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Abstract. Generative models, and Generative Adversarial Networks (GAN) in
particular, are being studied as possible alternatives to Monte Carlo simulations.
It has been proposed that, in certain circumstances, simulation using GANs can
be sped-up by using quantum GANs (qGANs).
We present a new design of qGAN, the dual-Parameterized Quantum Circuit
(PQC) GAN, which consists of a classical discriminator and two quantum genera-
tors which take the form of PQCs. The first PQC learns a probability distribution
over N-pixel images, while the second generates normalized pixel intensities of
an individual image for each PQC input.
With a view to HEP applications, we evaluated the dual-PQC architecture on
the task of imitating calorimeter outputs, translated into pixelated images. The
results demonstrate that the model can reproduce a fixed number of images with
a reduced size as well as their probability distribution and we anticipate it should
allow us to scale up to real calorimeter outputs.

1 Introduction

The next High Luminosity Large Hadron Collider (HL-LHC) phase will collect an overwhelm-
ing amount of data, with complex physics and small statistical error. To analyse this data,
high precision methods which use only limited resources are needed. Traditional Monte Carlo
based simulation, such as Geant4 [1, 2] and the GeantV prototype [3] for full simulation of
particle transport, is however very time-consuming, therefore new approaches using deep
neural networks have been studied for fast simulations.

Generative Adversarial Networks (GAN) [4] are a strong candidate for such fast simula-
tions. Based on two neural networks, generator and discriminator, trained alternatively, GANs
have been widely explored thanks to their ability to generate images with complex structures
at much high speed. In HEP, the variations of GAN, such as CaloGAN [5] and 3DGAN [6],
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have achieved similar performance as full Monte Carlo based simulation, but with reduced
time taken.

At the same time, quantum computing has emerged as another important pillar in modern
research attracting the attention of many researchers due to its potential to execute certain
tasks with an exponentially reduced amount of resources both in time and space compared
to classical processors [7]. It has already shown promising results in various fields, such as
optimization [8, 9] and cryptography [10].

Advances in both deep learning and quantum computing suggest to merge them to benefit
their advantages at once, leading to a new field of study, so-called Quantum Machine Learning
(QML). Quantum Generative Adversarial Networks, which are the quantum version of GANs,
are one of its examples. Several quantum GAN models have been investigated in the last few
years, but the scientific community still confronts a need to further explore in order to apply
the model to more realistic use-cases.

In this paper, we propose for the first time a Dual Parameterized Quantum Circuit GAN
model (dual-PQC GAN model) as one of the improvements to overcome the remaining
limitations of quantum GANs. This model uses two parametrized quantum circuits, which
share the role of a single quantum generator: the first PQC learns the distribution over image
samples, while the second PQC determines the amplitude distribution over pixels on a single
image. Thanks to this separation, it is possible to exploit the continuous nature of probability
distributions over output states in quantum circuits to represent continuous variables.

This paper is organized as follows. Section 2 summarizes the application of Generative
Adversarial Networks in HEP. We then present a short overview of a quantum version of
GAN in Section 3. In Section 4 and Section 5, the first prototype of a dual-PQC GAN model
is proposed, with the results of its simulation. This paper concludes with Section 6, which
summarizes and gives an outlook of future works.

2 Applications of GANs in HEP

GANs, designed by I. Goodfellow et al. in 2014 [4], are deep generative models which aim to
reproduce new data from a given original training set. They are characterized by two deep
neural networks, Generator G and Discriminator D, which are trained alternatively. During
the training, G progressively generates data similar to the real one, while D increases the
probability of assigning the correct labels to both real and fake data. Numerous improvements
have been made since the initial proposal and, in particular, GANs have achieved remarkable
success in image processing and generation, via variations such as Deep Convolutional GAN
(DCGAN) [11], Auxiliary Classifier GAN (ACGAN) [12], Progressive GAN [13], etc.

The evolution of GANs has attracted strong interest in the high energy physics domain. In
HEP, the detectors can be described as 3D cameras, recording pictures of particle collisions.
Calorimeters, in particular, measure the energies deposited by a shower of the particles that
traverse them. They generally consist of alternate arrays of active sensor material and passive
dense layers to ensure that the incoming (primary) particle will deposit most of its energy
inside their volume. These energy depositions can be compared to the monochromatic pixel
intensities of a 3D image. Because of their high granularity, the detailed simulation of a
calorimeter is particularly time-consuming. As a result, GANs come into the limelight to
allow fast simulation of particle showers with high fidelity.

One possible application of GAN in HEP is 3DGAN [6, 14], which is a 3D extension
of GAN, using 3D (de-)convolutional layers to capture the whole 3D energy profile. It
simultaneously performs two additional tasks of estimating the incoming particle energy and
measuring the total deposited energy to enhance the stability and convergence of networks.
Details on 3DGAN architecture and its performance validation are available in [6].
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Details on 3DGAN architecture and its performance validation are available in [6].

3 Quantum Generative Adversarial Networks

The possibility of combining machine learning and quantum computing also led to the general-
ization of GAN to quantum systems by S. Lloyd and C. Weedbrook [15]. The main mechanism
of the model, the adversarial training, is reproduced, but different scenarios are possible: the
input data can be either quantum data or classical data embedded in quantum states and the
discriminator/the generator can also be either classical or quantum.

Since its initial proposal, several quantum GAN (qGAN) variations have been suggested
to generate either classical data [16–18] or quantum data [19–22]. Zoufal et al [16] proposed
a hybrid qGAN model composed of a quantum generator and a classical discriminator to train
on classical data. During the training, the generator learns an arbitrary probability distribution
over discrete variables, which is encoded in the amplitudes of the final quantum state. This
model was applied of quantum finance, and demonstrated using the real quantum hardware,
IBM Q Boeblingen. Anand et al [23] also present similar results, but simulated on the real
Rigetti quantum hardware, Aspen-4-2Q-A. Unlike the aforementioned models treating classical
data, Situ et al [18] propose a qGAN model which aims to approximate an unknown pure
quantum state with a quantum generator and a quantum discriminator. One problem with
quantum machine learning models is the apparent difficulty of training PQCs, captured by
the vanishing gradient and barren plateau problems. Fortunately, there have been also studies
on the methods to improve the performance of qGAN, for instance, Quantum Multiplicative
Matrix Weight (QMMW), which helps to avoid mode collapse or vanishing gradient problem
in qGAN [24].

The results from the previous research are impressive, showing the potential of qGAN for
the near-term quantum hardware. However, additional investigations are needed in order to
fully understand the quantum advantages of qGAN and generate not only simple probability
distributions but also more complex image samples.

4 Dual-PQC GAN model

Our preliminary experiments involved training a qGAN, as conceptualised in [16], for the
calorimeter problem – however this immediately revealed a problem: as the image itself is
encoded in the amplitudes of the computational basis states, this meant that only the average
of all the training samples could be learned, and the GAN did not, therefore, sample typical
images. To put this in more precise terms, in order to achieve the exponential compression
of representing a N = 2n pixel image using n qubits, it follows that the qGAN prepares a
quantum state of the form:

|ψ〉 = ∑2n−1
j=0

√
I j | j〉 (1)

Initialization layer 1 layer k

. . .

. . .

. . .

Ry(φ0
0) Ry(φ0

1) Ry(φ0
k)

Ry(φ1
0) Ry(φ1

1) Ry(φ1
k)

Ry(φ2
0) Ry(φ2

1) Ry(φ2
k)

Figure 1: Quantum variational form using Pauli-Y rotations and CZ gates with depth k.

3

EPJ Web of Conferences 251, 03050 (2021) https://doi.org/10.1051/epjconf/202125103050
CHEP 2021



where I j is the intensity of the jth pixel. So we can see that, in a sense, the qGAN encodes
a single image as a probability distribution, and so there is no room left to also encode a
probability distribution, representing the full dataset, to sample images from. This problem
does not arise in classical GANs, where a single sample from a O(N) sized neural network
generates a single image in one go.

In this section we describe our solution, a new type of quantum GAN, the dual Parame-
terized Quantum Circuit (PQC) GAN model (dual-PQC GAN model). It aims to reproduce a
set of image samples from real training data while preserving the exponential compression
achieved by amplitude encoding. The work in [25] follows from similar motivation.

The dual-PQC GAN is a hybrid qGAN architecture which has one classical discriminator
and two parameterized quantum circuits, PQC1 and PQC2, sharing the role of the generator.
PQC1, with n1 qubits, learns the probability distribution over image samples and PQC2,
with n2 qubits, learns the amplitude distribution over pixels of each image. The classical
discriminator takes the training set and the images generated by PQC2, and it classifies
them into real and fake. The predicted labels are used to tune alternatively φ1, φ2 and θ, the
parameters for PQC1, PQC2, and the discriminator, respectively.

In this study, both PQCs consist of alternating layers of single-qubit Pauli-rotations and a
set of two-qubit entanglement gates, as shown in Fig. 1 It is widely used in quantum machine
learning thanks to its strong expressive power, offering an effective way of reconstructing an
expected behaviour [26, 27]. We use RY rotation gates and CZ entanglement gates, but other
choices are possible.

Fake Data
by sampling

Classical
Discriminator

Real Data

Predicted
Labels

Discard

|0〉 , ..., |2n1 − 1〉

|0〉⊗n2−n1

PQC1
n1 qubits
depth dg,1

PQC2
n2 qubits
depth dg,2

n2 − n

n

n2 − n1

n1

Classical Optimization

Figure 2: Schematic Diagram of dual-PQC GAN to reproduce images of 2n pixels.

Consider a training set X ⊂ R2n
of N = 2n pixel images. To begin, the output state of

PQC1 is measured producing n1 bits. Then, via a set of Pauli-X gates, this bit string is used
to initialise PQC2 with the corresponding computational basis state in the 2n1 dimensional
Hilbert space, |i〉 ∈ {|0〉 , ..., |2n1 − 1〉}. By repeatedly measuring n output qubits of PQC2, we
finally construct the probability distribution over the computational basis in the 2n dimensional
Hilbert space. This distribution is interpreted as an image of size 2n for each input state.

Note that since PQC2 performs a unitary operation, and since its inputs are always
computational basis states, the output quantum states are necessarily orthogonal. This puts an
unwanted restriction on the possible images. Relying on the Stinespring dilation theorem, we
can remove this restriction by choosing n2 > n1, n and using some ancilla qubits which are
discarded at the end. We will return to this point at the end of the section.

Let pi
g be the probability that state |i〉 is measured by PQC1; let Ii denote the normalized

image produced by PQC2 when given the input state |i〉; and let Ii j be the amplitude of jth
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Let pi
g be the probability that state |i〉 is measured by PQC1; let Ii denote the normalized

image produced by PQC2 when given the input state |i〉; and let Ii j be the amplitude of jth

pixel of Ii with i ∈ {0, ..., 2n1 − 1} and j ∈ {0, ..., 2n − 1}. Then the output states generated by
PQC1, G1,φ1 , and PQC2, G2,φ2 , are explicitly given as :

G1,φ1 |ψinitial〉 =
∣∣∣g1,φ1

〉
=

2n1−1∑
j=0

√
p j
g | j〉 , (2)

G2,φ2 |0〉 |i〉 =
∣∣∣g2,φ2

〉
=

2n−1∑
j=0

√
Ii j

∣∣∣Ψ j

〉
| j〉 (3)

where |ψinitial〉 is the input state of PQC1 fixed during the whole training and
∣∣∣Ψ j

〉
are some

n − n2 qubit states that we discard.
During the training, PQC1 learns the distribution pg(i) over Ii, so that it approaches to the

real distribution, preal over X. On the other hand, PQC2 learns the amplitude over 2n pixels
for 2n1 images, to make Ii as close as possible to real images. At the end of the training, the
true/fake probabilty predicted by the discriminator for Ii, D(Ii) should converge to 1/2.

For the following simulations, we use a modified min-max loss, given as:

LG = −
1
m

m∑
i=1

log D(G(zi)) = −
2n1−1∑

i=0

pi
g log(D(Ii)) (4)

LD =
1
m

m∑
i=1

[
log D(xi)+ log(1 − D(G(zi)))

]
=

1
m

m∑
i=1

log D(xi)+
2n1−1∑

i=0

pi
g log(1 − D(Ii)), (5)

where m is the batch size, xi the real data and zi random input. The first equality gives the
definition of the loss in the classical GAN and the second equality the practical formula used
in dual-PQC GAN simulations.

Based on the calculated loss, the parameters in the quantum generator are tuned by
computing the analytic quantum gradient descent [28], while the discriminator is optimized
in the exactly same way as in classical GAN. Further details on the method used for analytic
quantum gradient are explained in Ref. [29, 30].

Ultimately, the dual-PQC GAN model can generate 2n1 images of size 2n. Increasing the
number of qubits used in PQC1 and PQC2 allows to increase both the number and size of
produced images. This model shows an advantage in terms of computational resources by
using only O(log(N)) qubits, compared to the classical neural networks with O(N) neurons
to reproduce an image of size N. Specifically, the potential advantages are threefold: firstly,
there is an exponential reduction in space (memory) requirement; secondly, the resultant
exponential reduction in number of tunable parameters (i.e. the number of tunable parameters
is proportional to the number of gates in the PQC or neurons in the classical neural network)
suggests that training could be performed more efficiently; finally, it is potentially advantageous
to have the images encoded in quantum states if further processing is to be performed (for
example if that image processing can itself be performed more efficiently using quantum
computing). It should, however, be noted that if all one wants to do is to generate an image,
then the number of samples required from PQC2 is exponential in the number of qubits.

How many ancillas are needed?

Since we want to be able to reproduce any collection of images, we have to use some ancillary
qubits. Stinespring’s theorem gives an upper bound on the number of ancillas but it is not tight.
We will now show that n2 = 2n will suffice when we assume for simplicity that n1 = n.
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Let U denote the unitary matrix corresponding to PQC2. When U is applied to the input
state |0〉⊗n ⊗ |i〉, where |i〉 is an n-qubit basis state, the resulting state is always one of the
columns of U; in particular it always one of the first 2n columns. We’ll construct an example
of U which realises 2n arbitrary images. Let

|Ii〉 = (
√

Ii,0eiφi,0 , . . . ,
√

Ii,0eiφi,0 )T

be a state whose amplitudes encode the pixels of image i. Consider the state |U(i)〉 = |i〉 ⊗ |Ii〉,
and observe that if its first n qubits are measured in the computational basis and discarded, then
the remaining quantum state is precisely |Ii〉. Since 〈U(i)|U( j)〉 = δi j, ie, they are orthonormal,
we can construct the required unitary matrix, U, by setting the first 2n columns to be |U(i)〉 for
i ∈ {0, . . . 2n − 1} and choosing the remainder arbitrarily. Since these columns correspond to
states which will not be selected by any input to PQC2, they don’t matter. It should be noted
that it is unlikely that the trained dual-PQC GAN would actually converge on unitaries of such
a form, and thus this construction is given merely to demonstrate that 2n qubits suffice; further
improvements are surely possible.

5 Training dual-PQC GAN

This section tests dual-PQC GAN described in Section 4 using qiskit statevector simulator
and shows its potential to generate a set of image samples from a training set with a certain
degree of fidelity. Note that no explicit measurement of qubits has been performed, as we are
only using the theoretical statevector simulator. We emphasize that, in order to work with a
manageable number of qubits, this study simplifies the original 3DGAN problem by reducing
it to a 1D problem: reproducing the energy pattern along the calorimeter depth. In other words,
the training dataset is composed by 1D energy profiles along the calorimeter z dimension,
averaged over N = 4 pixels. It should be noted that such drastic reductions in problem size
are common-place in quantum machine learning, in order to obtain useful proof-of-principle
results.

In order to evaluate the performance of the model, the original data set of 20,000 sample
images is classified into 2n classes of via K-means clustering [31] as shown on Fig. 3a for the
case n = 2. The average image for each class, displayed on Fig. 3b, gives an insight on the

(a) (b)

Figure 3: Classification of 20,000 normalized real image samples (only 100 samples displayed)
into 4 classes via K-means clustering [31] (a) and their average (b). The mean image of Set i
is assigned to a computational basis state |i〉.
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Figure 3: Classification of 20,000 normalized real image samples (only 100 samples displayed)
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shape of images which should be produced by PQC2. Note that this clustering is purely for
evaluation of results - raw data are used for the training.

Although, theoretically, it is sufficient to take n1 = n = 2, several preliminary simulations
have shown that n1 = 2n = 4 gives better stability in the results. Therefore, for the following
simulations, PQC1 takes n1 = 4 but still builds a probability distribution over 22 = 4 images,
by only measuring n = 2 qubits among four. PQC1 is initialized with an equiprobable
superposition over the computational basis, {|0〉 , ..., |2n1 − 1〉} with n1 = 4. Furthermore, the
initial parameters for both PQC1 and PQC2 are sampled from a uniform distribution over
[−δ, δ], with δ = 10−1. δ close to zero was chosen as we found this to speed up convergence.
The discriminator is implemented in PyTorch, using an input layer with 4 nodes, two hidden
layer with 256, 128 nodes, respectively, and a single node output layer. After the first two
layers follows a Leaky ReLU function [32] with α = 0.2 and a sigmoid function [33] is applied
after the output layer. In addition, a gradient penalty [34] for real images is added to help
stability and convergence of the model, with the parameters λ = 7, k = 0.01 and c = 1. The
dual-PQC GAN is trained using the AMSGRAD optimizer with initial learning rate of 10−4

for PQC1 and discriminator and 10−3 for PQC2.

(a) (b) (c)

(d) (e) (f)

Figure 4: Results of dual-PQC GAN simulations with n = 2, n1 = n2 = 4, dg,1 = 2 and
dg,2 = 6 (a, b, c) / dg,2 = 16 (d, e, f). The mean image amplitudes calculated by Eq.(6) (a,d),
the generator and the discriminator losses (b, e), and the progress in relative entropy for the
mean image (c,f) are illustrated.

Fig. 4 displays progress in the loss functions and relative entropy, as well as the average of
generated images at the end of the training, weighted with their probability, given by:

Imean =
∑2n−1

i=0 pi
g · Ii. (6)

Both cases of dg,2 = 6 and dg,2 = 16 exhibit convergence in mean energy distribution
towards the target, as well as convergence of generator and discriminator losses. Furthermore,
the relative entropy between real and generated mean images reaches below 10−4 as shown on
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Fig. 4c and Fig. 4f. Note that after the convergence in loss function, the relative entropy does
not cease decreasing in case of dg,2 = 16, while it starts to oscillate with large amplitude in
case of dg,2 = 6, reflecting certain degree of instability in the simulation.

As an analysis on the mean images is not enough to validate the GAN result, it is necessary
to evaluate the individual images produced by PQC2 as well as the probability distribution
generated by PQC1. The images generated by PQC2 with dg,2 = 16, displayed on Fig. 5c, are
similar to the mean real images shown in Fig. 3b with the peaks at x = 2 or x = 3. On the
other hand, those generated by PQC2 with dg,2 = 6 on Fig. 5a contain two images, I0 and I2,
which are far from the real image profile.

The probability distribution generated by PQC1 can explain this discrepancy. As shown
on Fig. 5b, the weights for I0 and I2 are negligible compared to those for I1 and I3, meaning
that their labels, produced by the classical discriminator, are suppressed in the loss function
given by Eq.(4). Therefore, the mean images and the generator loss could converge to the
correct value, despite considerable errors in the produced images themselves. Contrarily, in
case of dg,2 = 16, the probability on Fig. 5d implies that all 4 images have non-negligible
weights, thus leading to consistency between the quality for the mean and individual images.
This result certainly highlights the importance of choosing a correct structure of dual-PQC
GAN model in order to prevent any bias during training.

(a) (b) (c) (d)

Figure 5: Images generated by PQC2 (a,c) and its distribution obtained from PQC1 (b,d) with
n = 2, n1 = n2 = 4 and dg,1 = 2, but with different dg,2 : 1) dg,2 = 6 (a,b), 2) dg,2 = 16 (c,d).
Although the mean images shown on Fig. 4 are close to the real value in both cases, PQC2
with dg,2 = 6 cannot imitate correctly the real data (c.f. Fig. 3b), while the one with dg,2 = 16
achieves to reproduce very similar images.

Finally, the quality of individual images is evaluated by calculating the relative entropy
between the real images Set i, shown on Fig. 3b, and the generated images Ii for i = 0, 1, 2, 3,
as displayed on Fig. 6. Considering the lowest relative entropy values across the last 4 epochs
(200 epochs are run in total), a bijection between real images and generated images can
be constructed : I0 → Set0, I1 → Set3, I2 → Set1 and I3 → Set2. This result gives a
quantitative proof that PQC2 can reproduce four different sets of images in the real training
data. Despite this optimistic affirmation, the relative entropy large instability is the main point
that should be improved in future studies.

Unfortunately, the number of qubits in the quantum generator scales not only with the
number of pixels in one image but also with the number of images that can be produced,
while in original GAN, the system size mainly scales with image size. This fact represents
the largest limitation of the model and it requires further improvement. We are currently
investigating a solution feeding extra noise to the remaining PQC2 n2 − n1 qubits, while PQC1
keeps generating a probability distribution over the zero-noise image.
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achieves to reproduce very similar images.

Finally, the quality of individual images is evaluated by calculating the relative entropy
between the real images Set i, shown on Fig. 3b, and the generated images Ii for i = 0, 1, 2, 3,
as displayed on Fig. 6. Considering the lowest relative entropy values across the last 4 epochs
(200 epochs are run in total), a bijection between real images and generated images can
be constructed : I0 → Set0, I1 → Set3, I2 → Set1 and I3 → Set2. This result gives a
quantitative proof that PQC2 can reproduce four different sets of images in the real training
data. Despite this optimistic affirmation, the relative entropy large instability is the main point
that should be improved in future studies.

Unfortunately, the number of qubits in the quantum generator scales not only with the
number of pixels in one image but also with the number of images that can be produced,
while in original GAN, the system size mainly scales with image size. This fact represents
the largest limitation of the model and it requires further improvement. We are currently
investigating a solution feeding extra noise to the remaining PQC2 n2 − n1 qubits, while PQC1
keeps generating a probability distribution over the zero-noise image.

Figure 6: Relative entropy of generated images I0, ...,I3 with respect to average of real
image classes, shown on Fig. 3b. The images are generated via dual-PQC GAN with n = 2,
n1 = n2 = 4, dg,1 = 2 and dg,2 = 16. According to minimum relative entropy at the end of the
training, one-to-one correspondence can be established between real and generated images.

6 Conclusion

This work presents a dual-PQC GAN model, a prototype of quantum GAN with two quantum
generators, sharing the role of a single generator. One of the generators is responsible for
reproducing the distribution over images, while the other for building amplitude distributions
over pixels on a single image. The results obtained prove that this model can generate
individual image samples and their probability distribution, similar to the training set.

It is also worth noting that, as the number of possible images (or classes of images if noise
is added) grows exponentially with n1, the fact that we sample from a finite set of images
(or classes of images if noise is added) rather than a continuum of typical images (as in the
corresponding classical case) is unlikely to seriously compromise performance.

An interesting direction for future research, that we intend to pursue, is testing the dual-
PQC GAN in noisy simulators, and on real quantum hardware with lower depth for the
quantum generator. Another intriguing question would be how to reproduce an arbitrary
number of outputs with the dual-PQC GAN model. One possible way is to introduce a
complex-valued noise to the remaining qubits in the PQC2. Using a fixed sampler instead of
a trained quantum circuit for PQC1 to pass an entangled quantum state to PQC2 is another
possible approach. Throughout future studies, we look forward to building a more advanced
quantum GAN model to imitate the performance of classical GAN.
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