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Abstract: The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold
increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC) [1].
Concomitant with this increase will be an increase in the number of interactions in each bunch
crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade
is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter
equipped with silicon sensors, designed to manage the high collision rates [2]. As part of the
development of this calorimeter, a series of beam tests have been conducted with different sampling
configurations using prototype segmented silicon detectors. In the most recent of these tests,
conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped
with ≈12, 000 channels of silicon sensors was studied with beams of high-energy electrons, pions
and muons. This paper describes the custom-built scalable data acquisition system that was built
with readily available FPGA mezzanines and low-cost Raspberry PI computers.

Keywords: Calorimeter, Data Acquisition

mailto:Roger.Rusack@cern.ch, Bora.Akgun@cern.ch


Contents

1 Introduction 1

2 DAQ System Architecture 3

3 Data format and back-end DAQ components 6
3.1 Skiroc2-CMS ASIC and prototype module data format 6
3.2 Back-end DAQ electronics 6

3.2.1 Readout board 7
3.2.2 Sync board 8

4 Data acquisition software 10
4.1 CMS-CE EUDAQ Producer 11

4.1.1 EUDAQ online data monitoring 13
4.1.2 Data unpacking and first analysis steps 13

5 System synchronization 13
5.1 Beam-characterization detectors 13
5.2 AHCAL 14

6 Collected Data 15

7 Summary 16

1 Introduction

The HL-LHC at CERN is planned to operate with an instantaneous luminosity of 5× 1034 cm−2s−1

or higher, delivering up to ten times more integrated luminosity than is expected in the current LHC
programme. This increase poses significant challenges in the design and operation of the detectors
at the HL-LHC. In particular, in the forward direction the absorbed dose will be up as much as
2 MGy and the fluence in the innermost region is expected to reach 1016 n𝑒𝑞/cm2, which is an
unprecedented level in high energy collider experiments. Additionally there will be ≈140 proton-
proton interactions occurring (pile up) in every bunch crossing, which happens at a rate of 40 MHz.
This considerably complicates the reconstruction of events. To contend with these conditions, the
CMS Collaboration is planning a series of upgrades to some of the existing detector components,
and replacing others with new detectors designed specifically to mitigate the effect of the high pile
up [1]. As part of this upgrade programme the current electromagnetic and hadronic calorimeters in
the endcaps will be replaced with a new calorimeter, known as the ‘High-Granularity Calorimeter’
(HGCAL) [2]. This new sampling calorimeter (CE) will be sub-divided into two sections, the
electromagnetic (CE-E) and the hadronic (CE-H), in an arrangement shown in Figure 1. The CE-E
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Figure 1. Schematic view of the CMS high granularity Endcap Calorimeter.

will be equipped with silicon sensors, while the CE-H will be equipped with both silicon sensors
and scintillator tiles read out directly with SiPMs. In the CE-H the silicon sensors will be at small
radii, close to the beam where the radiation levels are highest, and scintillator tiles at the larger
radii. The absorber of CE-E will be a mixture of lead, copper and sintered copper-tungsten, while in
CE-H the absorber plates will be stainless steel. The hexagonal silicon sensors will be subdivided
into hexagonal cells with areas of ≈1.1 cm2 or 0.5 cm2, with the sensors with smaller cells placed
at small radii. The full calorimeter will be operated at -30◦C to reduce the dark current in the
silicon sensors and in the SiPMs. There will be 28 sampling layers in CE-E and 22 in CE-H. This
high-transverse granularity, combined with the high longitudinal segmentation of the calorimeter
has been selected, within the constraints of cost and available space, to optimise the identification
and measurement of hadronic and electromagnetic showers in the presence of the high pile up.

The basic detector unit is a silicon module. A module consists of a silicon sensor, glued to
a baseplate on one side and to a printed circuit board (PCB) for the readout on the opposite side.
The individual cells of the sensor are connected electrically to a readout ASIC on the PCB with
wire-bonds that pass through holes in the PCB. The ASIC amplifies and digitises the analogue
signals and transmits them to the off-detector electronics on receipt of an external trigger signal. By
2018 more than 100 prototype silicon modules have been produced using 6-inch hexagonal silicon
sensors subdivided into cells with areas of ≈1.1 cm2. A module is shown in Fig. 2 (left). Further
details of the construction and assembly of the silicon modules used in these tests may be found
in [3]. The modules were assembled into a prototype of HGCAL that was tested with beams of
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electrons, pions and muons at the CERN SPS.
The ASIC used to read out of the signals from the silicon cells was the Skiroc2-CMS [4], a

custom ASIC designed by the OMEGA group at Ecole Polytechnique. The function of this 64-
channel ASIC was to measure both the amplitude of the signal and its time of arrival, so not only the
energy response can be measured, but the timing performance can be characterised. This Skiroc2-
CMS ASIC has many of the features of the HGCAL front-end readout ASIC in development.

In the latest beam test in late 2018 the HGCAL prototype was equipped with 94-hexagonal
silicon modules arranged into a 26 radiation length electromagnetic section and 5 nuclear inter-
action length hadronic section. Behind the prototype calorimeter we placed the Analog Hadronic
Calorimeter (AHCAL) prototype, developed by the CALICE Collaboration [5]. This calorimeter
is a scintillator-based sampling calorimeter, similar in design to the proposed design of the HG-
CAL [2], but with much finer longitudinal segmentation. In the final test at the CERN SPS, data
were taken with beams of muons, charged hadrons and electrons with energies ranging from 20 to
300 GeV at the H2 beam line of the CERN-SPS over a period of two weeks in October 2018.

The data acquisition (DAQ) system for the beam tests needed to be flexible and scalable to
control and read out the increasing number of prototype silicon modules as they became available.
It was designed with readily available FPGA mezzanines and low-cost Raspberry PIs, and scaled
up to work with ≈12,000 channels for the final test.

This paper describes the DAQ system and is structured as follows: the overall architecture of the
system is described in section 2; the data format and the back-end DAQ components are described
in section 3; the DAQ software is explained in section 4; in section 5 the detector systems used for
system synchronisation is discussed and the operational experience is discussed in section 6.

2 DAQ System Architecture

Each hexagonal cell of the silicon sensor was connected to the 64-channel Skiroc2-CMS ASIC.
Each channel of this ASIC had a low noise pre-amplifier followed by high- and low-gain shapers,
with a shaping time of 40 ns, and time-over-threshold (ToT) and time-of-arrival (ToA) circuits. Both
of the shapers had analogue-to-digital converters (ADCs) that sampled the signal every 25 ns. It
also had a circuit to measure the ToA of large amplitude signals ( > 3fC) with a precision of 50 ps.
Further details of the design can be found in [4].

To simplify routing of the signals in a very dense board, four Skiroc2-CMS ASICs were used
to readout the 128 channels of each silicon sensor, leaving half of the channels unused. The PCB
also had a MAX®10 field programmable gate array (FPGA) to control the readout of the module.
It received the clock, trigger and busy signals from the off-detector electronics, aggregated the data
from the Skiroc2-CMS ASICs and transmitted it to the off-detector electronics. Figure 2 (left) is a
photograph of a prototype module, with the Skiroc2-CMS ASICs marked with rectangles, and the
MAX®10 FPGA, on the top left, is indicated with a white circle.

Each of the prototype silicon modules was connected to the off-detector DAQ boards through
an interposer board. These boards regulated the 5 V output from the DAQ boards to the 3.3 V
needed by the prototype modules via HDMI cables. They also filtered and transmitted the bias
voltage coming from the DAQ boards through RG174 cables to wires soldered to the prototype
modules. A photograph of an interposer board is shown in Figure 2 (right).
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Figure 2. (left) A prototype module used in beam tests. The Skiroc2-CMS ASICs are marked with white
rectangles. The MAX®10 FPGA is marked with a white circle. The red grounding wire (on the left side)
and, red and violet bias wires (on the right side) are soldered on the PCB. The micro HDMI (uHDMI) cable
is connected on the top. (right) An interposer board used in beam tests. The HDMI cable and bias voltage
wires, connecting the interposer board to the prototype module, are connected on the top. The HDMI and
RG174 cables, connecting the interposer board to the DAQ board, are connected on the bottom.

The off-detector electronics consisted of a set of custom 9U readout boards, each of which
could receive data from up to eight silicon modules. All the the readout boards were controlled by
a single custom 9U synchronisation board, the ‘sync board’. The sync board distributed the clock,
trigger and busy signals to all the readout boards. The readout boards communicated with the data
acquisition computer through Ethernet, with a 100 Mbit/s output of the readout boards connected
to a Gigabit Ethernet switch, from which data were sent to the DAQ computer for processing. In
the tests with 94 silicon modules, one sync board and fourteen readout boards were mounted in
two custom air-cooled crates. The crate that was equipped with one sync board and seven readout
boards is shown in Figure 3.

Figure 4 shows a schematic view of the inter-connectivity of the DAQ system. The readout
boards were connected to the prototype silicon modules by HDMI cables both between the readout
boards and the interposer boards and between the interposer boards and the modules. The trigger
signal was formed from a coincidence of signals from two scintillation counters located upstream
of the calorimeter. The 40 MHz system clock, generated on the sync board and the trigger signals
were transmitted to the readout boards with HDMI cables. Since the beam was not synchronised
with the clock, the trigger and the clock were asynchronous. The bias voltage was distributed to the
silicon sensors through the readout boards with separate RG174 cables.

– 4 –



power 
supplies

sync board readout boards

ethernet 
switch

Figure 3. A crate, used in HGCAL beam tests, populated with one sync board and seven readout boards.
The sync board (in the leftmost slot) distributed the clock, trigger and busy signals to the readout boards
via HDMI cables, not shown. The readout boards were used to send control data to the silicon modules,
to receive data from them, and to transmit the data to the acquisition computer through an Ethernet switch
(on the right side of the readout boards). The readout and sync boards were powered by the power modules
located under the DAQ crate.
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Figure 4. Schematic view of the DAQ system used in HGCAL beam tests.

3 Data format and back-end DAQ components

3.1 Skiroc2-CMS ASIC and prototype module data format

In operation, the analog signals were stored every 25 ns in a switched-capacitor array (SCA) with
a depth of 13 cells. When a trigger was received, the updating of the SCA was halted and the
two values for the ToA were stored, one referenced to the next falling edge of the 40 MHz clock,
and the other to the next rising clock edge. Two values of the ToT were also kept, one with a fast
ramp time-to-digital converter and another with a slow ramp. Figure 5 shows the data format of the
Skiroc2-CMS ASIC.

When a trigger was received, by the MAX®10 FPGA of the hexaboard the four Skiroc2-CMS
ASICs converted the data in analogue memory to the digital data format. These data were then read
out by the MAX®10 FPGA and packaged as shown in Figure 6. The bits 𝑏𝐴𝑖 belong to the ASIC
"i" which followed the Skiroc2-CMS data format shown in Fig. 5. For every event 30784 bytes of
data were transmitted from each hexaboard. These data were then gathered, via the HDMI-uHDMI
cables, by the back-end readout boards.

3.2 Back-end DAQ electronics

The DAQ system was designed to be easily scalable to provide a readout for different numbers
of silicon modules. To minimise costs, readily available commercial components were used.
Additionally, optical receiver modules (oRMs) [6], recovered from the CMS level-1 trigger system,
when it was upgraded with faster electronics, were used. Each oRM was equipped with a Kintex-7
FPGA, 4.8 Mbits of block RAM, two 6.6 Gbit/s bi-directional serial ports, and a 128 Mbit FLASH
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0 1 2 3 4 15

×64 channels 1 0 0 𝐻𝐴 Low gain ADC (SCA0)

×64 channels 1 0 0 𝐻𝐴 High gain ADC (SCA0)

...×13 SCA cells

×64 channels 1 0 0 𝐻𝐴 Low gain ADC (SCA12)

×64 channels 1 0 0 𝐻𝐴 High gain ADC (SCA12)

×64 channels 1 0 0 𝐻𝐴 ToA (stop falling clk)

×64 channels 1 0 0 𝐻𝐴 ToA (stop rising clk)

×64 channels 1 0 0 𝐻𝑇 ToT (fast ramp)

×64 channels 1 0 0 𝐻𝑇 ToT (slow ramp)

0 0 0 Roll position (13-bit)

0 0 Global timestamp MSB (14-bit)

0 0 0 Global timestamp LSB (12-bit) 0

1 1 0 0 0 0 0 0 Chip ID (8-bit)



1924 × 16-bit
integers

Figure 5. Data format of the Skiroc2-CMS ASIC. 𝐻𝐴 is the hit bit for ToA and is set to ’1’ when ToA is
fired. Similarly, 𝐻𝑇 is the hit bit for ToT and is set to ’1’ when ToT is fired. The 13-bit roll position is used
to reorder the SCA cells in time.

0 3 4 7

HEADER 1 bit per ASIC

1 0 0 0 𝑏𝐴0 𝑏𝐴1 𝑏𝐴2 𝑏𝐴3

...

1 0 0 0 𝑏𝐴0 𝑏𝐴1 𝑏𝐴2 𝑏𝐴3

 1924 × 16 bytes

Figure 6. Hexaboard data format. The bits 𝑏𝐴𝑖 belong to the ASIC "i" which followed the Skiroc2-CMS
data format described by Figure 5.

memory for configuration. The connection from the Kintex-7 FPGA to the gigabit Ethernet switch
was made with SFP to RJ-45 adapters.

3.2.1 Readout board

In the final beam test in October 2018, there were 94 silicon modules that were read out with 14
readout boards mounted in two racks, controlled by a sync board. The readout boards performed
the following tasks:

• Loading firmware on the Max®10 FPGAs and module initialisation and reset.

• Generating and distributing control signals for the prototype silicon modules.
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• Accumulating the data received from the prototype silicon modules.

• Distributing the clock, busy and trigger signals.

• Distributing the low voltage power and the bias voltage for the prototype silicon modules.

The readout board, shown in Figure 7, was a custom PCB equipped with five oRMs and
a Raspberry Pi. Each board had eight HDMI ports on the front panel connected to the silicon
modules through the interposers and one HDMI port on the back panel for connection to the sync
board. On the front of each board there were eight RG174 connectors that were used to distribute,
after filtering, the bias voltage through the interposers to each detector module.

The overall readout cycle was controlled via helper processes running on the Raspberry Pi,
which communicated with each oRM through the SPI bus. Each Pi was connected to the central DAQ
server through its Ethernet port, from which it also received ‘Start’, ‘Stop’, and other commands.

A single readout board was equipped with five oRMs: one control (CTL) oRM, and four DATA
oRMs. The DATA oRMs were responsible for reading the data from up to two silicon modules,
while the CTL oRM received data from the DATA oRMs and transferred it to the central server. It
also managed the communication with the sync board. The firmware installed on the CTL oRM’s
FPGA included the IPBus firmware [7, 8] for this purpose. The IPBus IP and MAC addresses of
the oRM were set by the Raspberry Pi, as well as other parameters used by the CTL oRM as it
combined the four streams of data.

Before a run started, the helper processes on the Raspberry Pis first configured the ASICs on
the prototype silicon modules, and data collection was initiated. The Trigger signal was broadcast
from the sync board to the readout boards, from where it was forwarded on to the modules. On
the readout boards, the helper processes running on the Raspberry Pis after receiving the trigger
signal, prompted the ASICs to initiate data transmission. The data from the ASICs were then sent
unprocessed, via the MAX®10 FPGA, to the DATA oRMs, where it was then merged into a single
data stream by the CTL oRM. The 4-bit headers of Figure 6 were then dropped and 32-bit integers
were built with the data from up to eight modules, corresponding to 32 ASICs. These 32-bit integers
were written to a FIFO to be readout by the central server using the IPBus protocol over a gigabit
Ethernet link. When ready, a flag was set inside the CTL’s RAM to indicate that the data were ready
for transfer. In Fig. 8 the output data format of the CTL oRM FIFO is shown.

Once the data had been fully read out by the server, the helper processes on the Pis reset the
ASICs, and sent a start acquisition signal. The CTL oRM then sent a ‘ReadoutDone’ signal to
the sync board, indicating the boards had finished their cycles and were ready to receive the next
trigger. The firmware block diagram of the readout board is shown in Figure 9.

3.2.2 Sync board

The function of the sync board, shown in Figure 10, was the distribution of the common signals to
the readout boards and to synchronise the flow of data from the readout boards. The sync board
generated the 40 MHz system clock on a small mezzanine card mounted at the rear of the board.
On the same mezzanine there were four 50Ω RG174 connectors. Two were for the Trigger and
a Veto signal inputs and two for the Clock and a copy of the Trigger signal outputs. The Veto
signal was not used in these tests. Processing on the sync boards was handled by a Raspberry Pi as
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Figure 7. The readout board used to send control data to the silicon modules, to receive data from them
and to transmit it to the data acquisition computer. It readout data from up to eight silicon modules via
HDMI connectors. It also supplied the bias voltage for up to eight prototype silicon modules via standard
RG174 connectors. It was equipped with one control and four data oRMs and one Raspberry Pi.

0 1 2 3 4 · · · · · · 27 28 29 30 31

𝑏0,0 𝑏0,1 𝑏0,2 𝑏0,3 ... 𝑏7,0 𝑏7,1 𝑏7,2 𝑏7,3

...

𝑏0,0 𝑏0,1 𝑏0,2 𝑏0,3 ... 𝑏7,0 𝑏7,1 𝑏7,2 𝑏7,3


30784 × 32-bit

integers

Figure 8. Data format of the CTL oRM FIFO readout by the central server using the IPBus protocol. The
bits 𝑏𝑖, 𝑗 correspond to the data of ASIC "j" of module "i".
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Figure 9. The firmware block diagram of the readout board.

well as a central (SYNC) oRM. One sync board could control up to 15 readout boards through 15
HDMI ports mounted on the front. An extra HDMI port was mounted on the front to allow for the
possibility of daisy-chaining two or more sync boards together when more than 15 readout boards
are to be readout.

At the start of a readout cycle, the sync board waited for an asynchronous External Trigger
signal. Then this signal was synchronized with the on-board 40 MHz clock and sent to the readout
boards to be distributed to the silicon modules. The sync board then waited for a ‘ReadoutDone’
signal from each readout board. Once this signal was received from all the readout boards, the sync
board made itself ready to process the next available trigger. The firmware block diagram of the
sync board is shown in Figure 11.

4 Data acquisition software

The DAQ software selected for these tests was based on the EUDAQ [9] framework. This framework,
written in C++, was developed specifically for small-to-medium scale systems with significantly
less overhead than frameworks used in large scale experiments, like XDAQ [10]. Additionally,
in separate earlier tests of the AHCAL prototype, the EUDAQ system had already been used
successfully.
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Figure 10. The sync board was used to control up to 15 readout boards. It received the Veto and the
Trigger signals and distributed control signals to up to 15 readout boards. On top of the 15 HDMI ports for
readout board control there was one extra port for connection to another sync board for daisy-chaining. It was
equipped with a Raspberry Pi and an Kintex-7 FPGA for control and communication. It was also equipped
with a mezzanine card for clock generation and receiving external signals.

The EUDAQ framework was designed to be modular and portable. It was structured so that
software for the readout of specific detector components was kept separate and distinct from the core
processes. For this each detector component that produced data had a ‘Producer’ process running.
The functions performed by the Producer was to initialise, configure, issue stops and starts to the
component, and to collect the data and forward it to the core process.

4.1 CMS-CE EUDAQ Producer

A Readout Producer was developed to read out the data from one or more readout boards in parallel.
During the combined beam test of October 2018, the DAQ had seven of these Readout Producers,
each connected to two readout boards. The 𝜇TCA Hardware Access Library (𝜇HAL) was used
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Figure 11. The firmware block diagram of the sync board.

to read the IPBus UDP transactions from the readout boards. The sequence of operations of the
Readout Producer were as follows:

1. Wait until each 𝜇HAL interface is notified that a trigger occurred (by checking an IPBus
register of the CTL oRM boards).

2. Read out the FIFO of the CTL oRM board from each readout board and fill raw data containers.
The data format of this FIFO is described in Section 3.2.1. A time-stamp – the number of 40
MHz clock cycles in a 64-bit integers since the last configuration – is read out with the data.

3. ‘ReadoutDone’ signal is sent from CTL oRM to Sync oRM.

4. Create an event block containing the raw data from each readout board, the time-stamp of the
readout board and the event ID.

5. Forward the event block to the EUDAQ data collector.

6. Increment the event ID.

7. Return to step 1 and wait for the next trigger.

Once the readout was complete, data from each of the event blocks from each of the Readout
Producers were combined with data from the Producers connected to other detector components to
form a complete event data block.
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4.1.1 EUDAQ online data monitoring

Part of the EUDAQ framework were tools to monitor the data collection. Online analyses were
developed to monitor in real time the stability of the pedestal values, noise and occupancies of each
of the silicon sensor channels.

4.1.2 Data unpacking and first analysis steps

The first step of the data analysis consisted of unpacking the CMS CE EUDAQ events. For this
purpose a C++ library embedded in the EUDAQ framework has been developed.

An initial data quality check was performed before unpacking the raw data by comparing the
difference in time-stamp with the time-stamp of the previous event as a check of the synchronisation
for all the readout boards. During the October data taking only a few runs had events with a
synchronization failure.

After this test the data were unpacked and the data from each ASIC were sorted into tables
of 16-bit integers with the structure shown in Figure 5 and stored in a ROOT [11] file. As zero-
suppression was not used for simplicity, these tables contained the data from every channel of the
ASICs, including those not connected to a detector channel. The data for each cell in an event
contained data and pointer information from the 13 SCA cells for both the high- and the low-gain
slow shapers, the ToA and the ToT measurements. The pointer was the address of first SCA cell
data for the event, which allowed the ordering of the SCA data in time. This was required for the
data reconstruction since the trigger was asynchronous with the 40 MHz clock. The data analysis
workflow, which was developed in the CMSSW framework [12], and transformed the tables of
16-bit integers into a collection of calibarated hits for data analysis used the ROOT files as input.

5 System synchronization

5.1 Beam-characterization detectors

The tests of HGCAL and AHCAL prototypes with particle beams in the H2 area at CERN had been
complemented by the readout of various beam-characterization detectors. Four delay wire chambers
(DWC) [13] measured the trajectory and impact of the particles in the beam, two scintillator detectors
served as external trigger source and two micro-channel plates (MCP) had been used to provide
fast signals for reference timing measurement of the incident particles [14]. For this purpose,
two 16-channel CAEN v1290N TDCs and one v1742 digitiser were integrated into the HGCAL
prototype DAQ.

From each DWC four signals were separately discriminated at a threshold of -30 mV and fed
as inputs to the TDC. Since the binning of the time-stamp digitization should be less than 1 ns
corresponding to an optimal resolution of the position measurement of 200 𝜇m [13], a binning of
25 ps had been chosen. For proper event synchronization, the trigger for all CAEN modules stemmed
from the duplicated TTL trigger signal issued by the synchronization board. After conversion to
NIM, it was copied three times and fed into each module individually. After receiving a trigger,
events were built, were labeled with trigger time-stamps and subsequently stored in a local buffer.

Two dedicated EUDAQ producers [9] had been developed. They ran on a separate computer
and communicated to these modules through optical link and VMEbus. These producers polled the
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event data from the buffers at a (configurable) frequency of 500 Hz (HGCAL DAQ rate ≈ 40 Hz),
converted the raw data into the EUDAQ format and sent it to the main DAQ for storage and online
data monitoring.

5.2 AHCAL

The front-end electronics of the AHCAL prototype were designed for low power operation under
a specific ILC accelerator timing with a less than 1 ms long spill followed by 199 ms idle time.
The operation of the Spiroc ASIC [15] was therefore split in 3 phases: 1) acquisition phase, where
self-triggered events were stored into up to 16 analog memory columns; 2) conversion phase, where
up to 16 events were sequentially digitized by internal ADC; 3) readout phase, where the digitized
data was read out. Detailed timing was described in [16]. For beam test purposes, the acquisition
phase length was extended to 16 ms and the readout phase varied typically between 2 to 20 ms,
depending on the hit occupancy. Any external trigger from the sync board stopped the acquisition
for immediate readout, as shown in Fig 12.

AcqReadoutAcq Readout Acq

trigger in

AHCAL state

busy out

16 ms
(max)

2~20 ms
(typical)

360 us
stop

forced
startup

Figure 12. The time diagram of AHCAL acquisition and readout phases.

Due to the ‘self-trigger’ design of the ASIC, the AHCAL did not require an external trigger
for data taking. All the hits (including noise hits) were read out and referenced by a number of
bunch-crossing clock cycles (4 us period, called BXID) from the start of the acquisition phase. In
order to assign an external trigger to the hits in the AHCAL, the DAQ internally samples the external
trigger number (with a time-stamp, 48-bit counter with a 25 ns resolution) and the time-stamp of the
start of the relevant acquisition phase. The trigger was assigned to one of the self-triggered events
in the acquisition cycle. Assignment was based on the startup time from the start of the acquisition
phase to the beginning of the first BXID and the additional delay due to the length of the trigger
cable.

The collation of events according to the BXID might have however led to an existence of
incomplete events for particles, that arrived close to the BXID counter value switching in the
ASICs. An example for such a split event is shown in Figure 13 (particle no. 2). Several factors
contribute to the BXID ambiguity: time walk of the signals, clock skew due to board and ASIC
location, clock tree distribution through the FPGAs and clock jitter. The internal ASIC TDC [15]
had also a region of non-linearity around the BXID change. Therefore, particles arriving close to
the BXID change, within 10 ns, needed to be excluded from the data analysis.

The AHCAL provided two means of synchronization with the HGCAL data: the trigger number
and the trigger time-stamp, which used the 40 MHz clock from the HGCAL sync board. Both pieces
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Figure 13. The organization of self-triggered particles in AHCAL BXIDs, showing the BXID ambiguity
for an example of split events due to the time of arrival with respect to the BXID clock.

of information were accessible in the data file.

6 Collected Data

The DAQ was operated at a readout rate of 40 Hz. At this rate the amount of data readout for a
typical 5 second spill of the SPS for the HGCAL prototype was approx 300 MB, as each of the 94
silicon modules sent 16 KB of data per event.

In the last run, over a period of two weeks, six million events were collected with beams of
charged hadrons, electrons, and muons with momenta from 20 to 300 GeV/c, with different detector
configurations. Figure 14 shows accumulated events for different detectors over the beam-test
campaign.

Figure 14. The accumulated events for different detectors during beam-test campaign in October 2018.
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7 Summary

In the upgrade of the CMS detector for when the HL-LHC is operational, the two endcap calorimeters
will be replaced with high granularity sampling calorimeters equipped with silicon sensors. As
part of the development of this calorimeter, a series of beam tests have been conducted with
different sampling configurations using prototype segmented silicon detectors readout with a low-
cost custom scalable data acquisition system. The software framework used for the run control
and data collection was the portable modular EUDAQ framework. In the most recent of the tests
conducted in late 2018 at the CERN SPS in 2018, the performance of a prototype calorimeter
equipped with ≈12, 000 channels of silicon sensors, in conjunction with the CALICE prototype
analogue hadron calorimeter, was studied with beams of high-energy electrons, pions and muons,
with six million events collected over a two week period.
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