### Probing proton PDFs at high-x with LHCb

### Tom Boettcher on behalf of the LHCb Collaboration

University of Cincinnati

DIS 2021 April 14, 2021







Tom Boettcher on behalf of the LHCb Collaboration

- How LHCb measurements are used in PDF fits and other LHCb measurements with sensitivity to high-*x* PDFs
- Studying PDFs with heavy flavor jets
- Searching for intrinsic charm at LHCb

# The LHCb detector (Int. J. Mod. Phys. A 30, 1530022 (2015))

- Forward spectrometer:  $2 < \eta < 5$
- tracking, calorimetry, RICH, muon systems
- Excellent vertex resolution  $(10 50 \ \mu \text{m in } x \text{ and } y)$
- Track  $\sigma(p)/p\sim 0.5-1.0\%$
- Fixed-target mode with the SMOG system



### LHCb kinematics



This talk will focus on the high-x, high- $Q^2$  regime

# LHCb data in PDF fits

### LHCb measurements in PDF fits: W and Z



Recent PDF fits using LHCb data

- **CT18** (PRD 103, 014013 (2021))
- NNPDF3.1 (EPJC 77, 663 (2017))
- MSHT20 (arXiv:2012.04684)

Tom Boettcher on behalf of the LHCb Collaboration



### LHCb measurements in PDF fits: W and Z production

 $Z \rightarrow \mu\mu$  and  $W \rightarrow \mu\nu$  at 8 TeV, JHEP 01 (2016) 155



LHCb's impact



Current LHCb data provides powerful constraints on the quark PDFs at high-x

### Additional measurements: More Z production

 $Z \rightarrow \mu\mu/ee$  at 13 TeV (JHEP 09 (2016) 136)



### $Z \rightarrow \tau \tau$ at 8 TeV (JHEP 1809 (2018) 159)



# Additional measurements: W + j and Z + j (JHEP 05 (2016) 131)



Asymmetries and ratios minimize scale uncertainties → greater PDF sensitivity
Sensitive to quark PDFs above x ~ 0.5 (see e.g. PRD 93, 014008 (2016))

# Studying PDFs with Heavy Flavor Jets at LHCb

# Heavy flavor jet tagging at LHCb (JINST 10 P06013)



- Jets are using displaced secondary vertices and two BDTs:  $BDT_{bc|udsg}$  and  $BDT_{b|c}$
- $\blacksquare \ b \ (c)$  jets tagged with 65% (25%) efficiency with 0.3% mistag probability

# W + (c, b) (PRD 92 (2015) 052001)



 $Wc, Wb, W^-j, W^+j$ 



 $\sim 2\sigma$  tension in  $\mathcal{A}(Wc)$  could point to an asymmetry between s and  $\bar{s}$  PDFs

-5

# $t\bar{t}$ at 13 TeV (JHEP 08 (2018) 174) $\,$



- $\blacksquare$  Measured in the  $\mu + e + b$  final state
- Probes the gluon PDF at high-*x*



- Syst. and stat. uncertainties are similar
- Syst. uncertainties dominated by b-tagging efficiency

# Searching for Intrinsic Charm at LHCb

### Intrinsic charm in the proton



• Most PDF fits assume charm is generated perturbatively for  $Q^2 > m_c^2$ 

- Intrinsic charm (IC) implies  $\langle x \rangle_{\rm IC} \equiv \int_0^1 x c(x, Q^2 = m_c^2) dx > 0$
- See e.g. AHEP 2015 (2015) 231547 for a review
- NNPDF3.1 fits c PDF independently:  $\langle x \rangle_{\rm IC} = (0.4 \pm 0.4)\%$

# Fixed target charm production (PRL 122 (2019) 132002)



- **S**ystem for **M**easuring **O**verlap with **G**as (SMOG)
- Fixed target  $D^0$  production probes the charm PDF at low- $Q^2$  and high-x
- No evidence for significant IC
- $\blacksquare$  Low- $Q^2$  fixed target charm production data is difficult to interpret and usually omitted from PDF fits

Tom Boettcher on behalf of the LHCb Collaboration

### Probing IC with Z + c



- An ideal probe of IC should be sensitive to the *c* PDF at high-*x* AND high- $Q^2$
- Z + c production at LHCb probes the c PDF in the valence region at  $Q^2 \sim m_Z^2$

# Outlook (Phys. Rev. D 93, 074008 (2016))

#### Run 2 projection



- Run 2 measurement in progress
- Sensitive to valence-like IC down to about  $\langle x \rangle_{\rm IC} \sim 1\%$

#### Run 3 projection



Sensitive to IC favored by NNPDF3.1

Tom Boettcher on behalf of the LHCb Collaboration

### Conclusions

- $\blacksquare$  LHCb data provides significant constraints on the quark PDFs at high-x in state-of-the-art PDF fits
- Measurements using heavy flavor tagged jets provide additional information
  - W + c(b) probes the s(b) PDF
  - $t\bar{t}$  probes the g PDF
- LHCb has performed IC studies in fixed target mode, and studies of Z + c production at 13 TeV are in progress.
- Expect to rule out or observe valence-like IC at the level of  $\langle x \rangle_{\rm IC} \sim 1\%$  in Run 2 and 0.3% in Run 3



# LHCb Trigger



# SMOG (JINST 9 (2014) 12, P12005)



# $t\bar{t}$ , $W + c\bar{c}$ , and $W + b\bar{b}$ (Phys. Lett. B767 (2017) 110)



# $c\bar{c}$ and $b\bar{b}$ at 13 TeV (JHEP 02 (2021) 023)



• Yields determined using template fits to jet tagging BDT outputs:

$$t_0 = BDT_{bc|udsg}(j_0) + BDT_{bc|udsg}(j_1)$$
  
$$t_1 = BDT_{b|c}(j_0) + BDT_{b|c}(j_1)$$

• Theoretical uncertainties dominated by scale uncertainties