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Abstract This paper reports on the second “Throughput”
phase of the Tracking Machine Learning (TrackML) chal-
lenge on the Codalab platform. As in the first “Accuracy”
phase, the participants had to solve a difficult experimental
problem linked to tracking accurately the trajectory of par-
ticles as e.g. created at the Large Hadron Collider (LHC):
given 𝑂 (105) points, the participants had to connect them
into𝑂 (104) individual groups that represent the particle tra-
jectories which are approximated helical. While in the first
phase only the accuracy mattered, the goal of this second
phase was a compromise between the accuracy and the speed
of inference. Both were measured on the Codalab platform
where the participants had to upload their software. The
best three participants had solutions with good accuracy and
speed an order of magnitude faster than the state of the art
when the challenge was designed. Although the core algo-
rithms were less diverse than in the first phase, a diversity of
techniques have been used and are described in this paper.
The performance of the algorithms are analysed in depth and
lessons derived.
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1 Introduction

The Tracking Machine Learning (TrackML) challenge took
place in two phases, an Accuracy phase[1] in 2018 on the
Kaggle platform1, and a Throughput phase in 2018-2019 on
Codalab2, preceded by a limited scope 2D prototype compe-
tition [2]. This paper is documenting in details the Through-
put phase, which combined accuracy and inference speed,
while only the minimal summary of the Accuracy phase is
given (see [1] for details). The goal of these competitions
was to reach out to a wider community to stimulate various
approaches to tracking on a uniform set up, as it has been
done in the past on a variety of HEP issues [3].
The LHC is a unique particle accelerator complex collid-

ing protons at unprecedented energies. It allowed the Higgs
boson discovery[4,5] in 2012 as acknowledged by the 2013
Nobel prize in physics. It will collect data of increasing
complexity and at an increasing rate with a large upgrade
the so-called High Luminosity LHC (HL-LHC)[6] currently
planned for 2027. The analysis pipelines of the proton colli-
sions (or events) rely as an important step on the reconstruc-
tion of the trajectories of the particles within the innermost
parts of the detector. The time to reconstruct the trajectories
— in a constant magnetic field these would follow a heli-
cal path — from the measurements (3D points) is expected
to increase faster than the projected computing resources.
New approaches to pattern recognition are thus necessary
to exploit fully the discovery potential of the HL-LHC. A
typical event of this challenge would have about 100.000
points to be associated into about 10.000 trajectories. The
state of the art was of order 10s per event on single CPU core
when the challenge was designed[7,8]. Given that 10 to 100
billion such collisions need to be processed each year, the
importance of the increase of the reconstruction throughput
becomes evident.
A dataset consisting of a relatively detailed simulation[9]

of an LHC-like experiment has been created, listing for each
event the measured 3D points, and the list of 3D points
associated to a true track. The dataset is large enough to
allow for the training of data-intensive Machine Learning
methods; the order of magnitude estimates are: ten thousand
events, one billion measurement points, one hundred million
trajectories (“tracks”) to be found. In practice, the task is to
build the list of 3D points belonging to each track. As usual,
the solutions proposed by the participants were evaluated on
a test set stripped of the ground truth. The final step of track
reconstruction, i.e. the inference of the particle properties
(track parameters) at the particle’s origin, was not a goal of
the challenge, given that the estimation of track parameters
by applying fitting or other inference techniques is believed

1https://www.kaggle.com
2https://competitions.codalab.org

to be well understood and does not significantly drive the
computing requirements.
For the Accuracy phase, participants had to upload a

solution file (in csv format) indicating how the points are
clustered (like for a typical competition on the Kaggle plat-
form), while for the Throughput phase participants had to
upload their software to the Codalab platform, on which it
was executed in a controlled environment. By doing so, the
resource usage was measured in a standardized way, and the
Throughput score was then derived from a combination of
the accuracy and the inference speed.
This paper is organised as follows. Section 2 details the

setup of the competition, the changes to the dataset with re-
gards to the Accuracy phase and accuracy score evaluation,
the score and the details of the implementation on the Co-
dalab platform. Section 3 narrates the competition as it hap-
pened. Section 4 details the performance of the algorithms
submitted. The top three algorithms are then detailed each in
sections 5, 6 and 7, respectively, and 8 is the Conclusion.

2 Throughput phase setup

This section details the setup of the competition, building on
the Accuracy competition description in [1].

2.1 Dataset update

The dataset [10] for this Throughput phase is slightly differ-
ent from the one [11] for theAccuracy phase. It was produced
with the fast detector simulation that is part of the ACTS
project[9]. The detector setup, as pictured in Fig. 1, was un-
changed with respect to the Accuracy phase, and mimics a
typical LHC general purpose experiment. The overall detec-
tor setup is as follows: A central silicon pixel detector with
the 50 µm square pixels is enclosed by a Silicon short strip
detector and an outermost long strip detector and embedded
in a solenoidal magnetic field with a central field strength of
2 T.
Minor adaptions to the dataset have been made for the

Throughput phase, predominantly to correct issues that have
been identified with the Accuracy dataset (those issues, how-
ever, were checked to not have any impact on the outcome of
the Accuracy phase results). These changes were:

– Correction of electron scattering: due to an incorrect unit
setting in the multiple scattering module, the strength of
multiple Coulomb scattering had been overestimated in
the Accuracy phase dataset, this affected at maximum of
0.5 % of all particles in the first phase.

– Correction of the virtual thickness of the strip modules:
in the cluster size calculation of strip clusters a wrong
silicon thickness was used initially.
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– Correction of the beam spot size: the longitudinal beam
spot size, i.e. the luminous regions where proton-proton
interactions could occur, was corrected from 5.5 mm
to 55 mm, which corresponds more accurately to the
expected parameters of HL-LHC conditions.
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Fig. 1 Sketch of the TrackML detector as used in both the "Accuracy"
and "Throughput" phase. Vertical lines indicate disks while horizontal
lines indicate cylinders, all with the 𝑧 axis as axis of revolution. Three
different sub detectors build the overall detector setup: a central pixel
system (blue), enclosed by first a short strip (red) and then a long strip
detector (green).

The format of the dataset remained unchanged: the output
was organised in a set of comma-separated text files that
were organized per event containing both simulated data and
ground truth. The ground truth was only available to the
contestants for the training dataset.

2.2 Throughput score

The goal of this competition is to combine high accuracy and
high speed, therefore a score combining both was required.
The experience of the first Accuracy competition has shown
that the accuracy score defined as the weighted fraction of
points correctly assigned (see [1] Eq. 1) was very effective,
as the best algorithms in terms of the accuracy score were
still the best in terms of the more detailed analysis. A random
algorithm has a score 0 and a perfect algorithm has a score
of 1; top algorithms in the Accuracy phase reached score just
above 0.9 . One slight modification was introduced, which
was to remove from the computation of the score trajectories
stemming from secondary particles, i.e. particles that do not
originate from the primary beam-beam interaction, but from
either subsequent particle decay or interaction of primary
particles with the detector material. These secondary tracks
are not originating close to the origin and are largely less
interesting from the point of view of physics. Not considering
them eases somewhat the task of the algorithms and reduce
their complexity.
The speed is defined to be 𝑡 the average time per event

(in second) as measured on the test dataset, on the allocated
resources in the docker environment as detailed in Sec 2.3.

The accuracy, 𝑆, and speed, 𝑡, were measured on a test
dataset of 50 events (instead of 100 for the Accuracy phase),
to limit the resource usage on the platform, and also because
from preliminary tests the variance of the two quantities
appeared to be limited.
In addition, the resource usage in terms of the maximum

allowed time was set to 𝑡𝑚𝑎𝑥 = 600 s per event. In order
to exclude possible extremely fast algorithms with mediocre
accuracy (which would be useless from the point of view of
physics), a minimum accuracy of 𝑆𝑚𝑖𝑛 = 0.5 is required.
The overall score is given by the formula:√︂
log

(
1 + 𝑡𝑚𝑎𝑥

𝑡

)
× (𝑆 − 𝑆𝑚𝑖𝑛)2 (1)

The score is an unbounded dimension-less positive number,
the higher the better. A particular score value can be reached
by different combinations of speed and accuracy, these lines
of equal score can be seen on Fig.3. The goal of the challenge
was to encourage participants to reach the best compromise
between accuracy and time, leading towards values in the bot-
tom right corner of the chart. The formula was defined based
on the finding of the Accuracy phase, and a poll on the infer-
ence speed of their algorithms (which then was not a ranking
criterion), which ranged between 100 s per event and a full
day. The target expectations for solutions of the Throughput
challenge was to yield algorithms with a throughput execu-
tion time of 10s per event. Nevertheless, as it will be shown,
the formula behaved well also with sub-second algorithms
that were submitted.

2.3 Codalab implementation

The first Accuracy phase of the TrackML competition was
hosted by Kaggle, the well-known competition platform. For
the Throughput phase, the algorithm had to be run within
a fully controlled environment, so that the execution speed
could be measured. This requirement was not possible on
the Kaggle platform at the time. The Throughput phase was
implemented on Codalab, a platform popular for scientific
competitions, which allows for a more customised setup.
Participants had to develop their algorithms on the train-

ing dataset (including the ground truth) provided. As for the
Accuracy phase, a library[12] was available to them in order
to evaluate their score. Then they had to prepare and upload
the inference part of their algorithm to the platform. The
platform then runs the algorithm on the public test dataset,
statistically identical to the training dataset, but without the
ground truth. The execution time and accuracy score, to-
gether with the overall score obtained with Eq. 1, are mea-
sured and reported on the public leaderboard (see Table 1)
. It should be noted that in this Throughput phase, contrary
to the Accuracy phase, the public test dataset is undisclosed
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to the participants, it is “public” only because it is used for
the public leaderboard. As commonly done in such compe-
titions, in order to avoid that participants overtrain on the
public leaderboard score, the overall score was reevaluated
after the end of the competition on a private test dataset,
statistically identical to the public one.

The overarching goal of the competition was to foster
algorithms and ideas from a broader community than the
high energy physics community. In the years the competi-
tion was designed then run, the workhorse for large scale
processing of LHC experimental data has been single cores
CPU with 2GB RAM. In practice, the single cores are made
available as virtual machines instantiated on a variety of
physical hardware in world-wide distributed computing cen-
tres. Meanwhile, the community has been moving towards
multi-core computing andGPUs are increasingly used in spe-
cific contexts. As a compromise between current and future
HEP computing landscape, the resources used to evaluate an
algorithm were 2 CPU cores with 4GB of RAM. A partici-
pant using a traditional single thread algorithm would lose a
factor 2 in speed which would be a small handicap given the
logarithmic dependency in speed in Eq. 1. We deliberately
did not choose to favour a higher level of parallelism in order
not to skew the competition towards a parallel-computing
coding competition.

Two physical machines have been dedicated to the chal-
lenge, each having two Intel Xeon Processor E5-2650 v4
@2.20 GHz with hyper-threading, each processor having
12 physical cores. This is a typical processor used on the
LHC Computing Grid; it has been benchmarked to 10.26
HS06 unit [13], a benchmark routinely used for High Energy
Physics computing.

Each participant had to implement their algorithmwithin
a provided skeleton. The skeleton is a small Python class
Model for which C/C++, Python and R bindings examples
were given in the starting-kit. The code is then run by the
platform within a docker[14] environment limited to 2 CPU
and 4 GB of memory. The C/C++ code could be compiled
at home and shipped with the binaries since the docker was
publicly available (which was the method used for almost
all submissions). Before being evaluated, the participant’s
Model could be initialised by compiling source code, loading
data, etc.

The skeleton loops over the input data one event at a
time, call the participant’s code and writes out the solution
found. The time measured is the wall clock time spent in the
participant’s code (so that all the overhead, in particular in
I/O, is not included). To avoid extremely slow submissions
using up resources, a pre-test was first done on one single
event with a time limit at 600 s. If this pre-test was successful,
the measurement was made on the 50 events public test
dataset.

Thorough tests prior to the competition determined that
the time evaluation was reproducible to within 2%, which
was independent on possible other evaluations running con-
currently on the same physical machine. This small variance
could have, in principle, impacted the ranking of the partic-
ipants. Hence, it was decided, and participants were warned
about it, that the final measurement of the time of a submis-
sion would be done after the end of the competition with a
repetition of 10 runs on the final private test dataset. When
this was done, no unexpected discrepancies were seen, even
though the diversity of code tested was larger than in the tests
run prior to the competition.
A standard docker environment was provided including

typical libraries. Participants could, in addition, install on-
the-fly libraries from internet, which access remained open to
the worker node. However, in practice, participants preferred
to directly ship additional libraries with their own software.
Execution logs were not made available to the participants,
as they could have been used to obtain insights on the undis-
closed test dataset. Otherwise, there was no thorough attempt
to eliminate all possible methods of hacking. Hacking was
obviously forbidden in the competition rules participants had
to agree to. In addition, the prizes were conditioned to a full
release of the source code which was scrutinised (for the top
participants) at the end of the competition.

3 The competition as it happened

The TrackML Throughput competition opened on 3 Septem-
ber 2018 a few weeks after the end of the Accuracy competi-
tion on Kaggle on 10 August 2018. It was initially due to on
18 October 2018, but given the initial lack of competitors, it
was extended until 15 March 2019.

participant score accuracy (%) speed (s/event)
sgorbuno 1.17 94.4 0.56
fastrack 1.11 94.4 1.11

cloudkitchen 0.90 92.8 7.28
cubus 0.77 89.5 13.5
Taka 0.59 87.5 53.4

Vicennial 0.56 81.5 25.4
Sharad 0.29 67.4 38.0

Table 1 TrackML Throughput competition leaderboard

The leaderboard is shown in Table 1. As detailed in
Sec.2.2, participants obtained a non zero score only if their
submission could achieve more than 50% accuracy in less
than 600 s per event. In the end, only seven contributors
achieved non zero scores; their score evolution as a function
of date of submission is summarized on Fig. 2 and on Fig. 3
as a function of the accuracy and computation speed. From
the shade of the blue curve, it can be seen that the competi-
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tion winner, sgorbuno, made a late entry in the competition,
with only four submissions that earned him the title.
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Date
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Fig. 2 TrackML Throughput phase participants overall score evo-
lution as a function of the date of submission. sgorbuno is Sergey
Gorbunov (see Sec. 5), fastrack is Dmitry Emeliyanov (see Sec. 6)
and cloudkitchen is Marcel Kunze (see Sec. 7).

The number of participants to the Throughput phase
has been rather low, especially considering that there were
648 teams participants to the Accuracy phase on Kaggle,
which could in principle have carried on to the Throughput
phase. In hindsight, this has been understood to come from
a combination of factors:
– the lower popularity of Codalab compared to Kaggle,
where people can earn points across competitions.

– the complexity of the problem.
– the perceived necessity to write optimised C++ code
when a typical Kaggle participant is more familiar with
python.

– the threshold of less than 600 s per event and more than
50% efficiency, it was already non-trivial to have a non
zero score

– despite all the efforts to document and streamline the
procedure to submit a solution, it still required a larger
commitment than for a typical Kaggle competition.

– the fact that we did not provide the log files made debug-
ging rather difficult to the participants.
Nevertheless, the fewer number of participants was more

than compensated by the high quality of the top three partici-
pants (see Fig.3), who all obtained better than 90% accuracy
with an execution time up to 0.5 s, compared to an initial goal
of better than 10 s per event. After the end of the competition,
all participants made their documented software available,
whichwas scrutinized. The scorewas re-evaluated on the pri-
vate test dataset, which confirmed the score from the online
leaderboard. Hence the final rankings confirmed the online
one.
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Fig. 3 TrackML Throughput phase participants score evolution. The
horizontal axis is the mean accuracy over the 50 test events, and the
vertical axis is the average computation speed per event. The total
score, function of both variables, is displayed in grey contours. Each
colour/marker type corresponds to a contributor, the lines help to follow
the score evolution. sharad only made a single contribution, identical
to the first point from Vicennial.

The original idea was that the algorithms developed in
the Accuracy phase would be optimised and adapted to the
second phase, not necessarily by the same participants. This
was not enforced in any way but, and it is largely what has
happened:

– Sergey Gorbunov (pseudonym sgorbunov) rank 1 in the
Throughput phase had obtained rank 3 in the Accuracy
phase (with pseudonym Sergey Gorbunov)

– Dmitry Emeliyanov (pseudonym fastrack) rank 2 in
the Throughput phase had obtained rank 4 in the Accu-
racy phase (with pseudonym demelian)

– Marcel Kunze (pseudonym cloudkitchen rank 3 in the
Throughput phase ) used as a starting point the algorithm
of TopQuark, rank 1 in the Accuracy phase, and has
largely augmented it

– the algorithm of outrunner, rank 2 in the Accuracy
phase, was quite innovative but very slow, a full day per
event, so was not seen promising enough to be recycled
in the Throughput phase.

4 Algorithmic performances

In this section, a thorough investigation of the performance of
the highest ranking algorithms is discussed, as was done for
the Accuracy phase in [1]. The box plot on Fig. 4 indicates
the accuracy score on the 50 event test dataset. Interestingly,
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the accuracy follows the general ranking, indicating that little
compromisewasmade in optimising the algorithms.Only the
first two candidates have very similar accuracy and differ in
regards to the speed, as could be seen in Table 1.

0.65 0.70 0.75 0.80 0.85 0.90 0.95

#1 sgorbuno

#2 fastrack

#3 cloudkitchen

#4 cubus

#5 Taka

#6 Vicennial

#7 Sharad

Fig. 4 Box plot of the per-event accuracy score on test events for the top
participants. The whiskers indicate the total range, the box the quartiles
of the individual distributions.

Performance assessments of HEP detectors are typically
several hundred pages in length, with many histograms as-
sessing the performances from various angles. For practi-
cality, algorithms evaluated in the TrackML challenge are
ranked based on a single score, concerning accuracy and
speed. In the TrackML Accuracy paper[1], it was demon-
strated that the Accuracy score was indeed selecting algo-
rithms which were indeed the best after a more thorough
analysis. This analysis is repeated here for the TrackML
Throughput competition, to ensure that the assertion still
holds despite the strong speed incentive. Instead of using the
Accuracy score, which is a hit-based efficiency (weighted
fraction of points correctly assigned), we use the particle-
based efficiency, which is the fraction of particles correctly
reconstructed; this quantity is more commonly used in par-
ticle physics. A particle is considered to be correctly recon-
structed if there is a track sharing more than 50% of the
points with the original particle, as indicated by the ground
truth. Contrary to the Accuracy score, this efficiency is not
weighted to decrease the relative weight of the lower trans-
versemomentum (larger curvature) particles. This is themain
reason why the particle efficiency is a few per cent less than
the Accuracy score. The fake rate (the fraction of tracks
that cannot be uniquely attributed to a truth particle, another
quantity commonly used in particle physics) has not been
studied in depth, because, given the requirement that one
point can only be assigned to one track, the fake rate was
found to be very much anti-correlated to the efficiency.
Fig. 5 displays the efficiency for the 7 best participants as

a function of several variables relevant for physical analyses
(these variables are obtained from the truth particle):

– 𝑧0 is the 𝑧 coordinate of the vertex.
– 𝑟0 is the transverse distance to the beam axis, 𝑧, of the
particle vertex (creation point)

– 𝑝𝑇 (GeV), the transverse momentum, is the projection
on the plane perpendicular to the beam axis of the mo-
mentum 𝑃, product of the particle speed by its relativistic
mass; for particles of unit charge, it is proportional to the
radial component of the particle trajectory.

– 𝜙 (rad) is the azimuthal angle (around the beam axis)
– 𝜂, the pseudorapidity, is a dimensionless quantity de-
scribing the angle of the particle with respect to the beam
axis and varying between -4 and 4 for this detector; with
𝜃 the angle in radians, we have 𝜂 ≡ ln(tan 𝜃/2)

The efficiency curves for the seven participants are well
separated. A striking feature is that fastrack’s efficiency
is consistently better than sgorbuno’s, despite the two hav-
ing very close Accuracy score. This is because fastrack’s
tracks are typically missing more points than sgorbuno’s,
thus lowering its Accuracy score, which is a point-based
efficiency.
All algorithms have similar 𝑝𝑇 dependencies with a dip

at low 𝑝𝑇 which correspond to particles with large curvature.
Reconstructing these large curvature particles might require
to enlarge the search window, at the risk of increasing the
number of combinations and decreasing speed; it is also
the case that these particles are more difficult to reconstruct
because they suffer more material interactions. The best al-
gorithms are able to mitigate this effect. After a plateau, the
efficiency decreases slightly for 𝑝𝑇 above 8 GeV. This com-
mon feature has not been understood as these particles are
almost straight and in principle easy to find. Although this
concerns less than a per mil of all particles as can be seen
Fig 5 in [1], they can be of high interest from the point of
view of physics. This feature was already seen, although less
pronounced, in the Accuracy phase (Fig 13 in [1]). It is most
likely a side effect of the speed optimisation, which was not
noticed by the participants given the very small weight of this
region of the phase space in the calculation of the accuracy.
Given the cylindrical symmetry of the detector (see Fig 4

in [1]), the efficiency is expected to be flat according to 𝜙. In
general, this is observed. For fastrack and sgorbuno the
efficiency for positively charged particles shows a dip just
above 𝜙 = −𝜋, and another dip for negatively charged parti-
cles just below 𝜙 = 𝜋. Due to the approximately solenoidal
magnetic field pointing along the 𝑧 axis, positively charged
particles turn clockwise, so positive particles starting with
𝜙 just above −𝜋 are then crossing the 𝜙 = 𝜋 boundary into
the region with 𝜙 just below 𝜋 (and the opposite for nega-
tive particles). The 𝜙 = 𝜋 boundary does not correspond to
any concrete geometric feature of the detector so the dips
are likely due to a feature of the implementation. The 𝜙 effi-
ciency curve for cloudkitchen shows a dip at 𝜙 = 0, shifted
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Fig. 5 Efficiency as a function of six physical variables (log10 𝑃𝑇 , 𝜙, 𝜂, vertex distance 𝑟0 from beam axis in mm, zoom on the latter, and
vertex beam axis coordinate 𝑧0, see text for details) for different participants, each represented by a different colour. Only primary particles are
included. Light-shaded curves are for positively charged particles, dark-shaded ones for negatively charged particles. The band shows the statistical
uncertainty on the efficiency measurement.

between positive and negative particles, which is most likely
due to a similar feature when handling the 𝜙 = 0 boundary.

The efficiency curves as a function of 𝜂 show the evolu-
tion of the efficiency as a function of the polar angle, for track
close to −𝑧 direction (𝜂 = −4), perpendicular to 𝑧 (𝜂 = 0)
and then track close to 𝑧 direction (𝜂 = 4). All the curves are
symmetric, as expected, and showing a more or less deeper
dip around |𝜂 | = 2. In these regions, as can be seen Fig 13 in
[1], tracks cross the first disks. The best algorithms manage
to handle this transition much better than the others.

The efficiency curves as a function of 𝑟0 are as expected
highest at 𝑟0 = 0 since most particles are originating very
close to the origin because only primary particles are taken
into account in the score and in the efficiency. The efficiency
drops rapidly as 𝑟0 increases because assuming particles are
coming from the origin is a strong constraint which increases
the speed of the algorithms.

The 𝑧0 of the primary particles follow a centred Gaus-
sian distribution with a width of 55 mm (this was 5.5 mm
for the Accuracy phase). Participants have successfully ac-
comodated for this, and obtained a relatively flat efficiency,
except for cubus.

To investigate deeper the quality of the algorithms, the
efficiency as a function of the angular separation between
tracks was studied. The typical separation variable (com-
monly used to analyse LHC proton collisions) is defined to
be

Δ𝑅 =

√︃
Δ𝜙2 + Δ𝜂2

(for small values of Δ𝜂, Δ𝑅 is similar to the 3D angle in
radian). For each particle, the nearest neighbouring ground
truth particle as a function of Δ𝑅 is searched for. Fig. 6
shows the efficiency as a function of Δ𝑅 of the nearest neigh-
bour (few particles have a neighbour distant of more than
0.025). The best three participants achieve a reconstruction
efficiency independent of the distance to the nearest neigh-
bour, while the other participant algorithms achieve a slight
drop of efficiency for low values of Δ𝑅. Neighbours of the
same charge stay close together for a longer distance as they
move away from the origin since they are turning in the same
direction. However, there is no visible effect on efficiency
whether the nearest neighbour is of the same or of opposite
charge, which is a sign of robustness.
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Fig. 6 Efficiency as a function of the distance Δ𝑅 to the nearest neighbouring ground truth particle for different participants, each corresponding
to a different colour. Particles having the same sign as the nearest neighbour are indicated by light-shaded, plain lines, and of the opposite sign with
dark-shaded, dotted lines.

5 Winner : Mikado by Sergey Gorbunov

The Mikado approach for the TrackML challenge is a com-
binatorial algorithm. Its strategy is to reconstruct data in
small portions, each time trying not to damage the rest of
the data. The idea resembles a Mikado game, where players
need to remove carefully wooden sticks one-by-one from a
pile without the pile collapsing.
The algorithm performs 60 reconstruction passes with

different settings. During the first passes, it only looks for
high-momentum (hence almost straight) tracks within very
tight requirements. Found tracks are removed from the de-
tector after each pass, thereby reducing combinatorics for
the subsequent passes. The cuts are loosened, and the algo-
rithm runs again. For the last passes, the cuts are very loose,
allowing the algorithm to collect all the remaining tracks.
Despite the high combinatorial factor, the outcome of the

first passes is very pure. There are almost no incorrect hit-
to-track associations. During the last passes, the algorithm
accepts almost everything it finds. Therefore at the latest
stage, it collects many wrong hit combinations in addition to
the real tracks.
Performing 60 reconstruction passes within a reasonable

time is only possible when data access is fast. To do that,
the hits from every detector layer are arranged in a two-
dimensional grid. The algorithm accesses only those hits
which are located within a current search window and the
other hits are untouched.
The algorithm uses fixed-size search windows that are

different for each detector layer and reconstruction pass.
Therefore, tens of thousands of internal parameters need
to be tuned. Optimal parameters are not calculated mathe-

matically but trained on the training dataset. The optimising
routine is, unfortunately, not fully autonomous and requires
manual intervention.
The Mikado tracker shows 94.4% accuracy and takes

0.56 seconds per event.

5.1 The algorithm

The algorithm uses a local track reconstruction model. Each
time it needs to estimate a particle trajectory, it creates a
local helix through three nearby hits that belong to the parti-
cle. This three-hit helix is the most flexible trajectory model
which follows all local features of a real trajectory. Even
though the model uses only a minimal amount of measure-
ments (contrary to classical algorithms which will build a
model from all the points already assigned to the track being
built), it appears to be accurate enough to predict the particle
position on neighbouring layers.

Fig. 7 Combinatorial Lay-
ers

Fig. 8 Tracklet prolongation

Detector layers consist of many detector elements and
they have different orientations in space. For easy naviga-
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tion to the next modules where to search for more hits, each
detector layer is represented as a two-dimensional surface.
This surface has two coordinates: a polar angle 𝜙 and the
second coordinate 𝑡, which is equal to 𝑧 coordinate for cylin-
ders and a radial 𝑟 coordinate for disks. We project all the
hits towards the origin onto their layer surfaces and use their
(𝜙, 𝑡) projections when searching for hits.
For fast data access, there is a regular two-dimensional

grid created at each layer that stores the hits in corresponding
grid cells according to their (𝜙, 𝑡) coordinates.
The algorithm consists of three parts. The first part is

tracklet construction. It creates short tracklets on pre-selected
detector layers from the hits. The second part is tracklet pro-
longation. It creates track candidates by extending the track-
lets to other layers and collecting their hits there. The third
part is a final selection of good tracks among the track can-
didates. To make full use of the two available threads, the
code is multithreaded; each thread processes all combina-
tions with one hit on the first combinatorial layer.
The algorithm flow is as follows.

1. Tracklet construction (see Fig. 7)
It is performed on three (optionally, two) selected layers.
(a) Every ℎ𝑖𝑡1 from the 𝑙𝑎𝑦𝑒𝑟1 is considered. Optionally,
the first hit can be the origin (0, 0, 0).

(b) A straight line which connects the origin and the
ℎ𝑖𝑡1 is projected to the 𝑙𝑎𝑦𝑒𝑟2. Within a (𝜙, 𝑡)-search
window every ℎ𝑖𝑡2 is considered.

(c) A straight line, which connects ℎ𝑖𝑡1 and ℎ𝑖𝑡2 is pro-
jected to the next layer, 𝑙𝑎𝑦𝑒𝑟3. Again, within a (𝜙, 𝑡)-
search window every ℎ𝑖𝑡3 is considered.

(d) A helix of axis collinear to the 𝑧 axis is constructed
on ℎ𝑖𝑡1, ℎ𝑖𝑡2, ℎ𝑖𝑡3. In the xy plane, the helix crosses
all the three hits, in 𝑍 it goes through ℎ𝑖𝑡2 and ℎ𝑖𝑡3,
as shown in Fig. 12. Then a distance in 𝑧 of the helix
from the ℎ𝑖𝑡1 is examined.When it is too large, the hit
combination is rejected. Otherwise, the set of three
hits is accepted as a tracklet, and the prolongation
step starts.

2. Tracklet prolongation (see Fig. 8)
The tracklet is prolonged to the next detector layer along
its trajectory and the closest hit on that layer is identified.
(a) If the hit is close enough, it is added to the tracklet
and the trajectory is recreated using the new hit and
two hits from the previous layers. Given that modules
can overlap in the same layer, we perform a search
for additional hits on the layer within a tiny window
around the recreated trajectory.

(b) When there is no good hit found on the layer, when
the prolonged trajectory crosses the layer’s inner part
far from edges, a hit on the layer is considered to
be missing. When hits are missing on more than one
layer, the prolongation stops.

(c) In certain cases a good closest hit is found, all the ad-
ditional hits on the recreated trajectory are picked up,
but some hits remain in the search area. In this case,
the algorithm creates another search branch with a
different hit on this layer. The branching is realised in
an efficient way with almost no computational over-
head.

Once the layer have been processed, the tracklet is ex-
tended further until hits on all the layers are collected.
Then the tracklet is stored in a list of track candidates
and the next tracklet is processed.

3. Selection of good tracks
The selection of good tracks is performed by identifying
the best one in the list of track candidates. The track
should have more hits than the others or at least the same
number of hits, but a smaller average deviation of its
hits from its trajectory. The best candidate is stored as
a “track”; its hits are removed from the detector. Then
the search for the next best candidate is performed, and
so on. The selection stops when the best candidate no
longer have enough hits.

Once all tracks of the current pass have been founf, the
algorithm repeats from step 1, performing the next pass of
the reconstruction with a new set of base layers and new
search parameters.

5.2 Fast data access: regular 2D-grid on detector layers

Tmin 

Tmax 

-π +π 

X 

X 

Fig. 9 Grid structure for stor-
ing hits on a detector layer. To
find hits in a blue area, one
needs to examine four yellow
cells around it.

Tmin 

Tmax 

-π +π 

X X 
X 

Fig. 10 The grid overlap in 𝜙

For a combinatorial algorithm, it is crucial to have fast
access to data. For this purpose, hits on every detector layer
are stored in cells of a regular two-dimensional grid.
The size of the grid cells is equal to the size of a pre-

defined search window, which is specific for each detector
layer in each reconstruction pass. Search for hits inside the
search window is simple. First, one calculates the cell index
of the centre of the search area by doing a couple of modulo
operations. Then one looks over the hits in four neighbouring
cells overlapping with the search window, as it is illustrated
in Fig. 9.
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To avoid any special treatment of border regions, the
grid is surrounded by layers of empty cells. Unfortunately,
this technique does not work with the 𝜙 border at ±𝜋, as this
border of the detector surface is purely virtual. To handle
the ±𝜋 border, we let the grid overlap in 𝜙. For that purpose,
the surrounding empty cells at±𝜋 are filledwith hits from the
opposite 𝜙 edge, as it is shown in Fig. 10. The overlap solves
the border problem for 𝜙 and covers the ±𝜋 region without
introducing unnecessary conditional branches in the code.
However a small inefficiency is left as reported in Section 4.
The implementation of the grid is presented in Fig. 11.

The grid consists of two arrays: the array of hits A1 and the
array of grid cells A2. Each cell contains only two values:
index of its first hit in the array A1 and the number of hits
in the cell. The creation of the grid is extremely fast, created
by looping twice over the input hits and twice over the grid
cells and performed as follows:

– initialize the number of cell hits in the A2 array to 0
– loop over the input hits and count number of hits in all
the cells in A2

– loop over the cells in A2 and calculate their pointers to
A1 according to the number of hits in cells

– loop again over the input hits and copy them to their
places in the A1 array according to their cell number.
This is done with a deep copy in order to avoid multiple
reference look-up during the combinatorial search.

The efficient access to the data makes the algorithm fast and
allows many reconstruction passes to be performed within a
reasonable computing time.

5.3 Physical trajectory model and the magnetic field

array of hits, ordered by their cell number 

array of grid cells  
cell = { index of the first hit; N hits} 

h2 h6 h10 h1 h4 h9 h12 h5 h3 h7 h8 h11 

cell1 cell2 cell3 cell4 

A1 

A2 

Fig. 11 Implementation of the
grid
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Fig. 12 Physical track model

The magnetic field changes significantly from layer to
layer, which means that trajectories deviate from a mathe-
matical helix. In order to account for this feature, the physi-
cal trajectory model (𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑞) is used. It is pre-
sented in Fig. 12. Here (𝑥, 𝑦, 𝑧) is the spatial position of a
trajectory point, (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) are the three components of the
particle momentum, 𝑞 = ±1 is the charge.
Even though a description of the magnetic field was not

provided in the competition, an average field on each layer

can be constructed using the “truth” data and approximating
this field with a simple polynomial model. The polynomial
field is calculated at initialization time for each detector layer
and stored in a geometry file. At the beginning of the event
reconstruction, the approximate field value is calculated for
every hit using the above polynomials and stored directly
in the hit data structure. Three different approximate field
values are actually used: one for the construction of the local
helix, one for the inward prolongation of the helix and one
for the outward.

5.4 Parameter tuning

To achieve the best result, one has to tune all thousands of
algorithm parameters simultaneously, maximizing the over-
all score Eq. 1. But due to a lack of computing resources, a
step-by-step optimization is performed instead. Each recon-
struction pass is adjusted individually, optimizing the result
of the partial reconstruction after that pass.
The overall score Eq. 1 is inapplicable in this scheme.

Therefore each pass uses its own optimization criterion,
which is a compromise between the number of tracks found
at that pass and the purity of these tracks. The pass opti-
mization is performed several times with manually adjusted
criteria, set depending on the results.
Within a reconstruction pass and the chosen optimization

criterion, the parameters are adjusted automatically using
a primitive gradient following method. The reconstruction
time is monitored manually and not explicitly included in
the optimization.

5.5 Outlook

As the Mikado tracker performs fast hit search within pre-
defined search windows, it has tens of thousands of internal
parameters to tune (e.g. size of the search windows). This
situation is not typical for traditional track finders, where
the search windows are estimated individually for each track
using relatively involved trajectory extrapolation with uncer-
tainties. These internal parameters have been tuned semi-
automatically on the training dataset.

6 Runner up : FASTrack by Dmitry Emeliyanov

The FASTrack (Filter and Automaton for Silicon Tracking)
algorithm won the second place in the throughput phase
of the TrackML competition with an accuracy of 0.944, a
processing time per event 1.11 seconds and overall score
1.1145. After several post-competition improvements, the
final accuracy of the algorithm was 0.948 and projected time
per event about 0.8 seconds. The memory consumption of
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the algorithm itself was approximately 0.6 GB and when the
algorithm was run in the TrackML docker environment the
overall memory consumption was 1.4 GB.

6.1 Algorithm summary

The FASTrack algorithm is based on the following key ideas
and techniques:

– hit clusters shape (numbers of cells in 𝑢- and 𝑣-directions
on the module plane) are used to predict the intervals of
track inclination angles and save CPU time by avoiding
hit combinations with parameters incompatible with the
prediction;

– the track segment-based track following network is used
with an embedded Kalman filter for fast discovery of
track candidates;

– limited usage of the Kalman filter-based combinatorial
track following for missing hits search and track exten-
sion to areas not covered by the track following network
such as long strip in the outer volumes

The track finding is organized as a multi-stage process.
There are three stages: the first finds higher momentum cen-
tral tracks (coming from the interaction region along 𝑧-axis),
the second finds lower momentum central tracks, and the
third stage targets the remaining tracks. Once all stages are
completed, the output track collections are concatenated and
hit labels are generated. In order to create a unique “hit-
to-track” assignment all reconstructed tracks are sorted in
accordance with their quality and assigned increasing inte-
ger track indices (track Ids) so that the best track has the
smallest track Id. Then a hit is assigned a track Id only if the
hit is not already assigned to another track with a smaller
track Id.

6.2 The algorithm description

The algorithm starts by arranging input hits into circular
“bins” in all the detector layers. The bin widths are calcu-
lated in accordance with a uniform 𝜂 binning to guarantee
approximately the same number of hits per bin. The width
of each 𝜂-bin is 0.2. All hits in the bins are sorted along
increasing value of 𝜑 (azimuthal angle). Next, the hits in
each layer are clustered into nodes in order to group the
hits which likely belong to the same track but are located
in different modules on the same layer. The nodes are used
for the actual track finding while hits are subsequently used
for more precise track fitting. After the clustering, the nodes
are pre-selected for subsequent track segment creation on
the basis on their cells parameters (number of cells along
u- and v-directions). For each selected node an interval on
𝜏 = cot 𝜃 (where 𝜃 is the track inclination angle w.r.t. 𝑧-axis)

is obtained using a lookup table which relates the min/max
values of 𝜏 to the number of cells in 𝑣-direction. The nodes
are connected and track segments are formed in accordance
with the layer linking scheme trained on data. For example,
the following scheme record for a pair of layers
8004, 8002, 0.876002

means that layer 2 of volume 8 is connected to layer 4 of vol-
ume 8 and the average amount (called “flow”) of track score
carried through this connection is 0.876002. By definition,
the initial "flow" emanating from the interaction region is 1.0.
The "flow" parameter is used to characterize the importance
of layer connections.
To facilitate parallel processing by OpenMP (needed to

make full use of the two available cores), the track seg-
ments are created and stored in three separate arrays (Seg-
ment Banks). The segment building algorithm operates on
node collections from possible pairs of 𝜂-bins (rings in 𝜙).
The bin pairing was trained on data to achieve 0.99 effi-
ciency of track segment finding. The output of the training
procedure is a set of paired bins indices stored in a look-up
table.
The next step of track finding connects track segments,

which share the same nodes and creates the track following
network. The network is a directed graph in which the ver-
tices are the nodes containing hits and the edges are connec-
tions between the nodes, i.e. track segment. For each vertex,
there are two collections of edges: incoming and outgoing.
The sense of direction is determined towards the 𝑧-axis of
the detector. The algorithm selects all the vertices with non-
empty “In” and “Out” collections and for each “In” edge
finds possibly connected “Out” edges satisfying cuts on dif-
ferences in azimuthal angle, pseudorapidity, and the track
curvature. The maximum allowed number of connections is
set to 6.
Once the network has been built, the segments interact

with their neighbours in the “Out” direction. The aim is to
calculate the maximum number (called level) of connections
which can be traced from the segment and identify the seg-
ments which are likely to be the starting points of long tracks.
The implementation of this algorithm employs a cellular au-
tomaton (CA) [15]. The CA is parallelized using OpenMP
and operates in synchronous mode. First, the proposal for
the new level is calculated for all segments (e.g. if a seg-
ment with level = 1 has a neighbour with the same level then
the proposal for the next CA iteration is 1+1 = 2). Finally,
all segments with proposals which differ from their current
states are updated.
The network evolution stops once no more segment level

updates can be made throughout the whole network. The
algorithm then proceeds with the extraction of track candi-
dates from the track following network. The track extraction
starts with the segments with level values equal to the maxi-
mum level observed during the CA iterations. The algorithm
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continues with track extraction until the maximum level of
remaining segments drops below the stage-dependent thresh-
old (4 for the first stage, 3 and 2 for the second and third,
respectively).
The track extraction is basically a segment-by-segment

track following process which is implemented as a recursive
“depth-first” graph traversal. In order to quickly reduce the
number of traversed combinations, a simplifiedKalman track
fit is embedded in the recursion. The track fit estimates the
track cot 𝜃 in the 𝑟𝑧-projection and track 𝜑 and 𝑑𝜑/𝑑𝑟 or
𝑑𝜑/𝑑𝑧 in the 𝑟Φ-projection. To speed up the calculations,
the track fit does not use any magnetic field description but
instead, models the track evolution in 𝑟 − 𝑧 as a random walk
(caused by the detector material effects) and as the Ornstein-
Uhlenbeck (AR(1)) process [16] in the 𝑟Φ projection which
emulates gradual, trend-like, change in the track azimuthal
direction under the influence of the magnetic field.
The more precise track fit of the extracted track candi-

dates is performed using the Kalman filter algorithm which
employs the 3rd order Runge-Kutta track parameter a Ja-
cobian extrapolator and a fast approximation for the non-
ideal solenoidal magnetic field [17]. The parameters of the
solenoid (field in the centre, half-length, and the aspect ra-
tio = radius/half-length) were learned from the data by the
tracking efficiency maximization during a hyper-parameter
scan.
Asmany track candidates share the same hits, some of the

tracks are merged and removed in a clone removal procedure.
All tracks are sorted in accordance to their fit likelihood (the
weighed number of layers with associated hits minus penalty
on the 𝜒2 contributions of hits) and then hits are labelled by
the track index starting from the best track. In this way, the
shared hits are identified and, depending on the fraction of
shared hits and the number of competing tracks, a decision is
made whether to merge a track with a better one or to delete
it.
The merged tracks are re-fitted and extended towards the

interaction region and towards the outer long-strip volumes,
as they were not used in the segment creation and network
building process. The track extension procedure consists of
predicting the track trajectory by extrapolation from the first
(last) hit on the track and collecting the hits around the tra-
jectory crossing points on detector layers and track update.
Any ambiguity in the “hit-to-track” assignment is resolved
via the branching track propagation which also employs the
Kalman track fit. The number of simultaneously propagated
“best” branches is one for the “inside” track extension and
three for the “outside” propagation. The track extension pro-
cedure can add up to three new hits per layer to account for
situations when more than one hit per layer is produced in
the overlapping detector modules.
Since the track extension can cause additional hit shar-

ing, the clone removal procedure is called again. Next, the

extended and possibly merged tracks are refitted and the “hit-
to-track” assignments are reviewed. Any missing hits found
in the vicinity of estimated track positions on the detector
layers are added to a track. The hit addition algorithm ap-
plies the constraint that a track can have at most one hit per
module.
Finally, all reconstructed tracks are checked for the num-

ber of shared hits. If this number exceeds the stage-dependent
threshold (e.g. seven for the first stage) the track is discarded.
Otherwise, the track is accepted and all the hits on it are
marked as assigned so that they cannot be used in subse-
quent stages of the track finding.

6.3 Outlook

The execution time of the algorithm can be improved bymas-
sive parallelisation on General Purpose Graphics Processing
Units (GPGPUs). Several parts of the algorithm are already
implemented in a thread-safe manner and accelerated using
OpenMP directives. By exploiting the track-level parallelism
the track fitting parts of the algorithm can be efficiently ex-
ecuted on a GPU since the fast and compact magnetic field
model can be implemented as a GPGPU device code. Cur-
rently, the “In“ and “Out“ collections of track segments are
created independently. It might make sense to group detector
layer pairs in such a way that, firstly, all “In“ collections are
formed for a particular layer. Then these collections can be
analysed to make predictions for the “Out“ track segments.
For example, these predictions can be expressed as an inter-
val of track inclination angle in 𝑟𝑧-plane compatible with the
track segments in the “In“ collection. By using this approach
one can avoid creating segments which cannot be connected
at their common nodes.

7 Runner up : Marcel Kunze

The algorithm uses artificial neural networks for pattern
recognition based on spatial coordinates together with sim-
ple geometrical information such as directional cosines or
a helix score calculation. Typical patterns to be investigated
are hit pairs and triplets that could seed candidate tracks.
The training of the networks was accomplished by presen-
tation of typically 5 million ground truth patterns over 500
epochs. The hit data are sorted into voxels organized in di-
rected acyclic graphs (DAG) to enable fast track propagation.
In addition to the spatial hit data, the DAGs hold information
about the network model to apply, and a 𝑧 vertex estimate
derived from the ground truth. As they combine the data with
the corresponding methods the DAGs form a nice foundation
to define tasks that can be run in parallel very efficiently in
a multi threaded environment. There are two sets of graphs:
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one set covers detector slices along the 𝑧-axis, the other cov-
ers a grid transverse to the 𝑧-axis. Each set could be used
independently, but a clever combination of the two yields
the best overall score: The first set is used to seed the pair
finder while the second drives the triplet finder. Prior to the
execution of the model the DAGs were trained with track-
ing ground truth of typically 15-25 sample events, yielding
a good balance between graph traversal time and accuracy.
The path and track finding is based on inward and outward
triplet prolongation in combination with outlier density es-
timation, as proposed by J.S. Wind (a.k.a TopQuark) in the
Accuracy phase [1]. With two threads the execution time is
on average about 7 seconds per event at 93% accuracy in the
Codalab docker environment.

7.1 High-level description

The tracking model has been designed and implemented as a
standard C++11 shared library. It may be run using the main
C++ driver program, or it may be loaded into the python run-
time environment using ctypes. The architecture comprises
a Tracker class for data housekeeping and steering, as well
as a Reconstruction class to implement the algorithms. The
data are organized in the Graph class that has been designed
as a STL-like header file. The neural networks are handled
by the XMLP class. The Trainer class inherits from Tracker:
it takes care of neural network training. While the training
is based on the Neural Network Objects [18] and the ROOT
toolkit [19] there is no dependency of the tracking shared li-
brary to external packages. Persistence of graphs and neural
networks has been achieved by streaming of the objects to
corresponding text files. The program consists of five parts:
setup, pair finder, triplet finder, path finder, and track as-
signment. The setup stage reads all configuration data and
initializes the neural networks and graphs prior to processing
the first event. The subsequent parts run as threads in parallel
for each event, followed by a final serial track assignment to
join the partial results into a common solution. The program
implements multi-threading by instantiating corresponding
reconstruction objects and managing a set of tasks by using
a thread-safe stack. The tasks correspond to graphs that hold
the corresponding hit data and a set of neural networks to
classify the data. While an event is being processed, each
thread pops a task from the stack and executes it. Once the
stack is empty and all tasks are finished, the first thread
continues and combines the partial results into the final as-
signment of hits to tracks. The track assignment is written to
a result file and handed over to the Python frame that delivers
it to the CodaLab platform.

7.2 Scientific details

Themodel is based on a cylindrical coordinate system (𝑟𝑡 , 𝜙, 𝑧)
to describe the hit data. A library of track patterns has been
organized utilizing direct acyclic graphs of space elements
such that any element has following elements. In principle,
the resolution could be chosen on a very fine-granular detec-
tor cell level. Although this would yield very accurate results,
the resulting graphs tend to grow very large and graph traver-
sal becomes slow. For this reason, a two-dimensional graph-
Hash function has been defined to identify a 𝜙/𝜃 segment for
any hit:

𝑖1 = (𝑖𝑛𝑡) (𝜙1 ∗ 0.15 ∗ (𝜋 + 𝜙));

𝑖2 = (𝑖𝑛𝑡) (𝜃1 ∗ 0.1 ∗ (5 − 𝜃));

where 𝜃 corresponds to asinh(𝑧/𝑟𝑡 ) to flatten the distribu-
tion. The constants 𝜙1 and 𝜃1 define the granularity of the
spatial tessellation. It turned out by tuning that a setting of
12 tiles in 𝜙 and 14 tiles in 𝜃 yielded the best compromise
of accuracy vs. speed (i.e. highest overall score). In order to
improve execution speed, each tile is bound to a dedicated
graph (168 in total). The graphs have been trained by pre-
senting ground truth tracks of typically 15-25 events, which
takes about a minute in total for all graphs. In addition, a
voxel hash function has been defined to identify a hit and its
correspondence to a spatial segment:

𝑖𝑛𝑑𝑒𝑥 = 𝑖1 << 32 | 𝑖2 << 24 | 𝑙 << 16 | 𝑚;

where 𝑖1 and 𝑖2 are the corresponding graphHash values and
l and m are the layer and module numbers of the hit, respec-
tively. The use of the shift operator << in combination with
the or | operator allows for very fast construction of the index
bit pattern. There are two sets of graphs: One set covers the
two detector slices along the 𝑧-axis, the other covers the an-
gular grid (tiles). The first set is used to seed the pair finder,
the other is used to drive the triplet finder. Each set would
work perfectly well by itself, but a clever combination of the
two yields the best overall score. The pair finder utilizes two
neural networks, XMLP1 and XMLP2 to classify pair candi-
dates. XMLP1 is an 8-15-5-1 multi-layer perceptron that has
been trained with the ground truth cylindrical coordinates
of the two hits in addition with the two directional cosines
of the hits along the trajectory. XMLP2 is a 9-15-5-1 multi-
layer perceptron that, in addition, takes the helix score as an
input as calculated in [1], assuming the origin in addition to
the pair. Both networks perform very well in any direction.
As it consists of fewer nodes and does not require a vertex
calculation, XMLP1 executes a slightly faster than XMLP2
at the expense of a few per cent lower accuracy in the central
region of the detector system. The final setup therefore com-
bines XMLP1 for the forward/backward section (“disks”)
with XMLP2 for the central section (“cylinders”). In average
there are about 500,000 pair combinations accepted with a
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cut of 0.15 on the output of (XMLP1) and a cut of 0.55 on
the output of (XMLP2) yielding an overall tracking score of
99.4%. The list of pairs is then submitted to the triplet finder.
The triplet finder uses a 10-15-5-1 multi-layer perceptron
that has been trained with the coordinates of 3 hits plus an
additional helix score (XMLP3). On average it accepts ap-
proximately 320,000 combinations per event with a tracking
score around 97%. The error rate presenting 100,000 vali-
dation patterns reaches about 6-8% for XMLP1/XMLP2 and
around 2% for XMLP3, respectively. Fig. 13 shows the signal
efficiency vs. background rejection of XMLP3 after training
350 epochs of 3.5 million patterns each.

Fig. 13 Receiver operation characteristics of triplet finder perceptron
XMLP3.

The trackfinding and assignment is based on inward/outward
triplet prolongation in combination with outlier density es-
timation from [1]. It takes care of joining the graph results
and yields an accuracy of about 93%. The track assignment
is necessarily executed as a serial task .

7.3 Interesting findings

The following interesting findings have emerged during the
work for the contest:

– The training of the neural networks was initially based
on pure cylindrical coordinates. It was observed that the
input features could be folded in each coordinate due
to the detector and event symmetry, thus considerably
speeding up the training and reducing the number of pat-
terns. Technically, this octagonal folding is most simply
realized by use of the 𝑎𝑏𝑠-function in combination with
a 𝜋/2 shift, e.g. 𝜙 is replaced by 𝑎𝑏𝑠(𝑎𝑏𝑠(𝜙)-𝜋/2).

– Conventional cuts on the vertex constraint considerably
reduce the number of patterns to be processed. Through
a simple geometrical estimate of the 𝑥𝑦 and the 𝑧 vertices

by straight line propagation in the inner layers, the num-
ber of patterns to be classified by the neural networks
decreases from more than 2,000,000 to about 1,200,000
combinations per event. In principle, the vertex determi-
nation could be made using a neural network: a prelimi-
nary version of the solution integrated a neural network
vertex estimate but despite achieving a better accuracy
the rather long inference time yielded a reduced overall
score.

– The training of the graphs happens once prior to the
model evaluation and needs onlyO(15-25) events to yield
optimum results. The graphs are persisted as part of the
model. If more events are used during training, more
accurate results may be achieved as the track library con-
tains more voxels, however at cost of a longer execution
time (and hence a lower overall score).

– The accuracy improves by 0.2% if the graph tasks are
organized such that subsequent threads work on neigh-
bouring graphs. This is due to the fact that a track pre-
assembly already happens on the thread level prior to the
merging of the partial results at the end. In that way, over-
lapping paths are already being merged on the parallel
thread level thus relieving the serial task.

7.4 Outlook

Great care has been taken to avoid using any low-level de-
tector specific information in the core tracking algorithms
in order to keep the algorithm as generic as possible. The
neural networks are mainly trained with spatial information.
As such the algorithms could be easily transferred to other
environments or detectors.
The graph implementation furthermore offers a serializa-

tion function that allows a list of tracks to be quickly obtained
from the triplets stored in a DAG by recursive graph traver-
sal. This already works surprisingly well in an environment
with a lower track density (up to a few hundred tracks).

8 Conclusion

The TrackML challenge has been a long running competition
series to gather new algorithmic ideas to speed up tracking
in the LHC experiments. After the first round of initial dis-
cussions, a prototype challenge[2] was organised during the
Connecting The Dots workshop3 (an annual workshop for
experts in pattern recognition) held at ĲCLab in Orsay in
March 2017. The problem was essentially the same as the
one exposed here but significantly simplified to be a 2D prob-
lem with just 20 tracks per event (instead of 10.000 in 3D).
There was no speed constraint. The same accuracy score

3https://ctdwit2017.lal.in2p3.fr

https://ctdwit2017.lal.in2p3.fr
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formula was used for the first time. This 2D challenge has
already yielded a variety of algorithms (not applicable in
3D though) and demonstrated that the accuracy score was
indeed selecting the best algorithms.
ThefirstAccuracy phase of theTrackMLchallenge proper

was run onKaggle[1]. It identified a variety of 3Dalgorithms,
and a thorough investigation has shown that the Accuracy
score was indeed selecting the best algorithms when their
performance was evaluated using standard metrics.
The second, Throughput, phase had significantly lower

participation but it yielded a few very high quality and very
fast algorithms. It is not currently possible to compare di-
rectly to in-house algorithmswhichwould need to be adapted
to this specific dataset. Also, in-house algorithms in common
use usually ignore the numerous tracks with 𝑝𝑇 less than
400 MeV (the tracks with the highest curvature) while al-
gorithms presented here are able to reconstruct tracks down
to 150 MeV. So it can be estimated that in-house algorithms
are at most of order 10 s per event on one CPU core, so
one order of magnitude slower than Mikado from Sergey
Gorbunov (a.k.a sgorbuno), 0.5s on two CPU cores. On the
other hand, the dataset was significantly simplified (in par-
ticular neglecting sharing of points between tracks) so that
it remains to be seen whether the new algorithms can live
up to expectations when used in the full ATLAS and CMS
experiment context. The community is now in the process of
doing this exercise.
In the end, what role can be expected for Machine Learn-

ing in tracking in the light of the TrackML challenges ? It
does not appear that a clustering algorithm can find the track
directly (as was done with DBScan based algorithms in the
Accuracy phase, which are much too slow). Of course, the
field of machine learning is growing so rapidly that new
algorithms might appear which would change this statement.
Nevertheless, after extended discussions between the three

winners and experts in the field, a consensus appears that
there are two likely avenues for the use of Machine Learning
in such problems (i) combine ML with discrete optimisa-
tion, for example using a classifier to select early and quickly
the best seed candidates as done by Marcel Kunze a.k.a
cloudkitchen (with a simple dense NN, but Graph NN
seem promising) (ii) use ML to automatise the lengthy tun-
ing of the internal parameters of the algorithms on the train-
ing dataset (circa 10.000 in the case of Mikado by Sergey
Gorbunov a.k.a sgorbuno).
Separately, the availability of the TrackML datasets ([11]

for the Accuracy phase and [10] for this Throughput phase)
has been extremely useful to facilitate the collaboration of
experts which are usually working within their own exper-
imental team. It is being used for further studies like track
seeds finding with similarity hashing [20] or classification
with deep learning [21], investigating the use of cluster shape
to help seeding [22], investigating tracking with graph net-

works [23,24,25,26,27] (including with FPGA [28] ), in-
vestigating tracking with simulated annealing on a D-Wave
quantum computer[29,30] or Quantum Edge Network [31,
32,33], and building a complete generic tracking pipeline [34].
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