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We investigate swampland conjectures for quantum gravity in the context of M-theory compactified on
Calabi-Yau threefolds which admit infinite sequences of flops. Naively, the moduli space of such
compactifications contains paths of arbitrary geodesic length traversing an arbitrarily large number of
Kähler cones, along which the low-energy spectrum remains virtually unchanged. In cases where the
infinite chain of Calabi-Yau manifolds involves only a finite number of isomorphism classes, the moduli
space has an infinite discrete symmetry which relates the isomorphic manifolds connected by flops. This is
a remnant of the eleven-dimensional Poincare symmetry and is consequently gauged, as it has to be, by the
no-global symmetry conjecture. The apparent contradiction with the swampland distance conjecture is
hence resolved after dividing by this discrete symmetry. If the flop sequence involves infinitely many
nonisomorphic manifolds, this resolution is no longer available. However, such a situation cannot occur if
the Kawamata-Morrison conjecture for Calabi-Yau threefolds is true. Conversely, the swampland distance
conjecture, when applied to infinite flop chains, implies the Kawamata-Morrison conjecture under a
plausible assumption on the diameter of the Kähler cones.
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I. INTRODUCTION

When studying string-derived models for particle phys-
ics and cosmology, an important question is which features
are universally present and which ones are universally
excluded. Such model-independent features may be general
enough to persist beyond string theory, thus making

predictions for other UV-complete theories of gravity.
This line of thought has led, especially in recent years,
to a wealth of quantum gravity conjectures (see Ref. [1] for
a review). One of the oldest and most studied of these
conjectures states that any global symmetry in quantum
gravity must be either gauged or broken [2,3]. Hence a
global unbroken symmetry is a feature thought to never
occur in quantum gravity. An example of a feature thought
to be universal is captured by the swampland distance
conjecture [4], which states that, compared to a theory at a
point p0 in moduli space, a theory at point p1 with a
shortest geodesic distance Δτ from p0 has an infinite tower
of light states starting with a mass of the order e−ρΔτ for
some order one constant ρ > 0. The conjecture has been
verified asymptotically in several examples [5–13] (see
Table III of Ref. [14] for a nice overview), as well as
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numerically in a recent study based on numerical Calabi-
Yau (CY) metrics [15].
A ubiquitous feature of string compactifications (and,

possibly, of quantum gravity more generally) are topology-
changing transitions, such as flop and conifold transitions.
It is an interesting question whether these transitions might
imply universal properties of infrared theories. In this paper
we will investigate their relationship to existing quantum
gravity conjectures.
More concretely, we will study the relation between flop

transitions, in the context of M-theory on CY threefolds,
and the swampland distance conjecture [see Ref. [16] for a
recent discussion of swampland conjectures in five-dimen-
sional (5D) M-theory].
Flop transitions in string theory have been studied some

time ago (see Refs. [17–20], and Ref. [21] for a review) but
recently a number of interesting features have been
observed [22,23]:

(i) Many of the simplest CY threefolds, including
complete intersections in products of projective
spaces (CICYs), admit flop transitions, often in
multiple directions in the Kähler cone.

(ii) Flops frequently connect isomorphic manifolds and
in this case their moduli spaces are related by a
discrete symmetry.

(iii) Infinite chains of flops arise frequently and even for
relatively simple manifolds.

It is the last of these features which is the impetus for this
present study of the swampland distance conjecture. Infinite
chains of flop transitions seem to imply the existence of
infinite-length geodesics, traversing an arbitrary number of
Kähler cones but with the low-energy spectrum virtually
unchanged. Naively, this appears to contradict the swamp-
land distance conjecture. A priori, one can conceive of two
qualitatively different types of infinite flop chains:
(1) The chain only contains a finite number of non-

isomorphic CY threefolds.
(2) The chain contains an infinite number of noniso-

morphic CY threefolds.
In this paper, we would like to make three main points. First,
wewill show that there indeed exist infinite-length geodesics
along which the low-energy spectrum is virtually unchanged
for CY threefolds with infinite flop chains. Second, for
infinite chains of type (1) we establish the existence of an
infinite discrete symmetry on the moduli space which must
be gauged, and determine the source of this gauging.
Dividing by this symmetry leaves only a finite number of
inequivalent Kähler cones and this removes any possible
conflict with the swampland distance conjecture. This argu-
ment does not apply to infinite flop sequences of type (2). As
our third main point, we argue that such cases are in fact
excluded, provided theKawamata-Morrison conjecture [24–
26] for CY threefolds holds.1

The rest of the paper is organized as follows. In the next
section we provide a brief summary of background
material, including CY flops and infinite flop chains, the
Kawamata-Morrison conjecture, and M-theory compacti-
fication of CY threefolds. In Sec. III we study how
geodesics traversing flop transitions relate to the distance
conjecture and we conclude in Sec. IV.

II. BACKGROUND

A. Flops

Flops can be discussed in generality in the context of
algebraic varieties, however some ideas become more
transparent in the Kähler setting. Thus let X denote a
Kähler threefold and J its Kähler form. The require-
ment that J is a positive (1,1)-form defines the Kähler
cone KðXÞ.
The closure K̄ðXÞ of the Kähler cone is the nef cone. At

the boundaries of the Kähler cone the manifold becomes
singular due to the vanishing of the volume of either a curve
C, a divisor D, or X itself, where

volðCÞ¼
Z
C
J; volðDÞ¼ 1

2

Z
D
J2; volðXÞ¼ 1

6

Z
X
J3:

A flop is a birational morphism. It relates two manifolds
by contracting curves on either manifold to arrive at the
same (singular) manifold at a common boundary of their
Kähler cones. A flop can be thought of as a codimension-
two surgery, in which a finite collection of isolated rational
curves on X is replaced by another finite collection of
isolated rational curves to give rise to a new manifold X0.
Since divisors are codimension-one objects, there is a
natural identification H2ðX;RÞ ≅ H2ðX0;RÞ and we can
speak of the Kähler cones KðXÞ and KðX0Þ as cones in the
same vector space of real divisor classes, as depicted in
Figs. 1 and 2 below. The union of the Kähler cones of all
threefolds obtained from X through a sequence of flops is
called the extended Kähler cone of X and is denoted
by KextðXÞ.

FIG. 1. Extended Kähler cone of a CY threefold admitting a
symmetric flop.

1The authors are grateful to Antonella Grassi [27] for bringing
to their attention the Kawamata-Morrison conjecture.

BRODIE, CONSTANTIN, LUKAS, and RUEHLE PHYS. REV. D 104, 046008 (2021)

046008-2



If X is a CY threefold and X → X0 a flop, the threefold X0
is also CYand has the same Hodge numbers as X. However,
finer topological invariants, such as the intersection num-
bers and the second Chern class of the manifold, do change
in general.
Concretely, if D is a divisor on X and D0 the corre-

sponding divisor on X0, the triple self-intersection form on
H2ðX;ZÞ changes as

D03 ¼ D3 −
XN
i¼1

ðD · CiÞ3; ð1Þ

where C1; C2;…; CN are the isolated exceptional P1 curves
with normal bundle Oð−1Þ ⊕ Oð−1Þ contracted in the
flop. Often, the flopping curves belong to a single homo-
logy class η ∈ H2ðX;ZÞ. There are also cases where some
curves belong to the primitive class η and the rest to 2η. The
numbers of rational curves in η and 2η are the genus-zero
Gromov-Witten invariants for these classes. The class η is
perpendicular, with respect to the intersection form on X, to
the wall separating KðXÞ from KðX0Þ.
To write this more explicitly, we introduce a basis ðDiÞ of

H2ðXÞ, where i; j;… ¼ 1;…; h1;1ðXÞ, which consists of
generators of the Kähler cone of X (which, for ease of
notation, is assumed to be simplicial for the duration of this
paragraph). We write the Kähler form as J ¼ tiDi, where
ti > 0 corresponds to the Kähler cone of X. The relation (1)
between the intersection numbers dijk ¼ Di ·Dj ·Dk of X
and d0ijk of X0 can then be written as

d0ijk ¼ dijk − nδ1iδ1jδ1k; ð2Þ

where it is assumed that the flop arises across the boundary
t1 ¼ 0. The integer n is related to Gromov-Witten invar-
iants and arises from the intersections with the curves Ci
in Eq. (1).
It has been found recently [22,23] that CY flop tran-

sitions are even more ubiquitous than previously thought
and, in particular, that they arise for many of the simplest
CY threefolds, including CICYs. In fact, of the

4874 Kähler-favorable CICYs, all but six admit a flop
transition. Of these six, five have Picard number one and so
could not admit a flop in principle. The remaining example
is the bicubic in P2 × P2.

B. Symmetric flops

Two manifolds X and X0 which are related by a flop are
(by definition) isomorphic in codimension one. But it can
additionally happen that the manifolds are precisely iso-
morphic, that is, that the flop constitutes a birational
automorphism. In particular, in our context this means
that X and X0 are isomorphic as smooth complex manifolds.
We call such a flop “symmetric.”
For a symmetric flop X → X0 the moduli space has an

involution { which exchanges the Kähler cones KðXÞ and
KðX0Þ, as indicated in Fig. 1, while leaving the boundary
across which the flop arises (the vertical axis in Fig. 1)
invariant. Relative to the basis ðDiÞ the involution can be
represented by a matrix Mi

j with M2 ¼ 1 under which the
intersection numbers in Eq. (2) are related by a tensorial
transformation, that is,

d0ijk ¼ dpqrMp
iMq

jMr
k: ð3Þ

To illustrate this, it is useful to consider Picard number two
manifolds. In this case, for a symmetric flop across the
t1 ¼ 0 boundary, the involution { is described by the matrix

M1 ¼
�−1 0

m1 1

�
: ð4Þ

Using that X ≅ X0, one can compute the positive integerm1

in terms of the intersection numbers as m1 ¼ 2d122=d222.
Symmetric flops are quite common as well [22,23].

Scanning again the 4874 Kähler-favorable CICYs, at least
2067 admit a symmetric flop. Among the 36 CICYs with
Picard number two, 27 display a symmetric flop and,
hence, an involution {, along at least one Kähler cone
boundary. We will discuss Picard rank two examples in
detail in [28].

C. Infinite flop chains

If the manifold X admits symmetric flops through
multiple boundaries of its Kähler cone, then the extended
Kähler cone can contain an infinite number of Kähler
cones, connected by an infinite sequence of flops. In such
cases, the corresponding involutions typically do not
commute and generate a discrete symmetry of countably
infinite order.
The simplest situation occurs for h1;1ðXÞ ¼ 2, when

symmetric flops arise across both boundaries of the Kähler
cone. The resulting extended Kähler cone is depicted
schematically in Fig. 2. In this case, X admits symmetric
flops to two manifolds X0

1 and X00
1 . But since X0

1 is

FIG. 2. Extended Kähler cone of a CY threefold admitting an
infinite flop chain.
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isomorphic to X, it must itself admit two flops, one going
back to X, the other one going to another isomorphic
manifold, X0

2. By iteration, this process leads to an infinite
number of Kähler cones on both sides of the original Kähler
cone KðXÞ. Here the Z2-action relating KðXÞ and KðX0

1Þ
does not commute with the Z2-action relating KðXÞ and
KðX0

2Þ. The two involutions can be obtained by writing
down the two matrices representing {1 and {2 which,
generalizing Eq. (4), are given by

M1 ¼
�−1 0

m1 1

�
; M2 ¼

�
1 m2

0 −1

�
; ð5Þ

with m1 ¼ 2d122=d222 and m2 ¼ 2d211=d111. It is clear that
M2

1 ¼ M2
2 ¼ 1 but also that the two matrices do not

commute. Their product,

M12 ¼ M1M2 ¼
�−1 −m2

m1 −1þm1m2

�
; ð6Þ

generates a group G of finite order for m1m2 < 4 and an
infinite group G isomorphic to Z for m1m2 ≥ 4. In fact,
every element in G can be uniquely written as Mq

1M
k
12,

where q ∈ f0; 1g and k is in a finite range for m1m2 < 4
and k ∈ Z for m1m2 ≥ 4.
The three finite order cases for m1m2 < 4 are explicitly

given in Table I below.
For these special cases, the extended Kähler cone

consists of a finite number of Kähler subcones, so that
we have only finite sequences of flops. However, the
extended Kähler cone would fill the entire plane R2 (and
hence not be a proper cone). Since such nef cones do not
exist, CYs with two Z2 involutions and triple intersection
numbers that would give rise to m1m2 < 4 are in the
swampland.
For m1m2 ≥ 4, on the other hand, G is isomorphic to the

free productG ≅ Z2 � Z2 ≅ Z2 ⋉ Z. As indicated in Fig. 2,
an infinite number of Kähler cones, on both sides of the
original coneKðXÞ, are generated, and infinite sequences of
flops are possible. In this case, the generators of the extended
Kähler cone are obtained by taking the limits

v1 ¼ lim
k→∞

Mke1
jMke1j

; v2 ¼ lim
k→∞

Mke2
jMke2j

; ð7Þ

where ei are the standard unit vectors. Up to an irrelevant
overall normalization, these vectors are given by

v1 ¼
�
m̃2

−1

�
; v2 ¼

�−1
m̃1

�
; ð8Þ

where m̃i ¼ mi
2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4=ðm1m2Þ
p Þ. Hence, the extended

Kähler cone for infinite flop chains is rational in the “critical
case”m1m2 ¼ 4, but it is irrational in all other cases; that is,
whenever m1m2 > 4.
Again, infinite flop chains appear to be rather common.

505 of the 4874 Kähler-favorable CICYs admit symmetric
flops across multiple boundaries of the Kähler cone, and,
hence, have an infinite flop chain. For the 36 CICYs with
Picard number two, six have symmetric flops across both
boundaries [28].
CICY examples of infinite flop chains appear to be such

that all manifolds involved are isomorphic to one another.
An obvious generalization are infinite flop chains based on
a finite number, ν, of nonisomorphic manifolds, for
example arranged in a repeating sequence

X1 → � � � → Xν → X1 → � � � → Xν → � � � ; ð9Þ

where X1;…; Xν are inequivalent. While such cases may
exist, we are not aware of explicit examples with ν > 1.
A qualitatively different case is an infinite flop chain

which involves an infinite number of nonisomorphic
manifolds. For such cases, the Kawamata-Morrison con-
jecture enters our discussion.

D. The Kawamata-Morrison conjecture

In the context of the minimal model program it is
important to know whether an extended Kähler cone can
contain infinitely many nonisomorphic manifolds. For CY
threefolds a negative answer has been proposed in the form
of the Kawamata-Morrison conjecture [24–26].
The aim of the minimal model program is to classify

irreducible complex varieties up to birational equivalence
(see, for example, Chapter 12 of Ref. [29]). A minimal
model is a “nice” representative of a birational equivalence
class, characterized by a nef canonical bundle. In particular,
CYs are minimal models since their canonical bundle is
trivial. Given a variety that is not a minimal model,
constructing an associated minimal model involves a
sequence of contractions of curves2 that negatively intersect
the canonical divisor; eventually, the canonical divisor
should become nef. Minimal models are not unique in
general and any two birationally equivalent minimal
models are connected by flops.
In this context a natural question is whether the number

of minimal models in a birational equivalence class is
always finite. For the case of complex surfaces, the answerTABLE I. Two-generator symmetry groups giving rise to

inconsistent extended Kähler cones.

ðm1; m2Þ (1,1) (1,2) (1,3)

G ≅ Z2 ⋉ Z3 Z2 ⋉ Z4 Z2 ⋉ Z6

2Some of these contractions lead to varieties that are too
singular, in which case flips can be used to ameliorate the
singularities.
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is positive and, moreover, in a fixed birational class there is
a unique minimal model. In dimension three or higher, the
question is not settled. As discussed, it is not difficult to
find examples of threefolds that admit an infinite sequence
of flops. However, all known examples produce a finite
number of minimal models up to isomorphisms.
The Kawamata-Morrison conjecture for CY threefolds

states that in a birational equivalence class there are only
finitely many isomorphism classes. In other words, an
infinite sequence of flops can only occur between a finite
number of isomorphism classes of CY threefolds.

E. M-theory on CY threefolds

M-theory compactifications on CY threefolds enjoy a
number of features that make the analysis of geodesic
motion tractable. Notably, when we study geodesic motion
in the extended Kähler cone in Sec. III, it will be sufficient
to consider only the vector multiplet moduli space, which
receives no quantum corrections in the interior of the
Kähler cone. Moreover, in contrast to four-dimensional
N ¼ 1 or N ¼ 2 models [30], where a rich structure of
nongeometric or hybrid phases can occur [20,31–34], the
moduli space of five-dimensional N ¼ 1 supergravity is
simpler and ends at the boundary of the extended Kähler
cone, missing all nongeometric phases [35].
The compactification of M-theory/eleven-dimensional

(11D) supergravity on a CY threefold X was first studied
in Ref. [36]. It leads to a five-dimensional N ¼ 1 super-
gravity with a gravity multiplet, h1;1ðXÞ − 1 vector mul-
tiplets, and h2;1ðXÞ þ 1 hyper multiplets. The overall
volume modulus V ¼ volðXÞ is part of the hyper-multiplet
sector while the relative Kähler moduli bi ¼ ti=V form the
scalars within the vector multiplets ðbi; Ai; λiÞ, where Ai are
the Abelian gauge fields and λi the gauginos. Since the bi

are subject to the constant volume constraint

κ ≔ dijkbibjbk¼! 6; ð10Þ

we are indeed left with h1;1ðXÞ − 1 independent scalar
fields, as required.3

The hyper-multiplet scalars form a quaternionic geom-
etry which receives loop corrections, such as the one
computed in Ref. [37]. The vector multiplet scalars, on
the other hand, parametrize a manifold with very special
geometry, governed by the trilinear prepotential (10). Since
the volume modulus V is part of the hyper-multiplet sector,
the vector multiplet geometry can be computed at large
volume and does not receive corrections. In our context, we
will be primarily interested in the vector multiplet moduli bi

and their associated geodesics.

Besides the Hodge numbers, the five-dimensional super-
gravity is determined by the triple intersection numbers dijk
of the underlying CY threefold. In particular, the moduli
space metric for fields bi is given in terms of the
prepotential (10) as

Gij ¼ −
1

3
∂i∂j ln κ ¼ −2

�
κij
κ
−
3

2

κiκj
κ2

�
; ð11Þ

where κi ¼ dijktjtk and κij ¼ dijktk. The resulting geodesic
equation (decoupling five-dimensional gravity) is

b̈i þ Γi
jk
_bj _bk ¼ 0; ð12Þ

where the dot denotes the derivative, d=ds, with respect to
an affine parameter s parameterizing the geodesic curve
and where Γi

jk ¼ 1
2
Gil∂lGjk is the connection. This equa-

tion should be solved subject to the constant volume
constraint (10).
Using standard relations of very special geometry it is

straightforward to show that the geodesic equation (12) has
the first integral,

1

2
Gij

_bi _bj ¼ E; ð13Þ

where E is a non-negative constant. This means the
geodesic distance Δτ of a path biðsÞ with s ∈ ½s1; s2�
and Δs ¼ s2 − s1 can be computed as

Δτ ¼
Z

s2

s1

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
GijðbðsÞÞ _bi _bj

r
¼

ffiffiffiffi
E

p
Δs: ð14Þ

This provides us with the relevant ingredients of the five-
dimensional theory as long as the moduli bi remain in the
interior of the Kähler cone.
What happens when a flop boundary, say b1 ¼ 0, is

approached? First, such a flop boundary can be reached in a
finite geodesic distance. Further, at the boundary we have
to consider a number of additional hyper multiplets which
originate from membranes wrapping the shrinking curves
Ci. Their mass is proportional to b1, so they become
massless at the transition and will be referred to as
transition states. A five-dimensional effective theory
including the transition states has been developed in
Refs. [38–40]. Reference [20] shows that the transition
states lead to one-loop corrections which change the
intersection numbers dijk of X to the intersection numbers
d0ijk of X0, as given in Eq. (2), when the flop boundary
b1 ¼ 0 is crossed. This means that we can think of the five-
dimensional theory as a theory on the extended Kähler
cone, as long as we adapt the intersection numbers to the
Kähler cone under consideration.

3Of the h1;1ðXÞ vector fields and fermions one combination
each becomes part of the gravity multiplet.
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More concretely, suppose we would like to consider a
geodesic biðsÞ which is contained in the Kähler cone KðXÞ
for s < 0, crosses the flop boundary at s ¼ 0, and extends
into the Kähler cone KðX0Þ for s > 0. From the above
discussion, this geodesic should satisfy Eq. (12) for s < 0
and for s > 0 it should satisfy the same equation but with
the intersection numbers dijk in Eq. (10) (as well as in Gij

and Γi
jkÞ replaced by d0ijk. At the flop transition we should

require continuity of biðsÞ and _biðsÞ.
We can say a bit more if the flop X → X0 under

consideration is symmetric, that is, if X and X0 are
isomorphic CY threefolds and are related by an involution
described by a matrix M. In this case, the intersection
numbers are related as in Eq. (3) and the involution
becomes a symmetry of the five-dimensional supergravity
(understood as a theory on the extended Kähler cone, as
discussed above) which acts as

bi → Mi
jbj; ð15Þ

and similarly on the gauge fields Ai and the gauginos λi,
while leaving all other fields invariant.
We can apply this symmetry to the s > 0 part of the

geodesic (which is within KðX0Þ) to map it back into
the Kähler cone KðXÞ, i.e., Mi

jbjðsÞ with s > 0 solves the
original geodesic equation (12) with intersection numbers
dijk. Moreover, since we have imposed continuity of biðsÞ
and _biðsÞ across the flop and the flop boundary is invariant
underM, the geodesics bið−sÞ andMi

jbjðsÞ for s > 0 have
the same initial conditions. Hence, they must be identical,
that is,

Mi
jbjðsÞ ¼ bið−sÞ for s ≥ 0: ð16Þ

This observation allows us to describe the geodesic motion
across a flop within a single Kähler cone KðXÞ. Instead of
crossing the boundary b1 ¼ 0 into the Kähler cone KðX0Þ
we can instead think about the motion “bouncing back”
from the flop boundary and, in accordance with Eq. (16),
retrace its original path, as indicated in Fig. 3. We
emphasize that this is not a geometrical process, but a
result of identification under the discrete group. We will
discuss this in detail for the Picard rank two cases
in Ref. [28].
If a symmetric flop happens at two Kähler cone

boundaries so that we have an infinite flop chain, we
can have geodesics traversing an arbitrary number of
Kähler cones. However, now the five-dimensional super-
gravity has an infinite discrete symmetry group G whose
elements M act as in Eq. (15). This symmetry can be used
to map the geodesic in each Kähler cone in Fig. 2 back into
KðXÞ, so that the entire geodesic can be thought of as an
oscillatory motion between the two flop boundaries of

KðXÞ. For Picard number two this is indicated in Fig. 3 (see
also Ref. [28]).
As an aside, we remark that the symmetry G of the five-

dimensional theory might well be broken when other
elements are added to the compactification. For example,
a flux compactification with four-form flux on X adds
gauging and a potential to the five-dimensional theory. In
compactifications of heterotic M-theory to five dimensions
[41] such a flux is automatic and related to the second
Chern classes of the CY manifold and the heterotic vector
bundles. It is at present unclear how four-form flux or, in
the heterotic case, vector bundles map across a flop
transition and whether this process does or does not
preserve the symmetry G. Also, in the presence of a
potential on the moduli space, a flop can only be achieved
if the flop boundary can be reached along flat directions of
the potential. Whether or not this is possible depends on the
example under consideration.

III. FLOPPING GEODESICS AND THE
SWAMPLAND DISTANCE CONJECTURE

Now that we have described the main characteristics of
flopping geodesics, we are ready to discuss the interplay
with the swampland distance conjecture. First, we recall
that the five-dimensional massless spectrum is determined
by the CY Hodge numbers. Since these remain unchanged
under any kind of flop (symmetric or not) a flopping
geodesic does not affect the five-dimensional massless
spectrum (the transition states only become massless at the
flop locus and are massive in the interior of any Kähler
cone). We begin by discussing the case of a single non-
symmetric flop, followed by a discussion of a single
symmetric flop, a discussion of infinitely many symmetric
flops, and finally infinitely many nonsymmetric flops.

A. Geodesics across nonsymmetric flops

Suppose a geodesic biðsÞ evolves across a nonsymmetric
flop X → X0 from a point p0 in the interior of KðXÞ to a
point p1 in the interior of KðX0Þ. The geodesic length Δτ is
nonzero but finite and the massless spectrum at the start and

FIG. 3. The mapping (in blue) into a single Kähler cone KðXÞ
of a constant volume geodesic (dashed line) which traverses an
infinite number of Kähler cones connected by symmetric flops.
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end point is identical. At p1 we expect a tower of light
states starting at e−ρΔτ, compared to p0 (and vice versa).
Checking this explicitly would typically require calculating
the massive spectrum for CY compactifications as a
function of the moduli bi as was done, for example, in
Ref. [15]. Such calculations are beyond the scope of
this paper.
The existence of a candidate tower of states is clear in the

situation when the effective cone contains only two Kähler
cones, KðXÞ and KðX0Þ, as shown in Fig. 4. Approaching
the boundaries of the effective cone corresponds in this
situation to a divisor shrinking down to a point, and a
wrapped M5-brane gives rise to an infinite tower of states.
The corresponding geodesic is shown in Fig. 4 (left), and
the volumes of the two boundary divisors are plotted in
Fig. 4 (right), making clear the exchange of two towers of
massive states in moving between p0 to p1.

B. Geodesics across symmetric flops

Next we consider a symmetric flop X → X0 with asso-
ciated involution generated byM. Suppose a geodesic biðsÞ
evolves from a point p0 ∈ KðXÞ across the flop to the
equivalent point p1 ¼ Mp0 ∈ KðX0Þ. Necessarily, the
(massless and massive) spectra at p0 and p1 are precisely
identical. Naively this appears to be in tension with the
distance conjecture.
While a picture analogous to Fig. 4 emerges, which

would also save the conjecture for finitely many symmetric
flops, the resolution in this case is a different one (and it
will also apply to the infinite symmetric flop chain). Note
that the Z2-symmetry relating KðXÞ and KðX0Þ translates
into a global Z2-symmetry of the 5D supergravity theory.
Since in quantum gravity all symmetries are conjectured to
be either gauged or broken [2,3], thisZ2-symmetry must be
gauged. Hence the moduli space is actually not the
extended Kähler cone KextðXÞ ¼ KðXÞ ∪ KðX0Þ but its
quotient, KextðXÞ=Z2, whose interior is isomorphic to
KðXÞ. Hence, the points p0 and p1 must strictly be
identified, and the shortest geodesic between p0 and p1

is the constant geodesic bðsÞ ¼ p0, rather than the one we
have originally considered. Hence, there is no tension with
the swampland distance conjecture. Note also that

consequently the bounce description of geodesic flops
discussed in the previous section is the physically correct
picture.
What is the origin of the gauging of the Z2-symmetry?

The answer is clear when the problem is phrased in the right
language. As discussed in Sec. II B, the threefolds X and X0
are isomorphic as smooth complex manifolds. In particular,
this means that X and X0 are related by a diffeomorphism,
which moreover maps a Kähler form J ∈ KðXÞ to the
corresponding Kähler form MJ ∈ KðX0Þ. As such, the
discrete global symmetries arising in compactifications
on manifolds admitting symmetric flops are part of the
diffeomorphism group of the compactification space, and
are hence remnants of the gauged diffeomorphism sym-
metry in ten-dimensional (10D) or 11D supergravity.

C. Geodesics across infinite flop chains

Generalizing the discussion from the previous subsec-
tion, we can consider an infinite flop chain X ¼ X0 →
X1 → X2 → � � � of isomorphic CYs Xa, and a geodesic
biðsÞ which moves across an arbitrary number of these
cones and connects equivalent points pa ∈ KðXaÞ.
In this case, the total geodesic length Δτ is unbounded

while the massless and massive spectrum is the same at
each point pa. Further, unlike the situation for a finite
number of symmetric flops, depicted in Fig. 4, there are no
boundary divisors at the end of the extended Kähler cone,
and hence there is no exchange of associated towers of
massive states along the geodesic.
The five-dimensional theory is invariant under the

infinite order discrete symmetry G and, from the above
discussion, we should think of G as a gauge symmetry.
Hence, the proper moduli space is KextðXÞ=G and the
interior of this space is isomorphic to KðXÞ. All the points
pa are identified underG and the geodesic under discussion
is, hence, no longer the shortest available. As before, a
conflict with the distance conjecture is avoided. It is also
worth noting that the original geodesic biðsÞ, as seen in the
quotient moduli space KextðXÞ=G, is described by the
oscillatory motion indicated in Fig. 3.
We can also consider an infinite flop chain which

contains a finite number of nonisomorphic CYs

FIG. 4. (Left): Constant-volume geodesic across a flop boundary. (Right): Behavior of the volumes of the boundary divisors DL and
DR during the geodesic motion.
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X1;…Xν, for example forming a repeating sequence (9). In
this case, taking the quotient KextðXÞ=G will reduce the
extended Kähler cone to a finite number of Kähler sub-
cones, KðX1Þ;…;KðXνÞ. As in the above case of ν ¼ 1,
after the identification there is a bound on the shortest
geodesic between any two points at constant volume.
However, checking consistency of the finite length geo-
desics with the distance conjecture would require calculat-
ing the massive spectrum for this compactification.

D. Infinitely many nonisomorphic flops

Finally, consider an infinite sequence of flops X1 →
X2 → � � � with all Xa (or an infinite number of them) not
isomorphic. Consider a geodesic biðsÞ which traverses an
arbitrary number of Kähler cones KðXaÞ, with a geodesic
distance Δτa in each. It might well be the case that the total
geodesic distance, obtained by summing the Δτa, is
unbounded. However, unlike in the case of isomorphic
CYs, there is no recourse to gauge symmetries to bound the
length of the geodesics. Then, the distance conjecture
implies the eventual appearance of (effectively) massless
states, while we know that the massless spectrum is
identical for each Xa.
This potential conflict with the distance conjecture can

be avoided if we assume that the Kawamata-Morrison
conjecture is true. In this case, flop chains containing an
infinite number of nonisomorphic CYs are expressly
excluded. Conversely, the Kawamata-Morrison conjecture
for CY threefolds follows from applying the swampland
distance conjecture to infinite flop chains, provided that the
geodesics traversing infinitely many Kähler cones indeed
have infinite length.

IV. CONCLUSION

In this paper, we have discussed the relation between
topological transitions, specifically flops, in string theory
and the swampland distance conjecture.
We were motivated by recent results [22,23] which show

that infinite chains of CY flops are not only possible but
are, in fact, a common feature of relatively simple con-
structions of CY manifolds. This suggests the existence of
geodesics across an arbitrary number of Kähler cones with
arbitrary lengths but an essentially unchanged spectrum, in
tension with the swampland distance conjecture.
To investigate this problem we have studied geodesics in

the vector moduli space of five-dimensional N ¼ 1 super-
gravity theories obtained from M-theory compactifications
on CY threefolds. We have found that the potentially
problematic geodesics across several—or indeed an arbitrary
number of—Kähler cones do exist. However, we argue that
in each case there is a way out of a conflict with the distance
conjecture, although the nature of the resolution depends on
the structure of the extended Kähler cone.

For a flop X → X0 between two nonisomorphic CYs,
finite but nonzero length geodesics connecting a point p0 ∈
KðXÞ with a point p1 ∈ KðX0Þ exist. However, while the
initial and final spectra may be similar, the flop transition
exchanges distinct towers of massive states, leading to
consistency with the distance conjecture.
For flops X → X0 between isomorphic CYs, there exist

geodesics which connect a point p0 ∈ KðXÞ with the
equivalent point p1 ∈ KðX0Þ having identical massless
and massive spectrum. For such cases we find a gauged
Z2-symmetry which identifies the cones KðXÞ and KðX0Þ
and the points p0 and p1 in particular. Hence, the shortest
path between p0 and p0 ¼ p1 corresponds to not moving at
all, trivially satisfying the distance conjecture.
For infinite flop chains X → X1 → X2 → � � � of isomor-

phic CYs Xa, the moduli space is obtained by taking the
quotient with an infinite discrete gauge symmetry G,
reducing it effectively to a single Kähler cone KðXÞ.
Thus, geodesics arbitrarily traversing many Kähler cones,
which can reach infinite length without the appearance of a
tower of states, are no longer the shortest ones and are,
hence, unproblematic. As a by-product we arrive at a
surprising picture for geodesic motion across symmetric
flops. We can think of such geodesics as “bouncing back”
from the flop boundary or, in the case of two flop
boundaries, as oscillating between them (see Fig. 3).
Infinite flop sequences X1 → X2 → � � � of nonisomor-

phic CYs might well constitute a problem for the distance
conjecture. However, such sequences are excluded, pro-
vided the Kawamata-Morrison conjecture holds. Turning
the argument around, the Kawamata-Morrison conjecture is
implied by the swampland distance conjecture, provided
that constant-volume geodesics of arbitrary lengths can be
constructed.
The results in this paper may be applied to type IIA

compactifications, but the following need to be taken into
account. In type II string compactifications on aCY threefold
X the Kähler moduli reside in h1;1ðXÞ four-dimensional
N ¼ 2 vector multiplets, but there are a number of compli-
cations. (i) The Kähler moduli are complexified by axions.
(ii) Instanton effects correct the prepotential κ and, hence, the
metric Gij. These effects become important for small curve
volumes. (iii) Nongeometric phases, described by abstract
conformal field theories, may arise beyond certain bounda-
ries of the Kähler cone which do not correspond to flopping
loci or boundaries of the effective cone. Our results can be
applied to IIA provided it can be argued that these compli-
cations can be neglected. Of course, the results only apply to
the subsector of IIA where axion dynamics have been
switched off (which can be done consistently). Further,
one must require that cycles either retain large volumes or,
if they become small, that they do not give rise to instanton
corrections and that the evolution stays away from non-
geometric phases.
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