simple and systematic
manner.

BOLSTERING JMS RESILIENCE
Message queue systems, implemented using JMS in Java

are increasingly gaining support over REST for handling
cloud workloads [16–18]. Proponents of JMS focus on its
key strengths:

• Reliability as most message queue brokers come with
a 100% message delivery guarantee.

• Elasticity as producers and consumers are indepen-
dently scalable without any concurrency issues.

• Asynchronous processing which is a feature of
paramount importance in an environment where pod
crashes are not very common, but even an expected part
of workflows. This leads to a more robust architecture,
as individual component failures cannot cascade across
the system, while high workloads can be managed with
Kubernetes autoscaling.

Chaos Engineering in Kubernetes
Chaos engineering is the practice of experimenting on a

system in order to build confidence in the system’s capability
to withstand turbulent conditions in production [19]. While
some chaos engineering solutions such as chaosmonkey [20]
focus on testing during production operations, C2MON fo-

cuses on an integration testing workflow, aiming at exposing
bugs before they appear in production. Chaos engineering in
C2MON is carried out using an in-house framework. Using
Kustomize, one can generate multiple Kubernetes environ-
ments which examine different scaling and architecture con-
figurations or replicate existing production setups. A series
of scenarios are then run on each environment, simulating
a selection of failures, such as server crashes or network
outages. Concurrently, the framework is running tests to
constantly evaluate that the system is exhibiting Steady State
Behavior in terms of stability, throughput and quality of
service.

Environments and Configurations
The performance of different solutions was examined and

evaluated across different configurations ranging from a sim-
ple publisher-subscriber architecture to a complex parallel
and concurrent C2MON stack. In the case of C2MON, four
different message queuing (MQ) configurations were over-
laid over three base environments, then subjected to three
different scenarios, generating a simulation matrix of thirty-
six samples. To monitor the performance of the MQ layer,
Prometheus [21], and Prometheus AlertManager [22] were
added to the simulation and configured to monitor the Java
agents in the system. To evaluate system throughput, Ser-
vice level agreement (SLA) compliance and system stability,
JUnit [23] tests were written and run during the simulations.
The chaos engineering framework managed building the
overlays and running the scenarios, as well as exporting the
results from inside the Kubernetes pods that run the tests,
which turned out to be a non-trivial task.

Findings
The simulations successfully and clearly demonstrated the

performance and robustness of different configurations, as
well as the system’s overall response to different conditions.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA125

WEPHA125
1386

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



Figure 2: Performance of different ActiveMQ configura-
tions during idle state. Scaled to best performance on each
axis. For a more detailed description, see Annex A.

Figure 3: Performance of different ActiveMQ configura-
tions during significant system load. Scaled to best perfor-
mance on each axis. For a more detailed description, see
Annex A.

Figures 2 and 3 visualize some of the findings. The simu-
lations helped to pinpoint sub-optimal configurations that
could not easily be diagnosed in a production or even a stan-
dard test environment. Additional findings about the issues
encountered when running Apache ActiveMQ in a container-
ized cloud environment, alongside working solutions, were
reported to the core Apache ActiveMQ development team.

TRANSITION TO IOT TECHNOLOGIES
C2MON, as a best-of-breed open-source data acquisition

and monitoring platform, was initially designed around 2009,
when cloud technologies were not as prevalent as today.
Emerging IoT technologies have also initiated a shift from
traditional industrial controls protocols to more lightweight
Internet-friendly ones (such as MQTT [24] or WebSockets
[25]).

IOT DEVICES PARTICULARITIES
IoT devices have limited connectivity and runtime re-

sources but allow to perform data acquisition at low-
cost. The Arduino eco-system [26] provides a plethora of
community-supported sensor libraries that enable the proto-
typing and productization of new data acquisition devices at
record speed.

IoT devices, in comparison to personal computing devices,
are characterized by :

• Their operating range which varies from a few meters
(for Bluetooth) to kilometers (for cellular or LoRa [27]
devices).

• Their low power usage and requirement to run on au-
tonomous power such as batteries or solar panels, in
remote places.

• Their built-in support for low CPU standard protocols
to ensure wide connectivity.

The openness and wide availability of cloud deployment
options offered by C2MON make it an ideal platform for
the release and monitoring of IoT devices. In collaboration
with the CERN Knowledge Transfer office, the C2MON
developers have already taken part in multiple IoT usage
scenarios.

USAGES OF C2MON IN IOT SCENARIOS
IN PARTNERSHIP WITH THE CERN

KNOWLEDGE TRANSFER TEAM
The CERN Knowledge Transfer (KT) team has the man-

date to disseminate and productize CERN technology so it
can benefit society at large beyond high-energy physics re-
search. CERN KT provides a legal and financial framework
for third-party companies to adopt CERN technologies for
maximum mutual benefit; as part of the CERN KT portfolio,
this applies to C2MON, as illustrated in the two following
case studies.

Grocers of the Future – Tracking Fresh Produce
from Crop to Shelf with C2MON

As part of the CERN Challenge Based Innovation [28],
a team of six university students (team Loop) sponsored
by the Italian sustainable grocery packaging producer CPR
Systems, developed a working tracking service for fresh pro-
duce transport crates, using RFID and on board sensors. The
tracking service, based on C2MON technology and design
principles, enables follow-up of the location, travel time and
storage conditions of fruits and vegetables transiting through
the transport system. Such detailed information is essential
to CPR Systems and goods producers, and also a strong sell-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA125

Device Control and Integrating Diverse Systems
WEPHA125

1387

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



ing point for consumers that can see on the shelf all relevant
information concerning the goods they are buying.

Securaxis – Road Traffic Monitoring in Smart
Cities

Securaxis, a Geneva (Switzerland) based startup company,
is working to combine edge computing, machine learning
and C2MON technology [29] to perform smart monitor-
ing of situations where traditional methods (such as video-
surveillance, sound recording) are both too costly and too
intrusive to operate. By employing smart sensors to analyze
the data and only propagate significant events to a centralized
monitoring system, Securaxis has already received funding
to monitor road activity on bridges, or monitor the presence
and the population of protected species in a given habitat.
Technologies such as LoRa [27] and MQTT [24] are par-
ticularly relevant to scale up affordable deployments in this
context.

CONCLUSION
The usage of Kubernetes [6] and associated technologies

to deploy C2MON in test and pre-production environments
has already proven an undeniable gain in delivering con-
sistent performance and reliability test results, and will in
the future continue to allow development to fine-tune our
deployment configurations and technological choices with
great precision. The CERN Accelerator infrastructure team
is also taking steps to evaluate and provide an operational
cloud based on Kubernetes [30], which will allow the CERN
TIM service (based upon C2MON technology) to greatly
simplify production deployments in the near future.

REFERENCES
[1] M. Bräger, M. Brightwell, E. Koufakis, R. Martini, and

A. Suwalska, “High-Availability Monitoring and Big Data:
Using Java Clustering and Caching Technologies to Meet
Complex Monitoring Scenarios”, in Proc. ICALEPCS’13,
San Francisco, CA, USA, Oct. 2013, paper MOPPC140, pp.
439–442.

[2] Java Message Service, https://en.wikipedia.org/
wiki/Java_Message_Service

[3] E. Byres, “SCADA Security Basics: Integrity Trumps Avail-
ability”, http://tiny.cc/scada-reliability, 6 Nov
2012.

[4] S. Vavassori, J. Soriano, and R. Fernández, “Enabling Large-
Scale IoT-Based Services through Elastic Publish/Subscribe
Sensors”, Sensors, vol. 17, p. 2148, Sept 2017. doi:10.
3390/s17092148

[5] B. Copy et al., “C2MON SCADA Deployment on CERN
Cloud Infrastructure”, in Proc. ICALEPCS’17, Barcelona,
Spain, Oct. 2017, pp. 1103–1108. doi:10.18429/JACoW-
ICALEPCS2017-THBPL01

[6] Kubernetes,
https://en.wikipedia.org/wiki/Kubernetes

[7] Kustomize, https://github.com/kubernetes-
sigs/kustomize

[8] Ansible, https://en.wikipedia.org/wiki/Ansible_
(software)

[9] K. Barnard, “CNCF Survey: Use of Cloud Native Technolo-
gies in Production Has Grown Over 200%”, http://tiny.
cc/cncf-cloud-usage, Cloud Native Computing Founda-
tion, 29 Aug 2018.

[10] YAML, https://en.wikipedia.org/wiki/YAML

[11] YAML: probably not so great after all,
https://arp242.net/yaml-config.html

[12] Kubernetes ConfigMap, https://cloud.google.com/
kubernetes-engine/docs/concepts/configmap

[13] Kubernetes Secret, https://kubernetes.io/docs/
concepts/configuration/secret/

[14] Performing a rolling update in Kubernetes,
https://kubernetes.io/docs/tutorials/
kubernetes-basics/update/update-intro/

[15] GitOps,
https://www.weave.works/technologies/gitops/

[16] Microservices Messaging: Why REST Isn’t Always the Best
Choice, http://tiny.cc/rest-messaging

[17] Microservices communications. Why you should switch to
message queues, http://tiny.cc/microservices-mq

[18] REST vs Messaging for Microservices – Which One is Best?
http://tiny.cc/rest-vs-mq

[19] Principles of Chaos Engineering,
https://principlesofchaos.org/

[20] Chaos Monkey,
https://github.com/Netflix/chaosmonkey

[21] Prometheus, https://prometheus.io/

[22] Prometheus AlertManager, https://prometheus.io/
docs/alerting/alertmanager/

[23] JUnit 5 User Guide, https://junit.org/junit5/

[24] MQTT Version 3.1, http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[25] RFC 6455 The Websocket protocol,
https://tools.ietf.org/html/rfc6455

[26] What is Arduino?,
https://www.arduino.cc/en/Guide/Introduction

[27] LoRa, https://en.wikipedia.org/wiki/LoRa

[28] CERN Challenge Based Innovation,
https://www.cbi-course.com/

[29] Securaxis, first Innovaare incubatee of CERN technology
http://cern.ch/go/7dzw, Parkinnovaare, Switzerland,
Schachen, Aarau, 12 Nov 2018

[30] R. Voirin et al., “Containers in Controls Workshop”, Work-
shop at ICALEPCS’19, Brooklyn, NY, USA, 6 Oct 2019.
https://indico.cern.ch/event/823284/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA125

WEPHA125
1388

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems


