ATLAS TDAQ Controls and Configuration software: Evolution from Run 2 to Run 3

Andrei Kazarov / NRC "Kurchatov Institute" – Petersburg NPI

on behalf of ATLAS TDAQ Controls and Configuration team

virtual CHEP 2021 May 17-21

Content / Overview

- Controls and Configuration software in context of ATLAS TDAQ
- Software evolution and challenges
- Run-2 to Run-3 evolution (in few selected examples)
 - Configuration database backend: *upgrade of technology*
 - TDAQ Run Control in a web browser: new requirements, new package
 - Expert System: *performance upgrade*
 - Electronic LogBook: *re-vamp of the package*

C&C s/w as part of ATLAS Trigger-DAQ

- Controls and Configuration (C&C) s/w packages are part of a bigger TDAQ s/w, including also Monitoring, DataFlow, ReadOut, Trigger steering and algorithms
- C&C components essentially provide a glue for all other TDAQ s/w components including Detector readout s/w, Detector Control
 - Configuration service
 - Run Control framework
 - Knowledge-base tools
 - Web applications for TDAQ operations
- TDAQ s/w is organized in packages (200+), regularly released in form of stable binary distributions

Evolution and challenges

- Modular, loosely-coupled package-based design, well-established APIs: allows long-term development, evolution and maintenance by a small and non-stable team of developers
- Some architectural and design ideas persist since late '90th
- Must follow LHC run/shutdown cycles, maintaining gradual evolution in 1-2 years of shutdown and stable operations in 2-3 years of Run periods
- Must follow and profit from emerging software technologies, standards and 3rd party s/w
- In every cycle, a few packages undergo a major re-implementation, new packages added, some are dropped/replaced
- Aiming for **simplification** and **modernization** of code, implementation of **new requirements**

[MOR97] G. Mornacchi et al, "The ATLAS DAQ and event filter prototype "-1" project", 10th IEEE Real Time Conference, Beaune, France, 1997

[JON97] Robert Jones at al., "The OKS in-memory persistent object manager", *IEEE Transactions on Nuclear Science, Vol.45, no.4, August 1998*, pp 1958-1964

A high-level architecture of C&C software (see backup)

Run1->Run2 evolution in more details: A. Kazarov, I. Aleksandrov, G. Avolio, M. Caprini, A. Chitan, A.C. Radu, A. Kazymov, G.L. Miotto, M. Mineev, A. Santos et al., Journal of Physics: Conference Series 1525, 012036 (2020) https://doi.org/10.1088/1742-6596/1525/1/012036

virtual CHEP conference 17-21 May 2021

A.Kazarov NRC "Kurchatov Institute" - C&C software evolution from Run 2 to Run 3

virtual CHEP conference 17-21 May 2021

Configuration service: CVS to GIT migration

- TDAQ configuration data is stored in +1000 nested XML files updated by many experts
- **CVS** was used to keep the files in a consistent state during Runs 1&2
 - not supported for many years, misses important security and interface improvements
- Replaced by **GIT** solving several issues and keeping design mostly unchanged:
 - Validation of changes on update in server hook: check consistency and access permissions using role-based Access Manager
 - preserve and archive a data-taking configuration by a commit hash
 - expose GIT interface directly to users, including web editing capabilities

OKS GIT implementation details

- gitea (GIT) server on a VM
 - more than 3K user accounts
 - web interface (browse, edit, merge)
 - 5 seconds per commit (including validation)
 - synchronized with central CERN Git service (gitlab) for archiving and world-wide read access
- A configuration **update** integrated with data TDAQ taking session tools:
 - show available changes as commits with details to the Operator
- Implemented a workflow on top of GIT merge/pull requests to facilitate scheduled configuration changes during TDAQ operations

🈡 Dashboard Issues	Pull Requests Miles	ones Explore	ф + ч	· 🔣 ·	
G oks / tdaq-09-02-01	(> Watch 0	r Star 0	Fork 0	
<> Code (!) Issues 0 (!)	🕽 Pull Requests 🚺 🔊	Releases 2.5k	🖽 Wiki 🔸	Activity 🛯 🕅 Se	
🖸 1825 Commits 🐉 10 Branches		25	🖯 4.8 MiB		
ਏ Branch: master ⊸ ਇ Co	mmit Graph				
1825 Commits (master) Search commits All Branches Search					
Author SHA1	Message			Date	
Francesco S 680fdf	82c5 Back to th	ne standard TTC cor	ı	2 hours ago	

Web-based Run Control

- Motivation: provide web-based access to the functionality of Integrated GUI: a standalone application integrating interfaces to C&C services for controlling and supervising ATLAS data-taking sessions
- The required functionality
 - connecting to a TDAQ session for control or monitoring
 - presenting hierarchical TDAQ applications tree (see next slide), dynamically updating states of individual items
 - sending RC commands to applications
 - connecting to Error Messaging service to provide real-time error monitoring
 - log files browsing
- Requirements for the technology:
 - its backend part needs to be tightly integrated with main TDAQ services like Run Control, Information Service and Error Reporting
 - the frontend part should offer a rich set of widgets
 - provide good scalability and conservative resource usage, allowing connections for many (O(10)) users and serving multiple running TDAQ sessions in parallel
 - support of dynamic and interactive web features like Ajax or Web Sockets
- Apache WICKET was chosen for the implementation: a Java-only powerful backend and simple frontend

Web Run Control in action

virtual CHEP conference 17-21 May 2021

An Expert System (CHIP)

TDAQ system largely deterministic \rightarrow Possible to identify "signatures" and react properly

- CHIP: The **C**entral **H**int and **I**nformation **P**rocessor (aka Expert System)
- An *"intelligent"* application having a <u>global view</u> of the TDAQ system and **taking operational decisions**
 - Handles abnormal conditions (correctly disabling a failing readout channel)
 - Automates complex procedures (reacts on "Stable Beam" condition)
 - Performs advanced recoveries (restarting a Trigger PU)
- CHIP embeds the Java-based ESPER Complex Event Processing (CEP) engine
- Large Knowledge Base (KB)
 - More than **300** detection "rules" or "directives" expressed and stored in EPL

CHIP performance

- Performance in Run 2
 - Single CHIP instance adequate to monitor the whole TDAQ system
 - Data injection peaks into the ESPER engine up to 40 kHz
 - Average execution time of KB rules of about 2 μs^{*}
- From Run 2 to Run 3
 - Extension of the KB (13% increase in number of rules)
 - Including new scenarios and integrating new TDAQ components and systems, e.g.
 - Integration of the new readout system SWROD (including stop-less removal and recovery)
 - Restarting of the RootController (egg/chicken problem)
 - Move to Esper 8
 - Knowledge base compiled in Java bit code
 - Evaluation of rules reduced up to 40%
- * Running on dual-socket Intel Xeon E5-2680 V3 64 GB RAM

Event Injection Rate into the ESPER Engine

Electronic logbook (ELisA) re-vamp for Run 3

- for Run 2 we developed a complete s/w suite to cover an electronic logbook services: web interface, REST API, user authentication, database storage of messages and configuration, client API libraries and utilities, configurable email notification, mailer client
- Reasons for a change:
 - SW updates: the code was ~8 years old
 - Maintenance improvements: two different applications handling web interface and REST API requests, and separate Tomcat web server
 - Deployment improvements: more clients interested to set up their own standalone logbook
 - Requests for new features
- Getting ready for Run 3:
 - Simplification and refactoring: merged the web interface and REST API applications, + embedded web server
 - The application packed and distributed as an RPM, and managed automatically as a service. Custom client configuration is
 preserved.
 - Support for MySQL backend in addition to Oracle
 - Social login

• The solution is spreading: currently ELisA is used by 14 different clients, half of them beyond ATLAS

Conclusions

- We provide a stable stack of software for smooth steering of the TDAQ datataking, for all ATLAS development and operational periods started in early 2000, ranging from core system-level services to web-based applications
- Complexity of the system and need in high data-taking efficiency requires s/w solutions which can implement a high level of operational automation
- Maintaining the high quality of s/w through 20-30 years of the experiment lifetime requires its permanent and gradual evolution, including use of new s/w technologies and partial re-development of the components

Backup

Run 2 – Run 3 evolution

- Configuration database backend: from CVS to GIT
- Web-base Run Control: full remote control of data-taking in a browser window
- Expert System: focus on performance
- Electronic LogBook: re-vamp
- Evaluation of a time-series DB for a persistency backend for operational monitoring archival
- Dismiss a very old package CLIPS, replaced by in-house rules engine

