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ABSTRACT: New neutral heavy gauge bosons (Z') are predicted within many extensions of
the Standard Model. While in case they couple to quarks the LHC bounds are very strin-
gent, leptophilic Z’ bosons (even with sizable couplings) can be much lighter and therefore
lead to interesting quantum effects in precision observables (like (¢ — 2),) and generate
flavour violating decays of charged leptons. In particular, £ — ¢'vv decays, anomalous
magnetic moments of charged leptons, ¢ — ¢’ and £ — 3¢’ decays place stringent limits on
leptophilic Z’ bosons. Furthermore, in case of mixing Z’ with the SM Z, Z pole observables
are affected. In light of these many observables we perform a global fit to leptophilic Z’
models with the main goal of finding the bounds for the Z’ couplings to leptons. To this
end we consider a number of scenarios for these couplings. While in generic scenarios cor-
relations are weak, this changes once additional constraints on the couplings are imposed.
In particular, if one considers an L, — L, symmetry broken only by left-handed rotations,
or considers the case of 7 — ;1 couplings only. In the latter setup, on can explain the (g —2),
anomaly and the hint for lepton flavour universality violation in 7 — pvv /T — evv without

violating bounds from electroweak precision observables.
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1 Introduction

In 2012, the LHC confirmed the predictions of the Standard Model (SM) of particle physics
by discovering the (Brout-Englert) Higgs boson [1, 2]. However, so far no particles beyond

the ones of the SM have been observed in high energy searches. In particular, the bounds

from di-jet [3, 4] and di-lepton [5-7] searches on particles that can be produced resonantly

in the s-channel are very stringent. This also puts tight bounds on heavy neutral gauge

bosons (Z’s), which are predicted by many new physics models (see [8-14]), in case they

have sizable couplings to quarks.



However, in case the resonances are neutral and couple (to a good approximation)
only to leptons, mostly LEP searches apply and the bounds are much weaker [15, 16], i.e.
significantly below the TeV scale. Therefore, such leptophilic Z’ bosons can have sizable
couplings while at the same time being quite light. They can thus lead to relevant quantum
corrections to leptonic precision observables and generate lepton flavour violating decays of
leptons that are extremely suppressed in the SM since they vanish in the limit of massless
neutrinos. The (g — 2), discrepancy [17, 18], recently reinforced by the g — 2 experiment
at Fermilab [19-22], with a tension of 4.20 compared to the SM prediction [23], can be
explained with a Z’' boson heavier than the electroweak (EW) scale if it couples flavour
violatingly to the second and third lepton generation [24-43].

At first sight, new neutral gauge bosons coupling only to leptons and not to quarks
might appear artificial. But as already in the SM gluons couple only to quarks and not
to leptons, it is actually an interesting possibility that for a Z’ boson the situation could
be reversed. For example, gauged abelian flavour symmetries in the lepton sector, such as
L, — L, [44-46], can naturally generate the observed pattern of the PMNS matrix [47-49]
and lead by definition to leptophilic Z’ bosons, which, after the breaking of the symmetry,
can also induce charged LFV processes such as 7 — 3u [30, 50, 51] and h — p7 [51-53].

Such scenarios are particularly interesting as within recent years several hints for the
violation of lepton flavour universality (LFU) have been acquired. These include 7 —
pvv )T — evv, T — v /p — ev [54, 55] and the Cabibbo angle anomaly [56-59], which
can also be interpreted as a sign of LFUV [60-71]. Furthermore, even though in this case
also (small) couplings to bottom and strange quarks are necessary, Z’ bosons are among
the prime candidates for explaining the discrepancies between the SM predictions and data
in b— sl ¢~ transitions [12, 34, 51, 53, 67, 72-113]. Here, LHCb measurements [114, 115]
indicate a deficit in muons with respect to electrons, i.e. LFUV with a combined significance
of ~ 40 [116-126]. This is consistent with many other measurements involving the same
current, in particular with angular observables [127, 128], where data also shows a deficit
in muonic channels [129, 130] such that the most up-to-date global analysis finds several
NP scenarios to be preferred over the SM at the 5 — 60 level [123-125, 131-133]. In order
to respect LHC bounds, it is again advantageous if the couplings to quarks are small, i.e.
if the Z’ is to a good approximation leptophilic, which can e.g. be achieved by generating
the quark couplings effectively via heavy vector-like quarks [34, 51, 134].

Therefore, it is very interesting to explore the phenomenology of leptophilic Z’ bosons.
Even in the absence of quark couplings, such a Z’ boson affects many observables with the
most interesting being

o { — ('~ decays,

o Anomalous magnetic moments (AMMs) and electric dipole moments (EDMs) of
charged leptons,

o { — 3¢ decays (7 in total),

o Z — ") decays,



e LFU violation in £ — ¢'vv
e Neutrino trident production

o LEP searches for contact interactions

Therefore, in order to fully explore the allowed/preferred parameter space of such a new
physics scenario, the aim of this article is to perform a global fit to all available data in a
number of scenarios for Z’ couplings to leptons. For this we will use the publicly available
HEPfit code [135] which also allows us to perform a global fit taking into account many
degrees of freedom at the same time.

The article is structured as follows: in the next section we will define our setup before
we consider the relevant observables, and calculate the relevant Z’ contributions to them in
section 3. We then perform our phenomenological analysis in section 4 before concluding in
section 5. In appendix A we give some details on the LEP-II bounds and in appendix B we
list the contributions of QED penguins to LFV decays like £ — 3¢’ and to u — e conversion
in nuclei. In appendix C we present additional scenarios for LFV couplings beyond those
presented in the main text.

2 Setup

We extend the SM by adding a heavy neutral gauge boson Z| (i.e. with a mass above the
electroweak symmetry breaking scale). Following refs. [136, 137] we supplement the SM
Lagrangian by a part containing the kinetic terms and the mass terms of the Z|-field,

L, i ,U/Z2 e
Ez(/) - 71Z0,,LLVZ0 + 720#2 B (21)

where Z), ,, = 0,2y, — 0,Z;,, is the field strength tensor associated to the Zj-field, and a
part describing the interactions of the Zj-field with the SM fields,
. ) s
LY = 90 73,2816 — igh, Z)' 6" D u¢ (2.2)
+ ¢; (giLﬂuPL + 95%13@ 028" + vighvu PoviZy
“— — — &

where D, = D, — (D,)" and g%, is real. Note that here the subscript 0 refers to the fact
/R

SU(2); invariance the coupling to neutrinos is the same as to left-handed charged leptons.
¢ is the SM Higgs SU(2), doublet and we use

are hermitian and due to
1

that these are not mass, but rather interaction eigenstates. giLj

Dy =0y +igoWiT* +ig1Y B, (2.3)

as the definition of the covariant derivative.
The coupling g?, leads to mixing of the Z)-boson with the SM Z. The corresponding
mass matrix in the interaction eigenbasis (Zy, Z|) is then given by

2 Y 2
M? = (_yo Ajé"j) , y 5 g2 92/ (2.4)

Here we neglected small active neutrino masses and therefore set the PMNS matrix to the unit matrix.



with m2Z0 = % (91 + ¢3) and % ~ 174 TeV. To order JTQ the eigenvalues are
%
2 y? 2 ( 2)

my ~my — 5 =my (1+dmy), (2.5)

0 CWM26 0
2 2 y?

Mz ~ My + ———— . (2.6)

0 c%,VM%(,)

Hence the corrections to the mass of the SM Zy can only be destructive. The mass eigen-
states Z() can then be expressed as

Z'\ [ Zicos& — Zysing 27)
Z )\ Zhsin& + Zycosé '
where
. Y
- 2.8
sin & p—yes (2.8)
0

describes the Zp — Z{, mixing. Note that only the relative phase between sin ¢ and giLj’R

is physical. Therefore, one can assume one of the diagonal couplings g{;’R to be positive
without loss of generality. We write the interactions of the SM Z with fermions as

Lzpp =Ty (A P+ Al Pr) 4,2V + 0y, AL PLy 2
+ Uk, Yy (9751\L/IPL + géﬁPR> w Z" + dy (gélf/[PL + g%ﬁﬂ%) dy 2", (2.9)
with i,5 =e,u, 7, k =wu,c,t,l =d,s,b and
(LR _ . LR, (LR .
AUL ~sin& g7 + gsp Oij s A;-’]-L o~ sm{giLj + g5boi (2.10)

where gg’l\V/IL’R are the SM Z¢¢ and Zvv couplings given by

guL - _ €
SM 2swew
‘L € 2 (R esw
gsm = ~3 (—1 + 23W) ; gsm = — ,
Swew cw 91
ulL € (1 2 2 > wR 2 esw ( : 1)
= —_—-—— — — —8 R —
gsm swew \2 3 w gsm 3w
L, _ € 1 12> ar _ _lesw
gsm = J— ( 5 + 35w | 9gsm 3 o

with e = g192/1/9% + g3 = gicw = gasw being the electric charge.

7' scenarios are in general subject to gauge anomalies, which are often assumed to be
canceled by additional heavy fields at a higher scale [9, 138, 139]. This is what we will do
in the present paper. Gauge anomaly cancellation in Z’ models was discussed recently in
refs. [108, 110, 118, 140].
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Figure 1. Feynman diagrams illustrating the leading Z’-contributions to the process 7 — uv,v,.
In the presence of flavour off-diagonal Z’-couplings, the process arises already at tree-level (see left
diagram), whereas in the case of flavour-diagonal couplings, corrections to 7 — pv,, are induced
by four boxes, one of which is shown on the right.

3 Basic formulae for observables

3.1 Lepton flavor universality

With this setup we are in a position to calculate the effects in the relevant observables.
Flavour off-diagonal couplings already generate at tree-level £ — ¢'vv amplitudes which in-
terfere with the SM one, while flavour diagonal couplings can only do this via box diagrams
(see figure 1). Neglecting non-interfering contributions we thus have

2
_ In | 2w
AT = pvmy,) lgk |2 m2 3 (M2,>
Rt — ul = R — 1422~ W _ gk gk N 2/ 3.1
[T M] A(T - ,U/VTﬁM)SM * g% M%/ 8?2 Ty I 1— Mé/ ' ( )
miy

where A denotes the amplitude. Analogous expressions for 7 — e v, 7. and p — e v, 7, fol-
low by a straightforward exchange of indices. This has to be compared to the experimental
results [55]

Alr = mall 5020 40,0014,

Alp — evv] [gxp

Alr = woll - 0184 0.0014, (3.2)
AT — evt] |pxp

Alr = el 6010+ 0.0014,

Alp — evt] | gxp

with the correlation matrix [55]

1.00 0.49 0.51
0.49 1.00 —0.49°2| . (3.3)
0.51 —0.49 1.00

2The HFLAV collaboration reports -0.50, however for the practical usage we choose -0.49 to have a
positive semi-definite correlation matrix.



Furthermore, the effect in u — e v, 7, is related to a modification of the Fermi constant
which enters not only electroweak precision observables (to be discussed later) but also in
the determination of V,4 from beta decays, in particular super-allowed beta decays, which
allow for the most precise determination of V,4;. Here a tension with kaon, tau and D
decays has been observed, whose significance depends strongly on the radiative corrections
applied to § decays [59, 141-147], but also on the treatment of tensions between Ko and
K3 decays [148] and on the bounds from 7 decays [55], see ref. [61] for more details. In the
end, quoting a significance of 30 should provide a realistic representation of the current
situation, and for definiteness we will thus use the estimate of the first-row CKM unitarity
violation from ref. [149]

Vi + Vs> + | Vi |* = 0.9985(5). (3.4)

In addition, note that there is also a deficit in the first-column CKM unitarity relation [149]
2 2 2

Vad|™ + [Vea|” + [Via|” = 0.9970(18), (3.5)

less significant than eq. (3.4), but suggesting that if the deficits were due to NP, they would
likely be related to 5 decays. This unitarity deficit constitutes the so-called Cabibbo Angle
Anomaly (CAA) and could be alleviated by our NP effect given by

R (= ) = 0.00075 % 0.00025, (3.6)

with R(p — e) defined in eq. (3.1) with properly changed flavour indices. Note that in
these tests of LF'U we can neglect the modifications of the W /v vertices since these would
be loop-induced and thus suppressed by a factor m? /M ’22

3.2 Lepton flavor violation in £; — £;y

Defining the effective Hamiltonian by
Hxp = ¢ 00, PL 6 F* +hec., (3.7)

we find

g __ ¢ R R R I L1
‘L T A8TIM, Xk: (mj Gik Ik — 3 Mk Gik Iij T M i gkj) (3.8)

and cg, which can be obtained from ciLj by interchanging L and R. We find then the
branching ratio®

3

Br[t; — ] = .- (171 + 1<412) - (3.9)
J

3The coefficients ciLj in the case of Z’ contribution can be obtained from its contribution through the
chromomagnetic penguin to b — sy decay calculated in ref. [150]. Using formulae in that paper and
adjusting the couplings to the case at hand we obtain (at leading order in mg/mz/ ) consistent results with
the generic formula of ref. [151]. However, our result for the branching ratio is a factor 1/2 smaller than
the result of ref. [152].



The current experimental limits for lepton flavour violation processes at 90% C.L.
are [153-155]:
Bru — ey] <4.2x 10713,

Br[r — py] < 4.4 x 1078, (3.10)
Br[r — ey] <3.3x 1078,

Improvements of approximately one order of magnitude for tau decays can be achieved at
BELLE II [156] and MeG II will further increase the sensitivity for u — ey [157].

3.3 Anomalous magnetic moments and electric dipole moments

Using the coefficients in eq. (3.8) for the flavour conserving case, we obtain for the NP
contributions to anomalous magnetic moments Aa; and the electric dipole moments d;,

4mi

Aa; = — . Re[c%},

di =—2Im [c%} . (310

These expressions have to be compared with experimental bounds

Aa® = a® — ag™™ = —0.88(36) x 1072,

e

AalP = ¢&P — ¢SMEP — (9 48(30) x 10712,

Aay = aS® — )M = 251(59) x 107!,

de <1.1x107% e cm,

d, < —0.1(0.9) x 107 e cm,
—0.22 x 10719 ¢ cm < Re(d,) < 0.45 x 1071%¢ cm,
—0.25 x 10710 ¢ cm < Im(d,) < 0.08 x 1071%¢ cm.

Here the value of Aa, extracted from the corresponding measurement [158] and the SM
prediction [159, 160], using the fine structure constant from '33Cs [161], is incompatible
with the determination using o from 8"Rb [162]. Therefore, we quoted both values and we
will also distinguish between these cases in our numerical analysis (where relevant). Aa,
is extracted from the measurement of refs. [17, 18] and from the recent results from the
Fermilab Muon g — 2 experiment [19-22]. The theory consensus is taken from ref. [23]*
while the bound on d,, originates from ref. [189] and d, from refs. [190, 191]. Note that while
currently the bounds from tau leptons [192-194] and the muon EDM are not constraining,
the latter could be significantly improved by a dedicated experiment proposed at PSI [195].

4This result is based on refs. [163-182]. The recent lattice result of the Budapest-Marseilles-Wuppertal
collaboration (BMWc) for the hadronic vacuum polarization (HVP) [183], on the other hand, is not included.
This result would render the SM prediction of a, compatible with experiment. However, the BMWec results
are in tension with the HVP determined from e™e™ — hadrons data [167-172]. Furthermore, the HVP also
enters the global EW fit [184], whose (indirect) determination is below the BMWec result [185]. Therefore,
the BMWec determination of the HVP would increase tension in the EW fit [186, 187] and we opted for
using the community consensus of ref. [23].
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(a) Penguin (b) Crossed penguin

Figure 2. Feynman diagrams showing the Z- and the photon-penguin contributions to ¢; —
; 0, 0}, —processes.

3.4 Lepton flavor violation in ¢ — 3¢

Three body decays to charged leptons receive the following contributions:

1. Tree-level Z' and Z exchanges (in the presence of Z — Z' mixing). The latter con-

tributions to processes with just one flavour transition, such as 7= — p~eTe™ or
T — 3u, are proportional to sin ¢ for the Z-Z' interference and proportional to sin? &
for the Z contributions alone. The processes with two flavour transitions, such as
T~ — p~etu~, are suppressed by higher powers of sin ¢ and neglected in the follow-
ing. However, for the Z’-mediated tree-level contributions we include the possibility

that both vertices are flavour changing.

2. One-loop effects in dipole operators (as defined in eq. (3.8) and depicted in figure 2)
entering via on-shell photon. There contributions again only affect decays with same
flavour £/~ pairs in the final states.

3. One-loop contributions generated through the mixing of tree-level induced 4-lepton
operators into the operators

Ogp = (EnuPru) (4" Prl),  Ogt = (eyuPL7) (" PLo),

Ot = (I PLr) (V' Prt),  OfF = (&, Pru) (" PrL), (3.12)

O = (e Pr) (4" PLl), O = (i, Prr) (4" PLe),
and the corresponding ones with L and R interchanged. See figure 2 for an illus-
tration of the penguin contributions. The details of this mixing through the QED
penguin diagrams are discussed in appendix B. There we list the results for the Wil-

son coeflicients of the operators in question which, due to the vectorial nature of the
photon coupling, satisfy the following relations

chll = ChF chbl = clf 3.13
“* 1QED “ |QED’ “ 1QED “ lQED’ (3.13)

with analogous relations for the remaining coefficients.



Note that the formulae for the coefficients in appendix B carry no ¢¢ indices

cas
(contrary in ij‘-fe) and consequently apply to all operators. The difference will, however,
be present in the parameters X{?ﬁl which are sensitive to the choice of kl. The latter are

defined by

AANE 9 9f
AB ij —kl ij Jkl
X =047 ou + mZ Okt + M2, (3.14)

where A, B = L, R, which combines the contributions from tree-level Z’ and Z exchanges,
and from QED penguin contributions. The couplings Af} are defined in eq. (2.10). We
then find the following branching ratios for flavour-violating 7 decays:

Br Wﬁemiﬁ]:—zﬁ(lc [+ e )<ln <ZQ>+3> (3.15)

+153§133(\X67W+X#w ‘XGTW‘ + | XEE, +L<—>R)
oI
+ 19)6277;5;(}{6[ eT*(XeLTLW + X0k XER +Xﬁfeu)}+LHR) 7
Br[r — 3u] = 1962277;31100 T2+ |y )(4111 (Zi) +11>
+15367T3F < ‘Xffuu’ +’me‘ +LHR> (3.16)
o (R (2 Xt X1, )] £ 1 ),
Br [7T —pFetpT] = 153?;%(2 ‘X@LMQ-F‘X&TRW +L<—>R>. (3.17)

The expression for 7 — 3e is obtained from 7 — 3u by replacing u by e, the one for
i — 3e from 7 — 3pu by replacing index 7 by p and p by e. Finally the expression for
77 — eFputeT is obtained from last formula by interchanging p and e.

The experimental bounds [55, 196-199] at 90% C.L. are:

Br {;f — e ete| <1.0x 10712,
Br [7'_ Seete <14x1078,
Br [T— — e—,ﬁu} <1.6x 1078,
Br {Tﬁ — ;feJr/uf_ <9.8x107Y, (3.18)

+

Br[r~ = pete| <11x 1078,

Br {7_ — e_/ﬁe_} <84x107Y,

Br [7’7 — /uf/fr/uf_ <1.1x1078.

Here we can expect future improvements in 7 decays by BELLE II [156] (and also
LHCb [200]) and for ; — 3e by Mu3e [201, 202].



3.5 u — e conversion

We define
Lot = Z (CeLuL,qq OeLuL,qq + Cequq ngqq) +(L < R)+he., (3.19)
g=u,d
with
szL/tL,qq = (e Prp)(qvuPrLa), OSAL,qq = (ev" Prp)(qVuPLq) , (3.20)
OLE = (@' PLp)(qvuPra) , OBR = (ev"Pru)(@.Pra) -

In the presence of Z — Z' mixing, the flavour off-diagonal Z’-couplings lead to u — e
conversion already at tree-level

. A
Ap _ SIn&gl, 4p
Ceu,qq = mZZ Ism g (3.21)

with the sin¢ given in eq. (2.7) and A, B = L, R. In addition, for small Zy — Z{ mixing,
the mixing of four-lepton operators into O;/dLL and OZ}LR can be relevant and is obtained
analogously to the off-shell photon effects in £ — 3¢' decays (see appendix B). The standard
renormalization group evolution is then performed from scale Mz down to m,, taking into
account that the 7-lepton is integrated out at m.. Taking into account that for operators
with three electrons or three muons two different Wick contractions exist, which leads to a
relative factor of 2 w.r.t. the 7-leptons case, and only considering the contributions of the
hidden operators,® we find

2 2 2
2Q, 2 M2, M2,
Cotrta= 553 iz, (gfu@gﬁu + gh,) In <mz> + (9L 9%+ 9b. (gt + 9 ) In (Z))

z m2 ) ) lqep’
2 2 9
R, _ €Qq 2 R (9 R L Mz, R R R/ L R Mz,
Ceu,qq T 1672 BM%/ (geﬂ(zgﬂﬂ + gﬂﬂ) In <m% + (gergru + geu(gTT + g’TT)) In mig QEDa
(3.22)
and
LL _ ~LR RL _ ~RR
e“’qq’QED - emlqQED 6“’qq‘QED - et %gED (3.23)

where @), is the electric charge of the quarks (Q, = —l—%, Qq = —%)
The transition rate T'YY . = I'(uN — eN) is given by

2
+(L < R). (3.24)

5| en
N _Mulcp RL RR () (@yn
Lyse = 4 |m, Dy +4 Z (Ceu,qq - Ceum) (pr Vi + anVN)

q=u,d

The quantities Dy and ijyn are related to the overlap integrals between the lepton wave
functions and the nucleon densities, and thus depend on the nature of the target N. We
use the numerical values [203]

Dy = 0.189, VP =0.0974, Vi = 0.146.. (3.25)

5For the contributions of the visible operators we refer to eq. (B.6) of appendix B.2 where this naming
of operators is explained.

~10 -



The nucleon vector form factors are the same as the ones measured in elastic electron-
hadron scattering, i.e.

f%) =2, fin =1, fx(f? =1, fi)=2. (3.26)

Finally, the branching ratio of u — e conversion is defined as the transition rate divided
by the p capture rate:
conv

and for the latter we use [204]
TP = 8.7 x 10718 GeV . (3.28)

The experimental limit on p — e conversion from SINDRUM II is [153]

conv

Ff;pt <7.0x 10713, (3.29)
Au

It is expected to be improved by three orders of magnitude by COMET and MuZ2e collab-
orations in the coming years [205].

3.6 Electroweak precision observables

The EW sector of the SM has been tested with a very high precision at LEP and Teva-
tron [15, 206]. Since it can be parametrised by only three Lagrangian parameters, we
choose the set with the smallest experimental error consisting of the Fermi constant
(GF = 1.1663787(6) x 107> GeV~2 [207]), the mass of the Z boson (mz = 91.1875(21) [206])
and the fine structure constant (e, = 7.2973525664(17) x 1073 [207]).

In our model, the Lagrangian values for G and myz are shifted with respect to their
measurements. In particular, the effect in y — evi leads to the following relation

Gp 95,17 m?
e =1+22 W =14 GF, (3.30)
G& 95 M2

while the Z boson mass is modified via eq. (2.5). Moreover, taking into account the tree-
level effects in eq. (2.10) and the loop effects in refs. [34, 208], we have the following modified
Z couplings to leptons

gt ik - [ m3

A (2 =m%) = g5k [ 655 +sine L + =K z ;
1) (q Z) gsm vy é.gg{\//[ ; (47T)2 F M%,
L L L 2
SM W (4m) z!
R R R 2

A (2 =m3) = g&R | 6,5 +sine 22 + UK Z ,
ij (g z) = 9sm | i gggﬁ Ek: (47T)2 F M%,

- 11 -



Observable Experimental value
myw [GeV] 80.379(12)
Tw [GeV] 2.085(42)
BR(W — had) 0.6741(27)
BR(W — lep) 0.1086(9)
sinaGpy 0.23248(52)
sinagy 0.23146(47)
sin®aGP, 0.2315(10)
8111205%\43 0.2287(32)
sin® ol P 0.2314(11)
ppol 0.1465(33)
A 0.1516(21)
A, 0.142(15)
A, 0.136(15)
Tz [GeV] 2.4952(23)
o [nb] 41.541(37)
RY 20.804(50)
R}, 20.785(33)
RY 20.764(45)
Ade 0.0145(25)
Al 0.0169(13)
AL 0.0188(17)
R) 0.21629(66)
RY 0.1721(30)
A% 0.0992(16)
A% 0.0707(35)
Ay 0.923(20)
A, 0.670(27)

Table 1. Electroweak observables [206, 207] used in our fit which are calculated by HEPfit [135]
using m%, a and Gr as input.

with
2(z + 1)*(Liz(—2) + In(x) In(z + 1)) Tz +4 L (Bz+2)In(2)

22 2z x

Kp(z) = — (3.32)

For the numerical analysis, we implemented the EW observables shown in table 1 in HEP-
fit [135] taking into account the modifications induced by eq. (2.5), eq. (3.30) and eq. (3.31).
In addition, the Higgs mass (My = 125.16 &+ 0.13 GeV [209, 210]), the top mass (m; =
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Br(Z — eF1T] = (-0.14+3.5(stat) &+ 2.3(syst)) x 1076  ATLAS: [214]

Br[Z —efrT] <9.8x1076 LEP (OPAL): [149, 215]
Br[Z — p*rF] = (4.3 £2.8(stat) £ 1.6(syst)) x 107¢  ATLAS: [214]

Br[Z — ptrF] <12x107° LEP (DELPHI): [149, 216]
Br[Z — efu®] < 7.5x1077 (95% CL) ATLAS: [149, 217]

Table 2. Experimental bounds on Z — £¢'.

172.80+0.40 GeV [211-213]), the strong coupling constant (as(Mz) = 0.11814+0.0011 [207])
and the hadronic contribution to the running of aey, (Aapaq = 276.1(11) x 10~* [207]) have
been used as input parameters, since they enter EW observables indirectly via loop effects.

3.7 Z =

In the presence of Z — Z’ mixing, we obtain a tree-level contribution to Z — ¢4;¢;, i # j,
leading to the branching ratios

— 1
Br[Z - 4if}] 22 (16t (q? = mB)P + 1A%(¢* = m)) |

= — ij
2‘;” ;ZZ (3.33)
Br([Z — i) = T, gjL((f =m%)|%,

with T'z = 2.4952 £ 0.0023 GeV [149]. We compare these results to the ATLAS and LEP
measurements given in table 2.
3.8 Neutrino trident production

Neutrino trident production can be used to constrain couplings of muons to muon neu-
trinos [34, 36]. Generalizing the formula of ref. [36] to the case of chiral Z’ couplings,

we find
o\ Gh(ohtolh) m2, ok (9fh—ak)" m2,
OSMNP _ 1 L ¢ (1+ dsyy) 9 M7, 93 M7, (3.34)
TSM (144s%)%+1
This ratio is bounded by the weighted average
Texp/osm = 0.83 £0.18, (3.35)

obtained from averaging the CHARM-II [218], CCFR [219] and NuTeV results [220].

3.9 LEP-II bounds

LEP-II set stringent bounds on 4-lepton operators from ete™ — ¢4~ (with £ = e, u, 7) [15]
for specific chiralities. Some of our more general scenarios cannot be matched to the 4-
lepton operators as given in ref. [15]. For these cases we derive the constraints in appendix A
and provide the formula which we implemented in HEPfit.
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Figure 3. 68% and 95% CL regions for the three LFU cases g%, gf* and ¢"'. Note that due to the
preference for a slightly lower W mass than predicted in the SM, the origin in the g scenario is
not within the 68% CL region. The Z — Z’ mixing angle is bounded to be ¢ < 0.02 and g% < 0.2,
while ¢¥ £ 0.1 for Mz = 1TeV.

4 Phenomenological analysis

In our phenomenological analysis we perform a global fit taking into account all observables
discussed in the last section. This includes EW precision observables, as implemented in
the HEPfit distribution [135]. To include the other observables discussed previously, we
added them to the HEPfit code such that we can perform a Bayesian statistical analysis
using the Markov Chain Monte Carlo (MCMC) determination of posteriors of the Bayesian
Analysis Toolkit (BAT) [221].

With this setup we can now consider several different scenarios. For our numerical
analysis we fix Mz = 1TeV unless stated otherwise and assume real couplings. Note that
despite small logarithmic corrections, the results we obtain scale like g?/M2,. However,
for the loop-induced modifications of Z¢¢ couplings in the scenario which aims at an ex-
planation of the data on the anomalous magnetic moment of the muon, these logarithmic
corrections to the g2 /M%, scaling can indeed be relevant.

4.1 Lepton flavour universality

Here we consider four scenarios which respect lepton flavour universality:
1. Left-handed couplings: gk = g*
2. Right-handed couplings: gff = g%
3. Vectorial couplings: g% = g% = ¢V

R

4. Generic chiral couplings: g~ = g*, gf =g

Each of the first three LFU scenarios is two dimensional, with the coupling and the
Z-7Z' mixing angle ¢ being free parameters, and shown in figure 3. We can see that for a
Z' mass of 1TeV, the couplings should be smaller than ~ 0.2 and the Z — Z’' mixing is
bounded to be less than ~ 0.002 at 95% CL. In the case of g;, and gr being independent
of each other, shown in figure 4, there is a mild preference for a non-zero mixing angle at
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Figure 4. 68% and 95% CL regions for the three-dimensional LFU fit, where g;,, gr and £ are free
parameters for Mz = 1TeV.

the 68% CL, which is due to the slight tension in the W mass prediction within the EW
fit. However, neither the tension in 7 — uvv/T — evv nor in the first row CKM unitarity
or (g —2), can be explained in these LFU setups.

4.2 Lepton flavour universality violation

Here we study the case in which the couplings that are diagonal in flavour space but not
proportional to the unit matrix:

1. Vectorial couplings: g5 = gt = gV

2. Left-handed couplings: g~ = g

3. Right-handed couplings: gg = giR

These scenarios are shown in figures 5-7. The couplings to electrons are very well con-
strained and can be at most of the order of 0.2 due to the LEP bounds on 4-electron contact
interactions. The bounds on muon and tau couplings are less stringent and therefore can
be as large as 2 for larger My = 1TeV. This is also due to the fact that 7 — uvv prefers
larger couplings to muons and taus which enter via the box contributions. However, in this
case effects in the EW fit are generated as well, such that no significant preference over the
SM fit can be achieved.
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Figure 5. 68% and 95% CL regions for the LFUV case with vectorial couplings g{; = gg = gZV .

4.3 Lepton flavour violation

Here we study the following scenarios for the couplings:
1. Flavour violating tau-muon couplings: g% and g2L3
2. L, — L; symmetry with left-handed rotations
3. Vectorial couplings: giLj = 95’ = g¥
4. Left-handed couplings: gl-Lj
5. Right-handed couplings: gfj-

Scenario 1, which assumes that only 9543 and gQRg are non-zero, allows us to find interesting
correlations as shown in figure 8. Here one can see that it is possible to explain 7 — pvv
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Figure 6. 68% and 95% CL regions for the LFUV case with left-handed couplings gF = g%.

and (g — 2), simultaneously, predicting observable effects in Z — pp and Z — 77 for
My = 1TeV. However, due to the logarithmic corrections involved here, the effects in
Z — pp and Z — 77 become weaker for smaller masses. These effects will allow in the
future to conquer the parameter space (assuming an explanation of (¢ — 2),), as direct
searches and EW precision constraints test complementary regions in parameter space.
Next, let us consider case 2 with a (broken) L, — L symmetry. This means that the
coupling matrix takes the form
00 0
g;=10g 0 (4.1)
00 —g

in the interaction basis. Now we assume that L, — L; is broken by the charged lepton
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Figure 7. 68% and 95% CL regions for the LFUV case with right-handed couplings g* = gf%.

Yukawa couplings in the left-handed sector such that, after EW symmetry breaking,

1 0 0 00 0 1 0 0
giLj = 0 cosfBy3 sinflag |- 0g O |- | O cosBag —sin Fog , (4.2)
0 —sin 523 COs ﬂ23 00 —g 0 sin ,823 Ccos ﬂgg

ij
for 2-3 rotations. The analogous formula for 1-2 rotations follows straightforwardly.

For this setup we show in figures 9 and 10 the 68% and 95% CL regions for the coupling
g and the rotation angle 23 and [, respectively. In figure 11 we show the correlations
between Br[r — pv] and Br[r — ppp], which display that in this scenario the present
experimental upper bound on Br[r — pupu] can easily be saturated, while Br[r — py] is
orders of magnitude below the present current bound. Therefore, finding in the coming
years Br[r — u~] at the level of 1079 would rule out the L, — L, scenario. Similarly for
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Figure 8. Correlations between (g — 2), and A(T — pvv)np/A(T — pvv)sy in the scenario with
zero Z — Z'-mixing (sin ¢ = 0), where all Z’ couplings to leptons are set to zero apart from gﬁ;R #0.
The colored regions are preferred by the anomalous magnetic moment of the muon and by LFUV
in tau decays, while the gray region is excluded by electroweak data for Mz = 1TeV. Note that
for lighter Z' masses EW precision observables would be less constraining. The hatched region is
excluded in this setup in the sense that points within it cannot be reached in this setup.
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Figure 9. 68% and 95% C.L. regions for the L, — L. coupling g, the rotation angle 3 and the
mixing angle sin &.
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Figure 10. 68% and 95% C.L. regions for the L, — L, coupling g, the rotation angle 515 and the

mixing angle sin &.
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Figure 11. Correlations between Br(t — ppup) and Br(7 — py) for different values of sin & within
the L, — L, scenario with left-handed 2-3 rotations (f23 # 0). The colored regions are allowed

within this setup.
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Figure 12. Correlations between different ;1 — e transitions in the L, — L, scenario with left-
handed 1-2 rotations (812 # 0).

1t — e transitions: figure 12 demonstrates the importance of Z — Z’ mixing and thereby the
role of Z in the enhancement of © — 3e and p — e conversion. However, in this case, in
contrast to Br[r — u~], the branching ratio for Br[u — ev] can easily saturate the present
experimental upper bound. MEG, Mu2e, Mu2e and COMET will constrain the allowed
space in these plots in the coming years significantly.

We discuss the more general cases 3, 4 and 5, with seven free parameters each, in
appendix C.
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5 Conclusions

In this paper we have performed a global fit to leptophilic Z’ models with the goal to
obtain bounds on the Z’ couplings to leptons in multi-dimensional scenarios. In our global
analysis we took into account a large number of observables, including ¢ — ¢'vv decays,
anomalous magnetic moments of charged leptons, £ — 'y, £ — 3¢ decays, u — e conver-
sion, electroweak precision observables, lepton flavour violating Z decays, neutrino trident
production and LEP searches for four-lepton contact interactions.

Properly extending the HEPfit code [135] by implementing these observables, and
performing a Bayesian statistical analysis, we obtained bounds on the Z’ couplings in a
number of generic scenarios, as listed in section 4. The results are presented in figures 5-17.
The plots in these figures are self-explanatory but the main message is that the couplings
involving electrons are much more strongly bounded than those involving muons or tau
leptons. These results should turn out to be useful for building models where the patterns
for the couplings are governed by flavour symmetries.

In more detail, we find that in the LFU scenario neither the tension in 7 — pvv/7 —
evv nor in the first row CKM unitarity or in (9—2),, can be explained. In the LFUV scenario
the couplings to electrons are very well constrained and can be at most of the order of 0.2
due to the LEP bounds on 4-electron contact interactions. The bounds on muon and tau
couplings are less stringent and therefore can be as large as 2 for larger Mz = 1TeV.
We then studied more specific scenarios with constrained patterns for the couplings. Here
we found that if only 92L3 and g% are non-zero, the anomaly in the anomalous magnetic
moment of the muon and the hint for LEFUV in leptonic tau decays can be explained,
with interesting predictions for EW precision observables. Furthermore, in scenarios with
a L, — L, symmetry we were able to correlate 7 — 3p to 7 — py (and similarly for p — e
transitions). These correlations can be used to test this setup with future experiments.

Acknowledgments

We would like to thank Dimitri Bourilkov for useful discussions concerning the LEP
bounds. The work of A.C., C.A.M, F.K. and M.M. is supported by a Professorship Grant
(PPO0P2_176884) of the Swiss National Science Foundation. A.C. thanks CERN for the
support via the scientific associate program. A.J.B acknowledges financial support from
the Excellence Cluster ORIGINS, funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Excellence Strategy, EXC-2094, 390783311.

A LEP-II constraints for general coupling structure

LEP-IT measured with high precision the total cross section ocror = or + op and the
Forward-Backward assymetry App = (0p — op)/o for the process ete™ — (T¢~ (with
¢ = e,u,T) at various /s between 130 and 207 GeV (see tables 3.4 and 3.8-3.12 from
ref. [15]). One can extract bounds on our model parameters by computing the BSM
contribution to op + op. Here we work within an EFT aproach with a Lagrangian defined
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as L = Lgm + 3 1.C;0; and we fierzed the operators giving an effect at the dimension six
level into the bas1s.

[0%]11” (C1y, Prty) (64" Prey) ,

[Oee]yyj; = (C1vuPrl) (67" Pr;) (A1)
[Oel,;; = (CoyuPrly) (E7" Prij)

[Oze]ﬂll (v Pre;) (" Prly) .

Assuming that the Z — Z’ mixing effects are sub-leading, and for vanishing lepton masses,
the BSM contributions to oroT and App for £ = i are given by:

1
d(op +oB) = 24771;2{62([046] 1125 [Ceel 119+ [ete] 195 + [cte] 511)
s(g3 + g% 1 2
+ (92721) <_ + 812/V> [cee] 122 1 sty [cec] 1122 (4.2)
s—my 2

(=54 o) st (lon] iz + [erel ) ] } 7

1
6(or —oB) = 39702 {62 ([055]1122 + [cee] 1199 = [cte] 1199 — [cuf] 2211)

2 2
+
I 3(92 gl)
S — mZ

(34t (el + o)

For the 777~ channel we have the same expressions with the index exchange 2 < 3.

1 2
<_2 + 312/1/) [CM] 1122 T S%V [Cee] 1122 (A.3)

On the other hand for ete™ — ete™ ref. [15] gives also the angular differential cross
section, measured at different /s and cos @ ranges (see tables 3.8-3.12 in ref. [15]). In this
case the BSM contribution to the differential cross section is given by:

do 11 21 .2 1 1
6dcos¢9 - 87rsv2{2u [6 <[c”]1111 + [066]1111) <S + t)

2 2 1 1 1 2 2 4
+ (92 + 91) s—ml Tz mZ 5 Tsw [ceel 1111 + 5w [ceel i

2, (1 2\ .2
2 ety & + e (6h-+91) (3 + ol ) by
Lel1111 s Lel1111 5 _ mQZ
2 (93 + g7) (l+52 )32
+ s2 [Cg ] & + [Cg 2 AT W)W
el 5 el1111 t—mZ ;

where t = —5 (1 — cosf) and u = —5 (1 4 cos ).
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The relations between our model parameters and the SMEFT at dimension six level
are as follows:

1)2

[655}1122 == (gc{:egﬁu + geLugﬁe) )

[cte] 1190 = — M2

_ R, L L R
[cte] 91, = TML Geeup T guegeu> ’
2
__v R_R R R
[Cee} 1122 — _M%/ (geeguu + guegeu) ) (A5)
2
_ v L L
[Cfd 1111 — QM%/ GeeYee
2
v R_R
[Cee} 1111 — QM%, GeeYee
2
__ Y R L
[cte] 111, = _M%, Geepp -
and similarly for 2 < 3.
B QED penguin contributions
B.1 Hidden operators
The following operators contained in eq. (3.12)
OAB OAB OAB OAB OAB (Bl)

e, Lt ey, T eT, T erT,TT) WT,TT?

with AB = LL,LR,RL, RR, do not contribute to the flavour changing processes con-
sidered by us at tree level and could thus be considered as hidden operators. However,
they contribute to these processes through QED penguin diagrams (as depicted in fig-
ure 13) [222-224].

In the formal language, these diagrams generate mixing of the operators in eq. (B.1)
into operators contributing already at tree-level to flavour changing processes. In this
appendix we present the results for this additional effect.

This mixing can be found by means of standard methods [14]. That is by calculating
the relevant one-loop anomalous dimensions obtained by inserting the operators in eq. (B.1)
into one-loop off-shell photon penguin diagrams [222-224]. As shown in figure 13, there are
two possible operator insertions which result in the same contributions to the Wilson coef-
ficients, unless they vanish. In the cases at hand one should note that for the inserted LL
and RR operators with three electrons or three muons both penguin topologies contribute,
which brings in a factor of two for this mixing relative to the remaining operator inser-

tions. However, in the case of RL and LR operators, only the insertions into diagram (b)

V,RL

et cannot contribute to this

in figure 13 contribute, and this implies that the operator O

mixing.
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Figure 13. Feynman diagrams with two operator insertions corresponding to different Wick

contractions in the EFT where the Z’ is integrated out.

The standard renormalization group evolution is then performed from the scale My
down to m, or m,, for 7 decays and p decay, respectively. In the latter case one takes into
acount that the 7-lepton is integrated out at m., which implies two different logarithms in
the final results. Keeping only the leading logarithms, we find the following results for the
additional contributions to the Wilson coefficients of the operators in eq. (3.12).

2 2 2
—€ 2 M ’ M ’
Cé—LL = W 3 (9@#(2911# + g/m) 1n< mg )—}—(gég# + geL#(gTLT + 957)) ln< mg ))’
/ 1 T
2 2 2
—€ 2 M M /
CRE — W 3 <Qeu(2g#u + gw) 1n< g >+ (gﬁgfﬂ + QQ(QTLT + ng)) ln< mg ))’
/ my T
—e2 2
cLlL — _—¢ < 2
o = 6720, 3 96 (295, + gF)1
2
RL —€ 2 R(L
Cer' = Tomangz, 3 Yer 9 +2070)1 ( )
—e2 9
CLL — ——° — Z gL (297 + gF 1n< )
nT 167T2M%, 3 HT TT TT
—e2 9 M2,
Cur' = Toaaz. 3 Inr (97 + 2977 In| =2 (B.2)
’ T

C’LL and CRR CRL. It should be
noted that these results apply universally to all operators with j =k 1ndependent of the

The vectorial nature of the photon implies C’LR

lepton flavour, as seen in the first term on the r.h.s. in (3.14).

The Wilson coefficients of the operators contributing already at tree-level can also
But
since these are already constrained by tree-level processes and loop-effects turn out to

be affected by inserting them in penguin and one-loop current-current operators.

be subleading. Yet, for completeness we present expressions for these effects in the next
appendix.

— 95—



Ej\w/ ‘i ; K
A
0 //O\ A 0 0
(a) (b)
£ t;
A
0 o

(©)

Figure 14. 1-loop QED corrections generating mixing among four-lepton operators.

B.2 Running of visible operators

So far we have only included the contributions from hidden operators mixing into visible
operators. But there are also contributions from the mixing of visible operators into visible
operators, both through QED penguins and insertions in current-current topologies. The
QED penguin diagrams are again given in figure 13, the current-current topologies in
figure 14.

The QED penguin contributions imply shifts in the coefficients of the operators

n (B.2). We find

LL —e?
Al = 1672 M2,

2

RL _ _ —€
Al = 16m2 M2,

2

L _ _ —¢
Al = 16m2 M2,

2

RL _ _ —¢€
Al = 16m2 M2,

2

L _ _ —¢
Al = 16m2M 2,

2

RL _ _ —€
AC#T o 167T2M%/

2 M2,

5 96 (20 +9lt) ( —Z ) : (B.3)
o

2 M2,

2t ot 208y (M2
m

2 L L R %

g geT 2 Gee T gee) + (geu 9ur + geT gNM + gMM In 2 )

2 R R L Z’

g YGer 2gee + gee) + (geu g,u,T + geT In

2 M2,

3 (g,” 205, + op) + (gke o9& + gfr (9h + oL )ln< 5 )

2 M2,

).

; (gffT (298, +gp) + (91 95 + glt (9 + oL2)) ) 111( —

and for RR and LR with L and R interchanged.
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On the other hand, the current-current contributions modify the coefficients X{?ﬁl
n (3.14). We find

—e? Lo [ M2
AXEL = — —  6gkghn| —£ B4
ij,kl 167T2M%, gz]gkl n m% ) ( )
e? M?%
AXBL — = g Bl A B.5
ij, kl 167T2M%, gz]gkl n m% ) ( )
where m, = m; and m, = m, for 7 and p decays, respectively. For RR- and LR-

coefficients, L and R should be interchanged.
The visible operators also lead to contributions to u — e conversion. The resulting
shifts in the Wilson coefficients of eq. (3.22) are given by

2 2
LL Qg2 1 M
Ace,u qq — 16ﬂ_g 3 M2 ge,u(Q gee + gee) log ( m ) s

A
2
1]
e2Q,2 1 M2,

ACéEqu = 5 (2 gee + gee) lOg < mg ) :
1

(B.6)

1672 3 M2, 72 e

where, as in eq. (3.22), @, stands for the electric charge of the quarks.

C General LFV scenarios

Here we study the general cases 4, 5 and 6 from section 4.3. Case 4, where giLj = gi}}- = g% ,
is shown in figure 15. Similarly to previous cases in sections 4.1 and 4.2, all couplings
involving the first generation are strongly constrained. Also the flavour violating ones are
strictly bounded while the flavour conserving ones involving muons and taus can be of
order unity. Similarly, we present the results for the cases 5 and 6, where only giLj and gg
are non-zero, as shown in figure 16 and figure 17, respectively. Evidently, in these cases
the couplings are allowed to be larger than for the case of vectorial couplings.
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