Improvements to ATLAS Inner Detector Track Reconstruction for LHC Run 3

Valentina Cairo, Max Goblirsch-Kolb, Serhan Mete, Nora Pettersson, **Zach Schillaci**, Bastian Schlag, Stephen Swatman, Makayla Vessella On behalf of the ATLAS Collaboration

25th International Conference on Computing in High-Energy and Nuclear Physics CHEP 2021

May 19, 2021

ATLAS Track Reconstruction

- Track reconstruction is a multistep process: clusters \rightarrow space-points \rightarrow seeds \rightarrow tracks
- Primary tracking chain runs inside-out starting from hits recorded in the pixel and strip subdetectors
- Back-tracking chain runs outside-in, seeded from drift circles in the TRT to recover photon conversions
- ◆ Additional tunes exist based on various physics needs → Large Radius Tracking (LRT) for displaced vertices

Useful Definitions

- Drift circles: hits recorded by TRT straw tubes
- Clusters: aggregate of nearby silicon hits
- Space-points: clusters with 3D space information
- Seeds: triplets of curvature-compatible space-points
- Tracks: refit extension of seeds into outer layers

ATLAS Primary Tracking

The Challenge of Tracking in LHC Run 3

- Pile-up $\langle \mu \rangle$ has already posed serious challenges to ATLAS, particularly to the ID reconstruction
- Expect average collision multiplicity of $\langle \mu \rangle = 50-60$ in Run 3, up from Run 2 average of $\langle \mu \rangle = 34$
 - ullet Given its fine granularity and proximity to the beam-line, each collision produces up to 1500 hits in the ID
- Tracking is fundamentally a problem of combinatorics → need to address scaling with pile-up
- In Run 2, ID tracking alone accounted for nearly 65% of the total ATLAS reconstruction time

Overhaul of Tracking for Run 3

- Goal: Speedup track reconstruction by $\times 2$ over Run 2 and significantly reduce disk space usage
 - Retune track reconstruction from $\langle \mu \rangle = 20 \rightarrow 60$
 - Physics motivation to improve stability against increasing pile-up
 - Prevent catastrophic slowdowns when running at high pile-up
- Best handle is **reducing** the number of **low quality seeds** \rightarrow cascading downstream speedups
 - In particular, tighten seed requirements to align with track cuts further down the chain
- Thanks to a coordinated effort by many, several changes have been made to the software for Run 3:
 - Stricter tracking cuts
 - Back-tracking and TRT optimization
 - Seed and pattern recognition tuning
 - Reduction in seed formation regions
 - Migration of hole search
 - Inclusion of ACTS-based vertexing
- → Now let's see where we stand versus Run 2 ...

Summary of Performance Improvements

- **Headline:** Run 3 reconstruction is over $2 \times$ faster with a 25 % reduction in the disk space
 - Significantly improved scaling with pile-up \to capable of running up to $\langle \mu \rangle = 90$ without major slowdowns
- Allows for the inclusion of **LRT** by default, while still meeting the targeted CPU and disk goals
 - Previously run separately on only a subset of data \rightarrow exciting prospects ahead for long-lived particle searches!
- Performance improvements are largely thanks to a reduction in the fake rate
 - No longer wasting processing time and disk storage on poor quality tracks

Note: All tests run in single-thread mode

- Major speedups come from improvements to track finding and the TRT reconstruction
 - Track finding is the largest CPU consumer \rightarrow now over $4 \times$ faster

 $\langle \mu \rangle$

- Importantly, the changes do not result in any significant impact on the reconstruction efficiency
 - While the fake rate is significantly reduced \rightarrow key to performance improvements
- Improvements in vertexing driven by the adoption of the Adaptive Multi Vertex Finder algorithm
 - First production use of **ACTS** common tracking framework in an LHC experiment!

- Major speedups come from improvements to track finding and the TRT reconstruction
 - Track finding is the largest CPU consumer \rightarrow now over $4 \times$ faster

- We now process less than half the number of seeds per reconstructed track
 - Implying the costly seed-extension algorithms are being called half as frequently!
- ullet Additionally, the **number of reconstructed tracks** in **data** and **MC** is now approximately **linear in** μ
 - Expect real component to scale linearly, and fakes to scale with a higher power

Summary of Tracking for Run 3

- We are now in a much better position for track reconstruction in Run 3
- Surpassing \times 2 CPU speedup and 25 % disk reduction, even with the added inclusion of LRT by default
- Total ID reconstruction time reduced from 65 % in Run 2 to 40 % in Run 3 at $\langle \mu \rangle = 50$ (excl. LRT)
- Looking ahead, there are still many interesting challenges to overcome for tracking in the high-luminosity LHC
 - Will use Run 3 as a learning opportunity to optimize tracking for $\langle \mu \rangle = 200$

Backup

Tracking in ATLAS at the Large Hadron Collider

- ATLAS is a multipurpose detector situated on LHC Point 1 built from several concentric subdetectors
- The Inner Detector (ID) is the centermost system responsible for charged particle tracking
 - Three layers: Pixel, Semiconductor Tracker (SCT), Transition Radiation Tracker (TRT)
 - Crucial for many aspects of object reconstruction \rightarrow transverse momentum, vertexing, b-tagging, ...
- Reconstruction describes the transformation from raw detector signals → analysis-ready physics objects

Detailed Summary of Changes

Clustering and Space Point Formation

• Internal logic improvements

Seeding and Track Finding

- Store fewer pixel seeds (only one) sharing the same central space point and all confirmed seeds
- ullet Reduce combinatorics by tightening $\phi-z$ regions in which seeds are formed, adapted based on p_T cut
- Restrict size of search road

Ambiguity Resolution

- Tighten track selections from $7 \to 8$ silicon hits and $d_0 < 10 \to 5$ mm
- Streamline of hole search procedure

TRT Extension

- Update definition (tighten quality) of precision hits
- ullet Require more precision hits on track (PHF $30\,\%
 ightarrow 40\,\%$) for successful extrapolation

Back-tracking

• Tighten electromagnetic calorimeter region of interest threshold used for seeding

Vertexing

Move from Iterative Vertex Finder to Adaptive Multi Vertex Finder (based on ACTS)

Details on Benchmarking

- Dataset: twelve luminosity blocks corresponding to two LHC fills 6291 (2017) and 7358 (2018)
 - Average over 300 consecutive collision events
- Setup: machine with two Intel(R) Xeon(R) E5-2630 v3 8-core, 2.4 GHz processors and 128GB of RAM
 - CERN CENTOS 7 operating system
 - CPU scaling set to performance mode and hyper-threading disabled
 - Resulting HS06 score of 278
- All tests run in **single-thread** mode

Year of data-taking	LHC Fill number	ATLAS Run number	Luminosity block	$\langle \mu \rangle$
2017	6291	337833	1475	15.5
			1249	19.8
			1048	25
			905	30
			785	35
			663	40
			584	45
			512	50
			405	55
			299	60
2018	7358	364485	783	80.1
			725	90

- Major speedups come from improvements to track finding and the TRT reconstruction
 - Track finding is the largest CPU consumer \rightarrow now over 4 \times faster

