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Abstract

Mesons comprising a beauty quark and a strange quark can oscillate between
particle (B0

s ) and antiparticle (B0
s) flavour eigenstates, with a frequency given

by the mass difference between heavy and light mass eigenstates, ∆ms. Here we
present a measurement of ∆ms using B0

s→ D−
s π

+ decays produced in proton-proton
collisions collected with the LHCb detector at the Large Hadron Collider. This
measurement improves upon the current ∆ms precision by a factor of two. The
oscillation frequency is found to be ∆ms = 17.7683± 0.0051± 0.0032 ps−1, where
the first uncertainty is statistical and the second systematic. We combine this result
with previous LHCb measurements to determine ∆ms = 17.7656± 0.0057 ps−1.
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Neutral mesons with strange, charm or beauty quantum numbers can mix with their
antiparticles, as these quantum numbers are not conserved by the weak interaction. The
neutral meson comprising an antibeauty quark and a strange quark, the B0

s meson, and
its antiparticle, the B0

s meson, are one such example. In the B0
s–B

0
s system, the observed

particle and antiparticle states are linear combinations of the heavy (H) and light (L)
mass eigenstates. The mass eigenstates have masses mH and mL and decay widths ΓH

and ΓL [1]. As a consequence, the B0
s–B

0
s system oscillates with a frequency given by the

mass difference, ∆ms = mH −mL. This oscillation frequency is an important parameter
of the Standard Model of particle physics. In combination with the B0–B0 oscillation
frequency, ∆md, it provides a powerful constraint on the Cabibbo–Kobayashi–Maskawa
quark-mixing matrix [2–5]. A precise measurement of ∆ms is also required to reduce the
systematic uncertainty associated with measurements of matter-antimatter differences in
the B0

s–B
0
s system [6].

In this paper, we present a measurement of ∆ms using B0
s mesons that decay to a

charmed-strange D−
s meson and a pion, B0

s→ D−
s π

+, and the decays with opposite charge,
B0
s→ D+

s π
−. We refer to both charge combinations as B0

s→ D−
s π

+ throughout the paper,
and similarly for decays of the D−

s meson. The measurement is performed using data
collected between 2015 and 2018, denoted Run 2 of the Large Hadron Collider (LHC),
corresponding to an integrated luminosity of 6 fb−1 of proton-proton (pp) collisions at a
centre-of-mass energy of 13 TeV.

The first measurement of ∆ms was obtained by the CDF collaboration [7]. More
recently, the LHCb collaboration has performed several measurements of ∆ms using data
collected at the LHC: a measurement using B0

s→ D−
s π

+ decays [8]; two measurements
using B0

s → J/ψK+K− decays [9, 10]; and a measurement using B0
s → D∓

s π
±π±π∓

decays [11]. Theoretical predictions for ∆ms are available [5,12–16], with the most precise
prediction in Ref. [17]. The prediction is consistent with but significantly less precise than
existing experimental results.

The B0
s→ D−

s π
+ decay-time distribution, in the absence of detector effects, can be

written as

P (t) ∼ e−Γst

[
cosh

(
∆Γst

2

)
+ C · cos(∆mst)

]
, (1)

where Γs = (ΓH + ΓL)/2 is the inverse of the B0
s lifetime, known as the decay width in the

literature, and ∆Γs = ΓH − ΓL is the decay-width difference between the heavy and light
mass eigenstates. The parameter C takes the value C = −1 for decays in which the initially
produced meson mixed into its antiparticle before decaying, i.e. B0

s → B0
s→ D−

s π
+, and

C = 1 for unmixed decays, i.e. B0
s→ D−

s π
+. The mixed decay is referred to as B0

s→ D−
s π

+

throughout the paper. The mass difference ∆ms corresponds to a frequency in natural
units, and is measured in inverse picoseconds.

The LHCb detector [18, 19] is designed to study the decays of beauty and charm
hadrons produced in pp collisions at the LHC. It instruments a region around the proton
beam axis, covering the polar angles between 10 and 250 mrad, in which approximately
a quarter of the b-hadron decay products are fully contained. The detector includes a
high-precision tracking system with a dipole magnet, providing measurements of the
momentum and decay-vertex position of particles. Different types of charged particles are
distinguished using information from two ring-imaging Cherenkov detectors, a calorimeter
and a muon system.

Simulated samples of B0
s→ D−

s π
+ decays and data control samples are used to verify
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the analysis procedure and to study systematic effects. The simulation provides a detailed
model of the experimental conditions, including the pp collision, the decays of the particles
produced, their final-state radiation and the response of the detector. Simulated samples
are corrected for residual differences in relevant kinematic distributions to improve the
agreement with data. The software used is described in Refs. [20–25].

The B0
s mesons travel a macroscopic distance at LHC energies (on average 1 cm)

before decaying and are significantly heavier than most other particles produced directly
in pp collisions. Thus their decay products have significant displacement relative to the
pp collision point, and a larger momentum transverse to the beam axis, compared to
other particles. The candidate selection exploits these fundamental properties. Two fast
real-time selections use partial detector information to reject LHC bunch crossings likely
to be incompatible with the presence of the signal, before a third selection uses fully
aligned and calibrated data in real time to reconstruct and select topologies consistent with
the signal [26]. Selected collisions are recorded to permanent storage. Two subsequent
selections fully reconstruct the decays with the D−

s meson reconstructed in both K−K+π−

and π−π+π− final states. These selections sequentially improve the signal purity of
the sample to the final value of 84%, which is optimised using simulation to maximize
the product of signal significance and signal efficiency. This criterion gives the optimal
sensitivity to the oscillation frequency. All but the first real-time selection are based on
multivariate classifiers.

The remaining sources of background after selection consist of: random track com-
binations (combinatorial background); B0

s→ D∗−
s π+ decays, where the photon from the

D∗−
s → D−

s γ decay is not reconstructed; and contributions from b-hadron decays with
similar topologies to the signal, namely B0 → D−π+, Λ0

b → Λ−
c π

+ and B0
s → D∓

s K
±

decays. The decays with similar topology are suppressed by applying kinematic vetoes
and additional particle identification requirements.

In order to measure ∆ms, a B0
s→ D−

s π
+ decay time distribution is first constructed in

the absence of background. This is achieved by performing an unbinned two-dimensional
likelihood fit to the observed D−

s π
+ and K−K+π− or π−π+π− invariant-mass distributions.

This fit is used to determine the signal yield and a set of weights [27] used to statistically
subtract the background in the subsequent fit to the decay-time distribution. The invariant
mass distributions of the selected decays are shown in Fig. 1.

The probability density functions describing the signal and background invariant mass
distributions are obtained using a mixture of control samples in data and simulation. The
D−
s π

+ and K−K+π− or π−π+π− invariant-mass signal shapes are described by the sum of
a Hypatia [28] and Johnson SU [29] functions. The combinatorial background contribution
for both invariant-mass distributions is described by an exponential function in each
with parameters determined in the fit. The B0→ D−π+, Λ0

b→ Λ−
c π

+ or B0
s→ D∓

s K
±

background components constitute less than 2% of the signal yield and are accounted for
in the fit to the invariant mass distributions using yields obtained from known branching
fractions and relative efficiencies, as determined from simulated samples, which are
weighted to account for differences between data and simulation. The B0→ D−

s π
+ and

B0
s → D∗−

s π+ background components are also obtained from simulated samples and
included in the mass fit. The combined B0→ D−

s π
+ and B0

s → D∗−
s π+ yield is a free

parameter of the fit. The signal yield obtained from the invariant mass fit is 378 700± 700.
The decay-time parametrisation in Eq. 1 is modified to account for the following

detector effects: a time-dependent reconstruction efficiency; a time-dependent decay-time
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Figure 1: Invariant-mass distributions. Distributions of the (left) D−
s π

+, and
(right) K+K−π± or π+π−π± invariant mass for the selected candidates, m(D−

s π
+) and

m(K+K−π±, π+π−π±), respectively. The mass fit described in the text is overlaid. The
different contributions are shown as coloured areas (for background) or by dashed lines (for
signal).

resolution; the imperfect knowledge of the initial flavour of the reconstructed B0
s or B0

s

meson; the asymmetry in B0
s or B0

s production in pp collisions; and an asymmetry in
reconstruction of final state particles due to interactions in the detector material [30].

Due to the lifetime biasing effect of the selections, the reconstruction efficiency is low at
small decay times and increases to a plateau after 2 ps. The time-dependent reconstruction
efficiency is modelled with cubic b-splines curves as described in Ref. [31]. The spline
coefficients are allowed to vary in the fit to the observed decay-time distribution.

The decay-time resolution is measured using a data sample of D−
s mesons originating

from pp interactions without being required to come from an intermediate B0
s meson decay.

These ‘prompt’ candidates pass the same selection procedure as for the signal sample
except for requirements that reject signals with short decay times. The reconstructed
decay time in this sample is proportional to the distance between the D−

s production
vertex and an artificial B0

s decay vertex, formed by combining the prompt D−
s meson with

a π+ track from the same pp collision. It is therefore compatible with zero decay time up
to bias and resolution effects. A linear relationship is observed between the decay-time
resolution measured at zero decay time and the decay-time uncertainty estimated in the
vertex fit. This relationship is used to calibrate the B0

s→ D−
s π

+ decay-time uncertainty.
Simulated prompt D−

s and B0
s→ D−

s π
+ decays, for which the generated decay time is

known, are used to check the suitability of this method, which determines a 0.005 ps bias
in the reconstructed decay time due to residual detector misalignments. This bias is
corrected for in the analysis.

To determine if a neutral meson oscillated into its antiparticle, knowledge of the B0
s or

B0
s flavour at production and decay is required. In B0

s→ D−
s π

+ decays, the B0
s flavour

at decay is identified by the charge of the pion as the D+
s π

− decay cannot be produced
directly. To determine whether the B0

s oscillated before decay, the flavour at production
is inferred from the hadronisation of the B0

s meson or the decay of other beauty hadrons
produced in the collision using a combination of several flavour-tagging algorithms [32–35].
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Each algorithm estimates the probability that a candidate has been assigned the wrong
flavour tag. The algorithms that use information independent of signal fragmentation are
calibrated using B+ meson decays and a combined wrong-tag estimate is used in the fit.
The tagging efficiency is measured to be ε = (80.30± 0.07)% with a probability to tag a
candidate as the wrong flavour of ω = (36.21± 0.17)%, where the uncertainties account
for the calibration.

In the fit to extract ∆ms, the calibration parameters for the combined wrong tag
estimate are allowed to vary. Additional free parameters are the values of the spline
coefficients used to describe the time-dependent reconstruction efficiency and the B0

s–B
0
s

production and detection asymmetries.
The parameters Γs and ∆Γs, are fixed in the fit to their known values [36]. Other

fixed parameters are: the estimate of the wrong-tag fraction and efficiency of the tagging
algorithms, the decay-time bias correction and the decay-time resolution calibration
parameters. The decay-time distribution of the tagged–mixed, B0

s → D−
s π

+, tagged–
unmixed, B0

s→ D−
s π

+, and untagged, where the initial flavour is unknown, samples are
shown in Fig. 2 (left). The corresponding fit projection is overlaid. In order to highlight
the oscillation phenomenon, the asymmetry distribution between the tagged–unmixed
and tagged–mixed samples is defined as

A(t) =
N(B0

s→ D−
s π

+, t)−N(B0
s→ D−

s π
+, t)

N(B0
s→ D−

s π
+, t) +N(B0

s→ D−
s π

+, t)
, (2)

with t modulo 2π/∆ms, and is shown in Fig. 2 (right). Here, N(B0
s→ D−

s π
+, t) and

N(B0
s→ D−

s π
+, t) indicate respectively the tagged–mixed and tagged–unmixed decays

observed at a time t. For this distribution each event, in addition to the weight used to
statistically subtract the background, is also weighted by the product of two factors. The
first is a flavour-tagging dilution factor, related to the probability that the flavour tag is
indeed correct. The second is an effective decay-time uncertainty dilution factor, depending
on the reconstructed decay time per-event resolution and on ∆ms, for which the central
value of the decay time fit is being used. The continuous line overlaid corresponds to the
fit result. The result of the fit for ∆ms is 17.7683± 0.0051 ps−1, where this uncertainty is
related to the sample size.

Several sources of systematic uncertainty have been investigated and those with a
non-negligible contribution are listed in Table 1. These include the uncertainty on the
momentum scale of the detector, obtained by comparing the reconstructed masses of known
particles with the most accurate available values [36]; residual detector misalignment and
length scale uncertainties; and uncertainties due to the choice of mass and decay-time
fit models, determined using alternate parametrisations and pseudoexperiments. To
verify the robustness of the measurement to variations in ∆ms as a function of the decay
kinematics, the data sample is split into mutually disjoint subsamples, each having the
same statistical significance, in relevant kinematic quantities, such as the B0

s momentum,
and the ∆ms values obtained from each subsample are compared. The largest observed
variation is included as a systematic uncertainty. The total systematic uncertainty is
0.0032 ps−1, with the leading contribution due to residual detector misalignment and
detector length scale uncertainties.

The value of the B0
s–B

0
s oscillation frequency determined in this article:

∆ms = 17.7683± 0.0051 (stat)± 0.0032 (syst) ps−1
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Figure 2: Decay-time distribution of the signal decays. Distribution of the (left) decay
time of the B0

s→ D−
s π

+ signal decays and (right) decay-time asymmetry between mixed and
unmixed signal decays. The fit described in the text is overlaid.

Table 1: Systematic uncertainties affecting the measurement of ∆ms. Sources of
systematic uncertainties. The total systematic uncertainty is obtained by adding the contributions
in quadrature.

Description Systematic uncertainty [ ps−1]
Reconstruction effects:

momentum scale uncertainty 0.0007
detector length scale 0.0018
detector misalignment 0.0020

Invariant mass fit model:
background parametrisation 0.0002
B0
s→ D∗−

s π+ and B0→ D−
s π

+ contributions 0.0005
Decay-time fit model:

decay-time resolution model 0.0011
neglecting correlation among observables 0.0011

Cross-checks:
kinematic correlations 0.0003

Total systematic uncertainty 0.0032

is the most precise measurement to date. The precision is further enhanced by combining
this result with the values determined in Refs. [8, 11]. Reference [8] uses B0

s → D−
s π

+

decays collected in 2011. Reference [11] uses a sample of B0
s → D−

s π
+π+π− decays selected

from the combined 2011–2018 data set, corresponding to 9 fb−1. The measurements are
statistically independent. The systematic uncertainties related to the momentum scale,
length scale and residual detector misalignment are assumed to be fully correlated. The
correlation between ∆ms and the fixed parameters ∆Γs and Γs is negligible and ignored
in the combination procedure. A covariance matrix is constructed by adding statistical
and systematic uncertainties in quadrature for each input, including correlations between
systematic uncertainties. The results are averaged by minimizing the χ2 from the full
covariance matrix. The value of ∆ms obtained is 17.7666 ± 0.0057 ps−1. Additionally,
these results are combined with those from Refs. [9, 10] where ∆ms is determined using
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Figure 3: Summary of LHCb measurements. Comparison of LHCb ∆ms measurements
from Refs. [8–11], the result presented in this article and their average. The measurement
described in this paper is labeled as D−

s π
+ 6 fb−1. The band indicates the size of the uncertainty

on the average for comparison purposes. The combination procedure and inputs are described
in the text.

B0
s → J/ψK+K− decays in the 2011–2012 (3 fb−1) and 2015–2016 (2 fb−1) data sets,

respectively. The result for ∆ms is 17.7656± 0.0057 ps−1. The different measurements,
and the resulting combination, are shown in Fig. 3.

In summary, this paper presents the most precise measurement of the ∆ms oscillation
frequency, 17.7683 ± 0.0051 (stat) ± 0.0032 (syst) ps−1, where the first uncertainty is
statistical and the second systematic. The result is obtained using a sample of B0

s→ D−
s π

+

decays collected with the LHCb detector during Run 2 of the LHC. Combining the result
of this paper with previous measurements by the LHCb collaboration yields a ∆ms value
of 17.7656± 0.0057 ps−1. This value is compatible with, and considerably more precise
than, the predicted value from lattice QCD [12–14] and sum rule calculations [15, 16]
of 18.4+0.7

−1.2 ps−1 [17]. The combined result represents a significant improvement over
previous measurements, and is a legacy measurement of the original LHCb detector.
The experiment is currently undergoing a major upgrade to operate at five times the
instantaneous luminosity from 2022 onwards [37]. The largest sources of systematic
uncertainty for this measurement, namely those related to the detector length scale and
misalignment, will be a focal point to further improve upon this result for future data
taking periods.

Methods

The LHCb detector. The LHCb detector [18, 19] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the study of particles containing
b or c quarks. The detector includes a high-precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction region [38], a large-area silicon-
strip detector located upstream of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift tubes [39] placed downstream
of the magnet. The tracking system provides a measurement of the momentum, p, of
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charged particles with a relative uncertainty that varies from 0.5% at low momentum
to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the
impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is
the component of the momentum transverse to the beam, in GeV/c. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors [40]. Photons, electrons and hadrons are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers [41].

Simulation of the LHCb detector response is required to model the effects of the detector
acceptance and the imposed selection requirements. In the simulation, pp collisions are
generated using Pythia [20] with a specific LHCb configuration [21]. Decays of unstable
particles are described by EvtGen [22], in which final-state radiation is generated using
Photos [25]. The interaction of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [23] as described in Ref. [24].
Selection. A fast decision about which pp collisions are of interest is made by a trigger
system [42]. It consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which reconstructs the pp collision based
on all available detector information. The software trigger selects candidates consistent
with a b-hadron decay topology, with tracks originating from a vertex detached from the
primary pp collision point, known as the primary vertex (PV). The mean B0

s lifetime is
1.5 ps [36], which corresponds to an average flight distance of 1 cm in the LHCb detector.

After being accepted by the trigger, a further selection is applied which forms
D−
s → K−K+π− and D−

s → π−π+π− candidates from reconstructed charged tracks and
subsequently combines them with a fourth track to form B0

s→ D−
s π

+ candidates. Particle
identification information is used to assign mass hypotheses to each of the final-state
tracks.

The B0
s invariant-mass resolution is improved by constraining the D−

s invariant mass
to its known value [36]. The K+K−π± or π+π−π± and D−

s π
+ invariant-mass ranges

considered in this analysis are [1930,2015] and [5300, 5800] MeV/c2, respectively.
To suppress B0

s candidates formed from random track combinations, a gradient boosted
decision tree (BDT) is used, implemented in the XGBoost library [43]. The training
uses data for both the signal and the background samples in order to avoid mismatches
between data and simulation. This classifier uses information on: the fit quality of the
D−
s and B0

s decay vertices; the D−
s and B0

s χ
2
IP defined as the difference in the χ2 of the

vertex fit for a given PV reconstructed with and without the considered particle; the
angles between their momentum vector and the vector connecting their production and
decay vertices; and the pT and impact parameter χ2

IP of the final-state tracks. The BDT
classifier threshold is chosen to maximize the product of the signal significance and the
signal efficiency. This choice optimises sensitivity to the oscillation frequency.
Flavour tagging. The initial flavour of the B0

s meson must be known in order to
determine if it has oscillated prior to decay. Flavour tagging algorithms are used to
determine the initial flavour from properties of the b-hadron production in the pp collision.

Beauty quarks are predominantly produced in pairs. Opposite side (OS) tagging
algorithms [33] determine the initial flavour of the B0

s meson based on information from
the other beauty-quark decay. These include the OS muon and OS electron taggers, which
identify the flavour from the charge of leptons produced in the other b-hadron decay. The
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OS kaon tagger identifies b → c → s transitions, the OS charm quark tagger identifies
b→ c transitions, and the OS vertex charge tagger calculates the effective charge of an
OS displaced vertex [34]. In addition, a same side (SS) kaon tagger exploits the charge
information of the kaon originating from the s̄ or s quark leftover from the B0

s or B0
s

meson fragmentation [35]. Each algorithm determines the initial flavour of the B0
s meson

from the charge of the reconstructed tagging particle or the reconstructed vertex in the
case of the OS vertex tagger.

The tagging information is incorporated in the decay-time description. The amplitude
of the oscillation is reduced by a dilution factor D = (1 − 2ω), with ω the average
fraction of incorrect tags known as the mistag rate in the literature. Different machine
learning algorithms provide an estimate of the mistag rate which is calibrated with data
to match the true mistag distribution. A linear calibration of the average mistag as a
function of the predicted mistag for the combined OS tag and SS kaon tag information is
then implemented in the decay-time fit with freely varying calibration parameters. The
combined tagging efficiency of the sample is ε = (80.30± 0.07)% with a mistag fraction
of ω = (36.21± 0.02± 0.17)% where the first uncertainty is due to the finite size of the
calibration sample and the second is due to the calibration procedure. This results in a
combined effective performance of (6.10± 0.02± 0.15)% with respect to a perfect tagging
algorithm which would have a 100% tagging efficiency and zero mistag rate.
Systematic uncertainties. The following sources of systematic uncertainty have been
found to give a non negligible contribution to the ∆ms measurement. These are summarised
in Table 1 of the article.

The measured decay-time is inversely proportional to the B0
s momentum, and therefore

depends upon an accurate determination of the momentum scale uncertainty of the
tracking system. The uncertainty is determined by varying the B0

s meson momentum
by ±0.03% (coming from a comparison of masses of different particles with their known
values) in simulated signal samples. The corresponding uncertainty on ∆ms is 0.0007 ps−1.

The measured decay time is also proportional to the distance the B0
s meson travels

between production and decay, which is affected by precise knowledge of the position of
the vertex detector elements along the proton beam axis. The measured uncertainty is
100µm over a length of 1 m [38]. The corresponding uncertainty on ∆ms is 0.0018 ps−1.

The relative alignment of the tracking detector elements can also lead to uncertainties
in the decay time. The uncertainty due to imprecise knowledge of this alignment has been
obtained from the analysis of simulated signal samples in which the detector elements
have been deliberately misaligned by random values in the range between 0 and 9 µm as
determined from survey results. Each misaligned simulated sample is then corrected for
decay time bias in the same manner as for data, and the extracted ∆ms value is compared
with the value obtained in simulation without any misalignment. This comparison produces
a corresponding uncertainty on the bias correction procedure of 0.0020 ps−1.

Alternative parametrisations of the background contributions to the invariant mass fit
have been obtained by using different weighting methods; the difference between these
parametrisations corresponds to an uncertainty of 0.0002 ps−1.

For the specific B0
s → D∗−

s π+ and B0→ D−
s π

+ background contributions, the rela-
tive fraction of these components cannot be reliably determined from the data. Their
relative contributions are nominally set to an equal mixture and varied between 0 (pure
B0→ D−

s π
+) and 1 (pure B0

s→ D∗−
s π+) to determine the maximum deviation in ∆ms

corresponding to an uncertainty of 0.0005 ps−1.

8



The decay–time resolution is obtained from data using a sample of D−
s mesons that are

produced directly in pp collision. These are combined with a π+ meson coming from the
same collision to produce a fake B0

s candidate with a decay time equal to zero, ignoring
resolution effects. Different parametrisations of the measured decay-time distribution are
applied to a simulated signal sample. The largest deviation of the extracted ∆ms value
with respect to the nominal parametrisation is found to be 0.0011 ps−1.

The procedure used to subtract background contributions in the fit to the decay-time
distribution assumes no large correlations between the decay-time and the reconstructed
B0
s and D−

s invariant masses. This is studied by analysing simulated signal and background
samples where any residual correlations between these observables are removed. The
difference in measured value of ∆ms between the decorrelated and nominal samples is
found to be 0.0003 ps−1.

The data sample was split into mutually disjoint subsamples in order to study the effect
of potential correlations between kinematic ranges, data taking periods, flavour-tagging
categories, the BDT-based selection and the measured value of ∆ms. The measured values
obtained from each subsample are compared and the largest observed variation is found
to be 0.0003 ps−1.

The largest sources of systematic uncertainty are found to be due to imprecise knowledge
of the position and alignment of the tracking detector closest to the nominal pp collision
region.
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dUniversità di Bologna, Bologna, Italy

17
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oUniversità della Basilicata, Potenza, Italy
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qUniversità di Siena, Siena, Italy
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