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ABSTRACT
One of the primary sources of uncertainties in modeling the cosmic-shear power spectrum on small scales is the effect of baryonic
physics. Accurate cosmology for Stage-IV surveys requires knowledge of the matter power spectrum deep in the nonlinear regime
at the percent level. Therefore, it is important to develop reliable mitigation techniques to take into account baryonic uncertainties
if information from small scales is to be considered in the cosmological analysis. In this work, we develop a new mitigation
method for dealing with baryonic physics for the case of the shear angular power spectrum. The method is based on an extended
covariance matrix that incorporates baryonic uncertainties informed by hydrodynamical simulations. We use the results from 13
hydrodynamical simulations and the residual errors arising from a fit to a ΛCDM model using the extended halo model code
HMCode to account for baryonic physics. These residual errors are used to model a so-called theoretical error covariance matrix
that is added to the original covariance matrix. In order to assess the performance of the method, we use the 2D tomographic shear
from four hydrodynamical simulations that have different extremes of baryonic parameters as mock data and run a likelihood
analysis comparing the residual bias on Ωm and σ8 of our method and the HMCode for an LSST-like survey. We use different
modelling of the theoretical error covariance matrix to test the robustness of the method. We show that it is possible to reduce
the bias in the determination of the tested cosmological parameters at the price of a modest decrease in the precision.

Key words: cosmology: observations (cosmology:) large-scale structure of Universe

1 INTRODUCTION

One of the goals of modern cosmology is to uncover the nature
of dark matter and dark energy. Current and new instruments aim
at obtaining data with increasing quality and quantity. Surveys of
galaxies such as the Extended Baryon Oscillation Spectroscopic Sur-
vey (eBOSS1, eBOSS Collaboration et al. 2020) and the previous
phases of the Sloan Digital Sky Survey (SDSS, Blanton et al. 2017;
Eisenstein et al. 2011), the Hyper Suprime-Cam Subaru Strategic
Program (HSC-SSP2, Hikage et al. 2019), the Kilo-Degree Survey
(KiDS3, Heymans et al. 2021; Hildebrandt et al. 2017) and the Dark
Energy Survey (DES4, Abbott et al. 2018) have already delivered
an outstanding amount of results. And future surveys, such as the
Dark Energy Spectroscopic Instrument (DESI5, DESI Collaboration
et al. 2016), the Vera Rubin Observatory Legacy Survey of Space
and Time (LSST6, Ivezić et al. 2019), Euclid7 (Laureĳs et al. 2011)

1 www.sdss.org/surveys/eboss
2 hsc.mtk.nao.ac.jp/ssp
3 kids.strw.leidenuniv.nl
4 www.darkenergysurvey.org
5 www.desi.lbl.gov
6 www.lsst.org
7 www.euclid-ec.org

and the Nancy Grace Roman Space Telescope8 (Spergel et al. 2015)
will provide even more accurate information.

In order to extract cosmological information from these data it is
important to have an accurate theoretical modelling of the measured
observables. One of the key obstacles in the interpretation of weak
lensing measurements is the modelling of baryonic feedback at small
scales. For a recent review of the challenges of baryonic feedback
and relevant references see, e.g. Chisari et al. (2019).

State-of-the-art hydrodynamical simulations allow the study of
the impact of baryonic feedback galaxy-formation dynamics on the
matter power spectrum. However, these simulations can not predict
the behaviour of feedback processes from first principles and several
phenomenological parameters must be assumed. Therefore, there are
uncertainties in the predictions of baryonic feedback from these sim-
ulations since there is a range of different values for these parameters
that can be used.

The main methods used for mitigating baryonic uncertainties con-
sist on using the information from current cosmological hydrody-
namical simulations to:

8 roman.gsfc.nasa.gov
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• choose a scale ("scale-cut") below which one can not trust the
theoretical modelling of the power spectrum
(Krause et al. 2017);
• use principal component analysis to find the modes that are the
most significant in describing baryonic impacts and marginalize over
them (Eifler et al. 2015; Huang et al. 2021);
• construct self-calibrated phenomenological models that mimic the
baryonic effects in the structure of dark matter halos (Mead et al.
2015).
DES andHSChave chosen tomitigate baryonic uncertainties using

scale cuts to eliminate the impact of baryonic physics as modelled
by either the OWLS hydrodynamical simulations (van Daalen et al.
2011) in the case of DES (Krause et al. 2017), or by a modification of
the dark matter power spectrum due to the AGN feedback modelled
by a fitting function in the case of HSC (Hamana et al. 2020; Hikage
et al. 2019). KiDS, on the other hand, uses in their fiducial analysis
a baryon feedback parameter (Asgari et al. 2021).
In a recent study Huang et al. (2019) showed that in the case of

weak lensing for the LSST there are still residual errors using these
mitigation methods. In this paper, we aim to mitigate these residual
errors, particularly the ones arising from a likelihood analysis using
hydrodynamical simulations as input data and a theoretical model
using HMCode (Mead et al. 2015).
In order to develop a new mitigation method for the residual er-

rors in an LSST-like tomographic weak lensing survey, we adapt the
general statistical approach developed by Baldauf et al. (2016).This
method incorporates the effects of non-negligible theoretical uncer-
tainties in the covariance matrix, leading to a smooth suppression of
modes where these uncertainties are larger. This method was recently
applied for the case of unknown non-linear corrections in the matter
and galaxy power spectra in Chudaykin et al. (2021).
This paper is organized as follows. In section 2 we review the

theoretical modelling of the convergence power spectrum and its
gaussian covariance matrix. Section 3 presents the main ingredients
of a general proposal to include theoretical errors in a covariance
matrix proposed in Baldauf et al. (2016). In section 4 we adapt this
method to construct covariance matrices aimed at mitigating resid-
ual baryonic uncertainties using a set of hydrodynamical simulations
and their best fits from a likelihood analysis that employed HMCode
to model baryonic effects. In section 5 we perform a simulated like-
lihood analysis for an LSST-like weak lensing survey with different
covariancematrices and find that the extended covariancematrices in
fact result in an increased accuracy (less biased inferred cosmologi-
cal parameters) at the expense of a modest decrease in the precision
(larger error bars). We discuss our findings in section 6 and present
our conclusions in section 7.

2 CONVERGENCE POWER SPECTRUM AND ITS
GAUSSIAN COVARIANCE MATRIX

Here we are interested in the convergence angular power spectrum
between two tomographic bins i and j, Cijκκ(`) given in the Limber
approximation by:

Cijκκ(`) =
∫ χh

0
dχ
gi(χ)gj(χ)

χ2 Pm

(
`

χ
,z(χ)

)
(1)

where χ is the comoving radial distance between the observer and
the object, the lens efficiency gi(χ), in a flat cosmology, is written

for source galaxies with redshift distribution ni(z) as:

gi(χ)≡ 3ΩmH2
0

2c2a(χ)

∫ χh

0
dzni(z) (χ′(z)−χ)χ

χ′(z) Θ(χ′(z)−χ), (2)

with Ωm the matter density parameter, c the speed of light, a(χ)
is the expansion scale factor as a function of χ, H0 the Hubble
constant taken at the present day and Θ(χ′(z)−χ) is the Heavyside
step function. In this preliminary analysis we will not consider effects
such as bias corrections to shear and intrinsic alignments.

The Gaussian covariance of projected convergence power spectra
can be expressed as (Hu & Jain 2004)

CovG(Cijκκ(`), Cpqκκ(`′)) =
〈

∆Cijκκ(`)∆Cpqκκ(`′)
〉

= (3)

2πδ``′
A`∆`

[
C̄ipκκ(`)C̄jqκκ(`′) + C̄iqκκ(`)C̄jpκκ(`′)

]
,

with

C̄ijκκ(`) = Cijκκ(`) + δij
(σi)2

niA
, (4)

where A is the angular survey area, ∆` is the angular bin width (as
described in section 2), niA is the area density of galaxies in redshift
bin i andσ is the gaussian shape noise per component. For LSSTY10,
we adopt the requirements of The LSST Dark Energy Science Col-
laboration et al. (2018) with a survey area A of 14,300 deg2, shape
noise of σi = 0.26 andniA = 5.4 arcmin−2 for all bins. Furthermore,
we use a gravity-only model for the nonlinear 2-point function from
Takahashi et al. (2012) in CosmoLike (Krause & Eifler 2017), in
order to generate the analytical Gaussian covariance matrix.

The covariance matrix has contributions from a Gaussian part and
a non-Gaussian part composed of the connected 4-point (trispectrum)
contributions and super-sample covariance (Hu & Jain 2004; Krause
et al. 2017; Barreira et al. 2018). The Gaussian contribution is the
dominant one as seen in a χ2 analysis for DES-Y3 set-up (Friedrich
et al. 2020) and for stage-IV experiments (Barreira et al. 2018).
As an initial test of our mitigation method we will be interested in
incorporating errors from residual baryon effects in the Gaussian
covariance matrix.

3 MITIGATING UNCERTAINTIES WITH MODIFIED
COVARIANCES

In this section we briefly review the strategy described in Baldauf
et al. (2016) to model a general residual error as a gaussian random
variable that can be marginalized over resulting in an additional
contribution to the covariance matrix.

Let x be the data vector, and t the theoretical vector. The error vec-
tor e being the residual between the data vector and its corresponding
best-fit theory, with mean value ē. We assume e to follow a Gaussian
distribution

Pe ∝ exp
[
− 1

2(e− ē)C−1
e (e− ē)

]
, (5)

with a covariance matrix Ce given by

Cabe =
〈
ea eb

〉
− ēa ēb. (6)

In this section, for simplicity, we will use a and b as the indexes for
the angular bins. We parametrize

〈
ea eb

〉
as〈

ea eb
〉
≡ Ea ρabEb, (7)

where we introduced a quantity we call the envelope Ea =E(`a)

MNRAS 000, 000–000 (0000)
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and assume that the correlation coefficient ρab is Gaussian and it
depends only on the distance between two bins centered at `a and `b.
Thus,

ρab ≡ exp
[
− (`a− `b)2

2L2

]
. (8)

Hence, we can fully describe this mitigation approach by the
smooth envelope E(`) and the correlation length L, which speci-
fies the minimal scale of variation of the theoretical model.
Assuming a Gaussian likelihood, we can include the theoretical

error as

Le∝ exp
{
− 1

2

[
(x− t− e)C−1

d (x− t− e) +(e− ē)C−1
e (e− ē)

]}
,

(9)

where Cd is the usual data covariance matrix and Ce the error co-
variance matrix. We can marginalize the likelihood over the errors e
to obtain:

L ∝ exp
[
−1

2(x− t− ē)C−1(x− t− ē)
]
, (10)

with the augmented covariance matrix C given by

C = Cd+Ce. (11)

In the next section we will present our ansatz for the error covariance
matrix in the case of uncertainties arising from the modelling of
baryon physics.

4 MODELLING THE THEORETICAL ERROR
COVARIANCE

In this section we use 13 hydrodynamical simulations to model the
residual baryonic error from HMCode on the convergence angular
power spectrum of an LSST-like survey with the introduction of a
baryonic error covariance matrix, which we will denote in the fol-
lowing by CovBar. The 13 hydrodynamical simulations considered
in this work are: Illustris (Vogelsberger et al. 2014), Eagle (Schaye
et al. 2015), MassiveBlack-II (Khandai et al. 2015), Horizon-AGN
(Dubois et al. 2014), and the 9 different baryonic scnearios from the
OWLS simulation set (Schaye et al. 2010; van Daalen et al. 2011).
We compute the tomographic convergence angular power spec-

trum from Eq.(1) with an upper limit of `max ∼ 3000. Following
the Dark Energy Science Collaboration (DESC) requirements for
the LSST Y10 weak lensing analysis (Mandelbaum et al. 2018), we
consider 20 equally spaced logarithmic angular ` bins ranging from
20∼ 3000, for each tomographic spectra.

The matter power spectrum that enters Eq.(1) includes baryons
and nonlinear effects that we must account for. One widely used
method to take include these effects in the matter power spectrum is
to use a phenomenological halo model based approach implemented
in HMCode (Mead et al. 2015). This variant of the halo model uses
two physically motivated additional parameters: the halo bloating
parameter, η0, and the minimum halo concentration, A. Calibration
with the Cosmic Emu emulator obtained from the high resolution
gravity only (G) N-body simulations Coyote suite (Lawrence et al.
2010) yields A= 3.13 and η0 = 0.604. When varying the A and η0
parameters, one controls the halo-profile in a mass-dependent way
that reproduces different feedback processes from various baryonic
scenarios.
The HMCode can be used to reproduce the results from hydrody-

namical simulations. However, the results from best-fit parameters

Table 1. Parameters of the flat-ΛCDM cosmology adopted in this work.
Massless neutrinos were assumed.

Parameter Fiducial Prior
Ωm 0.3156 flat(0.2998 − 0.3314)
σ8 0.831 flat(0.789 − 0.873)
h0 0.6727 fixed
Ωb 0.0491685 fixed
ns 0.9645 fixed
w -1.0 fixed
τ 0.08 fixed

arising from a Markov Chain Monte Carlo analysis show residual
errors between the HMCode-generated power spectra and the power
spectra from simulations (Huang et al. 2019). We will mitigate these
residual errors, modelling them as gaussian variables that can be
marginalized, generating an augmented covariance matrix as re-
viewed in section 3.

There are several hydrodynamical simulations that include the
effects of baryons but they all depend on certain assumptions, such
as the intensity of baryonic feedback processes. We use the results
from Huang et al. (2019) who studied the spread in the predictions of
the 3D power spectrum from different hydrodynamical simulations to
assess the residual errors. We denote P δhydro the 3D power spectrum
output from a given hydrodynamical simulation.

One difficulty in comparing different simulations is that they do
not have the same input cosmology defined by the parameters that
we denote pco. In order to compare results for the same cosmology,
one adopts the following definition for the baryonic power spectra,
P δhydro:

P δhydro(k,z|pco) =
P δhydro, sim(k,z|pco,sim)
PG,sim
δ (k,z|pco,sim)

P δHMcode, G(k,z|pco).

(12)

where P δhydro, sim is the outcome from a given baryonic simulation at
some cosmology pco,sim and P δG,sim denotes the corresponding G
run. Finally, P δHMcode, G(k,z|pco), is the power spectrum calculated
from the HMcode calibrated by gravity only simulations. Thus we
are assuming that the baryonic physics contribution to the power
spectrum is independent of the input cosmologies pco,sim. This was
shown to be a good approximation in van Daalen et al. (2020) by
running hydro-simulations given the span of cosmology fromWMAP
2009 (Hinshaw et al. 2013) to Planck 2015 (Planck Collaboration
et al. 2016). Schneider et al. (2020) also showed that ignoring the
coupling between baryon and cosmology would be valid for future
stage IVweak lensing experiments.We adopt the fiducial flat-ΛCDM
cosmology shown in Table 1.

In order to compute the convergence angular power spectrum one
needs to project the 3D power spectrum into different tomographic
redshift bins. For the galaxy number distribution, we again DESC
requirements for the LSST Y10 weak lensing analysis (Mandelbaum
et al. 2018). Hence, we use the following parametric form for the
source redshift distribution n(z):

n(z)∝ z2 exp
[
−(z/z0)α

]
, (13)

where we set (z0,α) = (0.11,0.68) for Y10. Furthermore, the total
number density of galaxies is normalized as nA = 27 arcmin−2.

We take into account uncertainties in the photometric redshift
measurements by considering a Gaussian probability distribution for
a true redshift given a point measurement of a photometric redshift

MNRAS 000, 000–000 (0000)



4 Maria G. Moreira et al.

Figure 1.The redshift distribution of source galaxies for LSSTY10weak lens-
ing measurements (Mandelbaum et al. 2018). Dashed line: The true underly-
ing galaxy distribution following Eq. (13) normalised to nA = 27 arcmin−2.
Shaded areas: The redshift distribution of galaxies split into 5 tomographic
bins normalised to ni

A = 5.4 arcmin−2. The shades of blue are darker for
lower redshifts and lighter for higher redshifts.

zphot:

P (zphot|z)∝ exp
[
−(zphot−z)2/2σ2

z

]
, (14)

with a photometric redshift error of σz = 0.05(1 + z). The redshift
distribution in each photometric redshift bin ni(z) is then given by

ni(z) =
∫ z

(i+1)
phot

z
(i)
phot

dzphotn(z)P (zphot|z),

where the minimum redshift of the i-th tomographic bin, z(i)
phot, is

constructed such that each one contains an equal number density of
galaxies, niA = 5.4 arcmin−2. Furthermore the number of galaxies
per steradian in the i-th bin, niA is given by

niA =
∫ ∞

0
dzni(z).

The resulting five ni(z) tomographic distributions for the LSST
source samples are shown in Fig. 1. By construction, the sum of the
individual distributions equals the total

∑
in
i
A ≡ n

A.
With the galaxy redshift distributions in the five tomographic bins

we can proceed to model the residual errors of baryonic effects on the
convergence angular power spectrum. We compare the convergence
angular power spectra as obtained from a given hydrodynamical sim-
ulation with the best-fit HMCode results for that particular simulation.
An example of these residual errors for 13 different simulations is
shown in Figure 2, for the auto-correlations of redshift bins 0 and 4
in the same angular binning and scale-cut as the data-vector. One can
see that the spread of the errors decreases at higher redshifts, where
baryonic effects are less important.
In this work, we use the best-fit models generated by Huang et al.

(2019). These models are characterized by the best-fit values of A
and η0 and were obtained fromMarkov ChainMonte Carlo (MCMC)
runs, fitting the HMCode baryonic parameters to the 2D convergence
power spectra of the hydrodynamical simulations (considering the
3D power spectrum of Eq. (12)). We will now use these results to
model the two ingredients that enter the additional covariance matrix

due to themarginalization of the baryonic residual error: the envelope
and the correlation.

4.1 Modelling the envelope

Based on the residual errors for the angular power spectra and on
the assumption that the true angular power spectrum spectra (i. e.,
the one directly obtained from observations) lies among the range
of the hydrodynamical models, we decided to test three different
parametrizations for the envelope shown in Figure 2 that we call the
Mirror, 2Mirror and the Variance envelopes.

The Mirror envelope is a conservative definition. It takes the most
extreme deviations of the HMcode best-fit models and mirrors them
about the x-axis, hence the name Mirror envelope. This approach
overestimates the error amplitude, but guarantees that we are taking
all the possible deviations the baryonic error may present. Also, this
definition ensures the residual error, e, to have zero mean, ē = 0,
which leads to the additional baryonic covariance matrix:

CovBar(Cijκκ(`),Cpqκκ(`′)) = EijMirror(`) ρ
ij,pq(`,`′) EpqMirror(`

′)
(15)

with

EijMirror(`)≡ C
ij
κκ(`)

∣∣∣∣∣1− C
ij
HMcode model(`)
CijSim model(`)

∣∣∣∣∣
model=max

, (16)

where Cijκκ(`) on the right-hand-side follows a gravity only model,
just like the one used to compute the Gaussian covariance in Eq. (3).
we choose the boundaries of the envelope to be at the model that
presents the maximum deviation at that `. The absolute value makes
it explicit that the Mirror envelope is a symmetric function on the
`-axis. An even more conservative envelope, used to stress-test our
approach, is the 2Mirror envelope which consists in simply doubling
the Mirror envelope.

The Variance envelope, on the other hand, is a less conservative
approach which defines the envelope as the variance of the random
vector e. In this approach, we interpret the residual error from each
hydrosimulation as a realization of the random variable e. Hence, we
simply take the variance between the thirteen error curves and define
it as our envelope, as follows:

EijVar(`) = Cijκκ(`)

√√√√ 1
N

N∑
model

[
1−

CijHMcode model(`)
CijSims model(`)

− ē ij(`)
]
,

(17)

where N = 13 stands for the total number baryonic models being
considered here. In contrast with the mirror envelope, this definition
does not impose a symmetric envelope; in other words, the Variance
approach admits a non-zero mean value for the theoretical error,

ē ij(`) ≡
〈

1− Cij
HMcode(`)
Cij

Sims(`)

〉
and the baryonic error contribution to

the covariance matrix has to be changed accordingly:

CovBar(Cijκκ(`),Cpqκκ(`′)) = EijVar(`) ρ
ij,pq(`,`′) EpqVar(`

′)

− ē ij(`) ēpq(`′) (18)

Figure 2 shows the different envelopes for two redshift bins: the first
and the last ones. As expected, larger redshifts result in larger physical
scales for the same angular scale leading to a decrease in the baryonic
effects for a given angular scale. Notice that, as opposed to the
mirror model, the Variance envelope underestimates the covariance

MNRAS 000, 000–000 (0000)



Mitigating baryonic effects with a theoretical error covariance 5

Table 2. Evaluated tomographic values of the characteristic `-scale for resid-
ual baryonic errors, Lij , calculated in Eq. (21).

i
j 0 1 2 3 4

0 491 600 637 653 665
1 – 806 912 959 987
2 – – 1120 1241 1308
3 – – – 1483 1655
4 – – – – 2112

amplitude for the most extreme scenarios. For instance, the Illustris
simulation residual errors (red line) are left outside of the Variance
envelope for `& 100.

4.2 Modelling the correlation

The last ingredient to model is the correlation coefficient ρij,pq(`,`′)
that relates different redshift bins and Fourier modes of the error
covariance. We adopt the ansatz

ρij,pq(`,`′)≡Rij,pq exp
[
−(`− `′)2/2LijLpq

]
, (19)

that separates the redshift bin correlationsRij,pq from the correlation
of Fourier modes.
In this work we will model the effect on the covariance within

the same redshift bin pairs, neglecting cross-covariances induced by
baryonic effects in different redshift bin pairs, i.e. we assume:

Rij,pq = δipδjq. (20)

With this major assumption, we are including tomographic power
spectra that can fluctuate independently fromother tomographic pairs
as possible baryonicmodels.Wewill show that this ansatz is sufficient
to mitigate the baryonic uncertainties.
With a diagonal Rij,pq , the only parameter left to fully define the

theoretical error covariance is the correlation length of the baryonic
errors, Lij . We adopt

Lij = khalo 〈χ〉ij = khalo

∫
dχ χgi(χ)gj(χ)∫
dχ gi(χ)gj(χ)

, (21)

with khalo = 1.0h/Mpc being a typical halo scale for ρvirial = ρ200
and M200 ≈ 1013.5M�. The chosen halo mass input, M200 ≈
1013.5M�, wasmotivated by Takada&Bridle (2007). In their Figure
3, they show that, at non-linear scales, an expressive fraction of the
1-halo term contributions for the lensing effects comes from halos
with masses of≈ 1013.5M�. The calculated values ofLij using Eq.
(21) are shown in Table 2.

4.3 Full covariance

Finally, the full covariance is given by

Cov(Cijκκ(`),Cpqκκ(`′)) = CovG(Cijκκ(`),Cpqκκ(`′))δ`
′

`

+ CovBar(Cijκκ(`),Cpqκκ(`′)), (22)

where the Gaussian covariance matrix is given by Eq. (3) and is
analytically generated using CosmoLike (Krause & Eifler 2017) with
the LSST survey characteristics already discussed.
It is important to mention that shape noise starts to dominate the

gaussian covariance matrix, that is (σi)2/2niA >Ciiκκ(`) in Eq. (4),
for `& 600, in the last redshift bin. For closer redshift bins, the shape
noise is dominating for even smaller values of `.

In Figure 3 we show the fractional difference between the Gaus-
sian covariance matrix and the augmented covariance matrix (Gaus-
sian plus baryonic theoretical errors). For large ` (small scales), the
theoretical errors term has larger relative values and dominates the
uncertainties. In the following section, we study the impact of the
augmented covariance matrix on parameter estimation using a sim-
ulated likelihood analysis.

5 LIKELIHOOD ANALYSIS

In this section we present our analysis choices used to assess the
effectiveness of the proposed mitigation approach. In general lines,
the analysis methodology consists in the following steps:
(i) Take the lensing spectra predicted by one of the four hydrody-

namical simulations (Eagle, Illustris, MB-II and Horizon-AGN)
as mock data for our fiducial cosmology. These four simulations
are representatives of the different baryonic effects.

(ii) Use the nested sampling algorithm Multinest (Feroz et al.
2009) to fit the mock data to the HMCode model by varying two
cosmological (Ωm,σ8) and two nuisance parameters (A, η0) and
determine the statistical errors from the Gaussian covariance on
the cosmological parameters. This analysis does not include the
residual effects of the model.

(iii) Determine the HMCode bias with respect to the input cosmo-
logical parameters before the mitigation technique is applied.

(iv) Use Multinest to fit the mock data again to a model with
those same two cosmological and two nuisance parameters but
with the augmented covariance matrix proposed in the previous
section.

(v) Determine the final residual bias as the difference between this
second fit and the true values of the cosmological parameters
used in the mock data (specified in Table 1).

(vi) Compare the statistical degradation of the methods from the size
of the error bars in both cases.

In our analysis, we consider three sets of results for baryonic
mitigation: HMCode + Gaussian covariance matrix, HMCode + Mirror
covariance mitigation and HMCode + Variance covariance mitigation.
The 2Mirror covariance mitigation is used as a stress test of the
method for the Illustris and MassiveBlack-II simulations.

We assume a Gaussian likelihood for the tomographic two-point
measurements. The model predictions are computed with HMCode
and the final posterior distribution on cosmological parameters is
obtained with Multinest, implemented in CosmoSIS 9 (Zuntz et al.
2015).Weusenlive = 100 live points, efficiency of 0.01 and tolerance
of 0.01. We sample over the parameters {Ωm,σ8,A,η0} since we
want to concentrate on the cosmological parameters mostly affected
by baryonic effects.

The results of the posterior distributions for the four different co-
variance matrices are shown in Figures 4a and 4b for the Illustris
and MassiveBlack-II simulations. The dashed lines show the input
cosmological parameters (Ωm,σ8) together with the HMCode pa-
rameters (A,η0) determined from the best fit analysis for a given
simulation. For the Illustris simulations one can notice a significant
decrease in the bias for the cosmological parameters whereas for the
MassiveBlack-II simulations there is a less significant improvement.
This is probably due to the fact that Illustris has a stronger baryonic
feedback than MassiveBlack-II. It is also interesting to notice the

9 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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6 Maria G. Moreira et al.

Figure 2. The figures show the envelope’s behaviour, at redshift bins i, j = 0,0 (low-redshift, on the left) and i, j = 4,4 (high-redshift, on the right), with respect
to the set of 13 baryonic models (solid lines). The lighter shaded area presents the 2Mirror envelope definition; which doubles the size of the most extreme
scenarios and reflect them into the x-axis, ensuring a zero mean to the error variable. The intermediate grey area shows the coverage of the Mirror envelope. In
this definition, the covariance amplitude is assumed to follow the size of the most extreme scenario. Finally, the darkest area shows the Variance envelope. For
this definition, we take the standard deviation between all scenarios as the amplitude.

Figure 3. Fractional change in the diagonal elements of the covariance matrix (` = `′) due to the inclusion the the baryonic terms from the Mirror (left) and
Variance (right) envelopes.

effect of "saturation" of the theoretical covariance matrix by compar-
ing the results from the Mirror to the 2Mirror matrices: by becoming
very conservative one stops losing statistical power and hence the
areas of the ellipses do not change significantly. This is due to the
fact that the affected modes are already suppressed and further sup-
pression does not remove information. However, it is important to
point out that there is a slight difference between different choices of
the covariance matrix. This can be the most easily seen looking at the
2D posteriors for degenerate parameters, such as Ωm−σ8 panel in
Figure 4a. In this case the true cosmology for the most aggressive 1σ
envelope is slightly outside the 1σ contour. On the other hand, using
the more conservative Mirror covariance leads to unbiased results
for both cosmological parameters as well as for the best constrained

principal component. This is important to keep in mind, particularly
for combination with external data which have different degeneracy
directions.

The results for the 1D marginalized 68% error bars for the cos-
mological parameters (Ωm,σ8) are shown in Figure 5 for the four
simulations using three different covariance matrices for the anal-
yses (four for Illustris and MassiveBlack-II simulations). One can
see that by using improved covariance matrices modelling baryonic
uncertainties can help in reducing the bias on the determination of
cosmological parameters at a modest increase of the uncertainties.

MNRAS 000, 000–000 (0000)
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6 DISCUSSION

Our final results are summarized in Table 3, where we show the
68% error bars on the parameters Ωm, σ8, A and η0 for four simu-
lations and different covariance matrices and the amount of bias in
the cosmological parameters Ωm and σ8 measured in units of the
standard deviation. For Illustris andMassiveBlack-II, representatives
of extreme cases of baryonic parameters, we also present results with
the very conservative case of the 2Mirror envelope. We can think
of these augmented covariances from the Mirror and Variance en-
velopes acting in the data vector as a soft scale-cut. They gradually
reduce the weight of a data point for the overall analysis as we move
to scales with larger theoretical uncertainties.
Whereas the Mirror method performs a more conservative cut by

accounting for unrealistically strong feedback models in its error
amplitude, the Variance envelope considers the uncertainties on
modeling more realistic AGN suppression leading to a softer cut.
Figures 4a, 4b and 5 show the 2D and 1D constraints obtained
through these two approaches. We now discuss our results for the
different simulations according to the strength of AGN feedback.

Weak AGN model
We begin by discussing the performance of the HMCode-only anal-

ysis, without the mitigation of its residuals (named as ‘Gaussian’).
For the MassiveBlack-II (MB-II) data vector, the halo-bloating (η0)
and concentration parameters (A) alone successfully recover the
true cosmology. Even with only two free cosmological parameters,
which may increase the bias since the other parameters are kept
fixed, the best-fit values for both Ωm and σ8 are below the
∼ 0.4σ offset shift. This result is not unexpected if we recall
MB-II’s response function shown in Fig. 1 from Huang et al.
(2019). Consequently, applying the 2Mirror, Mirror and Vari-
ance methods to this well-modelled scenario does not significantly
affect the residual biases, which remains below the∼ 0.4σ deviation.

Strong AGN model
Fig. 5 shows the evolution of the marginalized bias, for mock data

based on Illustris, over increasingly conservative approaches (from
left to right). The blue bars represent the constraint obtained when
relying only on the HMCode mitigation parameters. When ignoring
A and η0 limitations on fitting complex dynamics, the residual bias
goes highly above the 2σ deviation for both Ωm and σ8, as depicted
in Table 3. However, studies on the HMCode residuals obtained a
different result from ours. Huang et al. (2019) obtained that, after
marginalizing over 6 wCDM cosmological parameters, the halo-
basedmodel effectivelymitigates the bias impact to less than 0.5σ for
the Ωm and σ8 1D posteriors. The discrepancy between our results
is likely due to our bias analysis being naturally overestimated by the
limited parameter space, especially on the w0 and wa parameters
with a strong correlation with Ωm and σ8

10.
The Variance covariance matrix (red bars) drastically reduces

the HMCode’s offset of Ωm from 3.9σ to 1.5σ, and σ8 from 2.7σ
to 0.7σ, as shown in Table 3. If focusing on the more conservative
method (grey bars) one sees that, in this extreme AGN model, the

10 Since w0 and wa are strongly correlated with Ωm and σ8, as we can see
from Huang et al. Fig. 4, keeping them fixed during the likelihood analyses
increases the information on the matter parameters posterior distributions.
That information gain leads to a tighter constraint on Ωm and σ8 and, thus,
on the overall bias.

(a) Posterior distributions for an Illustris data vector.

(b) Posterior distributions for a MassiveBlack-II data vector.

Figure 4. Comparison of the posterior distributions for the cosmological
(Ωm,σ8) and nuisance parameters (A,η0) among different mitigation co-
variances. The colors represent different covariance matrix model: gaussian
contributions only (blue), Mirror envelope (grey), 2Mirror (green) and Vari-
ance envelope (red) taking the Illustris (left) and MassiveBlack-II (right)
simulations as the input data vector. The dashed lines show the input cosmo-
logical parameters (Ωm,σ8) together with the HMCode parameters (A,η0)
determined from the best fit analysis for the simulations.

larger covariance amplitude pays itself in the bias mitigation: the
offset of both cosmological parameters is less than the marginalized
statistical uncertainty.

Intermediate AGN models

MNRAS 000, 000–000 (0000)
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Figure 5. Results for the 68% error bars for the cosmological parameters Ωm and σ8 for different data vectors from 4 hydrodynamical simulatiosn using three
different covariance matrices (4 in the case of Illustris and MassiveBlackII) in a nested sampling analysis of the posterior. Dashed lines are the input parameters.

Table 3. Summary of the results from simulated likelihood accuracy tests. In columns 3-6 we give the best-fit posterior values as well as the 68% confidence
interval for two ΛCDM cosmological and nuisance parameters of the HMCode (Ωm and σ8; A and η0). Columns 7-8 presents the offset between the best-fit
values and the fiducial ones. This offset is quantified in terms of the 68% confidence interval, i.e., the 1σ interval size of that constraint.

Baryonic Covariance 68% limits Bias
data vector Matrix Ωm σ8 η0 A Ωm σ8

Horizon-AGN Gaussian 0.3192 ± 0.0018 0.8267 ± 0.0024 0.601+0.015
−0.018 2.54+0.13

−0.16 2.00σ 1.79σ
Gauss. + Mirror 0.3154 ± 0.0026 0.8316+0.0040

−0.0036 0.587 ± 0.033 2.51 ± 0.32 0.08σ 0.16σ
Gauss. + Variance 0.3164 ± 0.0024 0.8304 ± 0.0034 0.600 ± 0.021 2.64 ± 0.19 0.33σ 0.18σ

ILLUSTRIS Gaussian 0.3082 ± 0.0019 0.8382 ± 0.0027 0.764 ± 0.017 2.14 ± 0.13 3.89σ 2.66σ
Gauss. + 2Mirror 0.3139 ± 0.0027 0.8326 ± 0.0036 0.816 ± 0.046 2.33+0.36

−0.42 0.63σ 0.45σ
Gauss. + Mirror 0.3137 ± 0.0025 0.8321 ± 0.0036 0.819 ± 0.036 2.40+0.29

−0.34 0.76σ 0.31σ
Gauss. + Variance 0.3122 ± 0.0023 0.8334 ± 0.0033 0.780 ± 0.022 2.11 ± 0.16 1.50σ 0.73σ

EAGLE Gaussian 0.3175 ± 0.0024 0.8279 ± 0.0031 0.570+0.016
−0.015 2.52+0.13

−0.15 0.79σ 1.00σ
Gauss. + Mirror 0.3148 ± 0.0025 0.8317 ± 0.0037 0.569 ± 0.034 2.56 ± 0.33 0.32σ 0.19σ
Gauss. + Variance 0.3153 ± 0.0022 0.8308 ± 0.0032 0.572 ± 0.020 2.63+0.16

−0.18 0.13σ 0.06σ
MassiveBlack-II Gaussian 0.3150 ± 0.0019 0.8308 ± 0.0026 0.620 ± 0.016 3.56 ± 0.18 0.32σ 0.07σ

Gauss. + 2Mirror 0.3147+0.0033
−0.0031 0.8314+0.0045

−0.0043 0.631+0.057
−0.052 3.63+0.72

−0.62 0.28σ 0.09σ
Gauss. + Mirror 0.3148 ± 0.0026 0.8313 ± 0.0038 0.630 ± 0.032 3.66 ± 0.39 0.31σ 0.08σ
Gauss. + Variance 0.3149+0.0021

−0.0025 0.8312 ± 0.0033 0.612 ± 0.018 3.37 ± 0.19 0.30σ 0.06σ

Fig. 5 shows the marginal 1D distributions for the analysis based
on AGN models that are not as underestimated as MB-II and not as
unrealistically strong as Illustris. For the Horizon-AGN, both Mirror
and Variance covariances are effective in reducing HMCode’s residual
error below the 0.4σ shift for our setup. Themirror ismore successful
in reducing the bias of both parameters: reaching a 0.1σ shift for Ωm
and 0.2σ deviation for σ8. Compared with the Variance envelope, the
Mirror approach degrades the 1D error of σ8 by 17% to gain 10% on

the accuracy. For Ωm, the loss in statistical power, 8%, compared to
Variance statistics, is compensated by a 76% accuracy improvement.

We can understand Variance and Mirror’s different performances
with Horizon-AGN by recalling the shape of their covariances ampli-
tudes from the left panel of Fig. 2. We can see that, for tomographic
bins i = 0 and j = 0, the model’s physics becomes underestimated
as we move to beyond `= 1000. On the other hand, the top left panel
shows that the Mirror approach’s amplitude has no problems with
covering the same physics, leading to higher effective accuracy.

MNRAS 000, 000–000 (0000)
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For the EAGLE based analysis, HMCode fitting approach alone
is effective enough to keep the bias within the 1σ statistical uncer-
tainty for one marginalized cosmological parameter. Furthermore,
our residual mitigation methods improve the HMCode model accu-
racy on both Ωm and σ8 from 0.8σ and 1.0σ, respectively, to less
than 0.2σ (0.4σ) for the Variance (Mirror) approach.

Compared to the Gaussian method, in which we only rely on
the HMCode mitigation, the Mirror method increases the error bar
by 4% and 19% for Ωm and σ8, respectively. Whereas for our
less conservative mitigation covariance, the Variance method, the
constraint on σ8 degrades just by 3% and it shrinks for Ωm by 8%.
The first thing we can comment about these results is that both
Mirror and Variance methods accuracy overcompensates the loss in
precision, which means that they can extract more information from
the likelihood analysis for the EAGLE scenario. Finally, we can see
the gain of 8% in statistical power in Ωm, from the 1σ analysis, even
though we would expect the modified covariance matrix to degrade
the cosmological constraints, as a consequence of the non-linear
relation between the data covariance matrix and the posterior 1D
distribution on the cosmological parameters.

To summarize, our modified covariance models (Mirror and Vari-
ance) are successful in improving the HMCode information gain in the
cosmic-shear likelihood analysis. For the "strong" and "intermedi-
ate" baryonic scenarios (Horizon-AGN, ILLUSTRIS, and EAGLE),
the accuracy refinement of our method dramatically outweighs the
loss in statistical power of the tested cosmological parameters (com-
pared to the Gaussian analysis). The MassiveBlack-II scenario is the
only exception in which our mitigation method does not seem to be
necessary because it is already well-modeled by the HMCode free
parameters alone.

7 CONCLUSIONS

Baryonic physics can significantly affect the theoretical modelling of
the matter power spectrum in the small-scale regime. Therefore mit-
igation methods have to be developed and tested to properly take this
source of uncertainty into account. In this work we focused on the
mitigation of the baryonic effects using as an example the shear angu-
lar power spectrum in an LSST-like survey. We propose a mitigation
method to decrease the bias in the determination of cosmological
parameters due to residual errors in the baryonic modelling that uses
the halo model-based HMCode (Mead et al. 2015)11. This method is
based on an extended covariance matrix that incorporates baryonic
uncertainties informed by hydrodynamical simulations.
The extended covariance matrix is constructed using the residual

errors in the best-fit modelling of 13 hydrodynamical simulations us-
ing HMCode. We interpret these residual errors as a random variable
and integrate over them to obtain the extended covariance matrix.
Nevertheless, there is some freedom in this interpretation and there-
fore we studied three different possibilities for what is called the
envelope of the residual errors: the Mirror, Variance and 2Mirror
envelopes. Although, we do not provide the ultimate prescription for
how to robustly estimate the envelope of the theoretical error, the

11 During the completion of this work a new version of HMCode was re-
leased (Mead et al. 2021). This new version includes gas expulsion by AGN
feedback and encapsulates star formation. Different, more physical parame-
ters are introduced. The study of the consequences of the new code to our
analysis is beyond the scope of the present work.

results from Fig. 5 and Table 3 show that the use of these extended
covariance matrices can lead to a significant reduction in the bias of
the estimated cosmological parameters at the cost of a small increase
in the uncertainties in the parameters. The proposed choices about
baryonic errors are still very dependent on the set of simulations. How
to optimize theoretical error without unnecessarily down-weighting
any data points and in an as model-independent way as possible
remains one of the main open questions that deserves more investi-
gation in the future. Finding the answer is the key for having a truly
robust analysis with reliable error bars on cosmological parameters.

It must be also emphasized that the presented analysis is a first ex-
ploratory investigation, as many simplifications were assumed such
as a reduced space of cosmological parameters, neglecting non-
gaussian contributions to the fiducial covariance matrix and not in-
cluding other sources of systematic effects, e.g., intrinsic alignments.

Our results are encouraging since for the scenarios studied in this
paper, the reduction in the residual bias consistently compensates
for the increase in the statistical error. Furthermore, the proposed
method is easy to implement and computationally inexpensive, pro-
viding an interesting alternative to the more conservative scale-cut
methods. We conclude that mitigation method for baryonic uncer-
tainties described here is a promising and viable option for analyzing
data with the quality level expected at the future surveys like LSST
and it deserves further investigation.
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