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Abstract

The UA9 setup, installed in the Super Proton Synchrotron (SPS) at CERN, was exploited for a proof of principle of the
double-crystal scenario, proposed to measure the electric and the magnetic moments of short-lived baryons in a high-energy
hadron collider, such as the Large Hadron Collider (LHC). Linear and angular actuators were used to position the crystals
and establish the required beam configuration. Timepix detectors and high-sensitivity Beam Loss Monitors were exploited to
observe the deflected beams. Linear and angular scans allowed exploring the particle interactions with the two crystals and
recording their efficiency. The measured values of the beam trajectories, profiles and of the channeling efficiency agree with
the results of a Monte-Carlo simulation.
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1. Introduction

Planar channeling in bent crystals is a powerful tool often exploited for beam manipulations in particle accelerators [1].
The angular acceptance for channeling is determined by the critical angle θc =

√
2Umax/pv, where Umax is the potential

well between two neighbouring crystalline planes (∼ 20 eV for Si (110)), p and v are the particle momentum and velocity
respectively. The UA9 experimental findings on the interaction of high-energy particles with bent crystals are reported in [2],
where the studies performed over more than a decade at the CERN accelerator complex by the UA9 Collaboration are
described. The exploitation of bent crystals in the NA48 experiment, for a direct proof of CP violation with secondary KS ,
KL meson beams in the CERN North Area, is reported in [3]. The bent crystal based measurement of the magnetic moment
of the Σ+ hyperon in the E761 apparatus at one of the Tevatron extraction lines at FNAL is described in [4, 5]. Beam
extraction tests assisted by bent crystals performed at the SPS are discussed in [6, 7]. Similar tests performed at the Tevatron
at FNAL are reported in [8–10]. Studies on beam-halo collimation based on bent crystals, performed in RHIC at NBNL, in
the Tevatron, in the SPS and in LHC are reported in [11–17].

Recently, a double-crystal scenario has been proposed to measure the magnetic moment of short-lived baryons in a high-
energy hadron collider such as the LHC [18]. The basic layout consists of a sequence of two crystals interleaved with a solid
target, installed in the vicinity of an experimental detector that should allow identifying the rare baryons and recording their
polarization state from the reconstruction of the decay products. The first crystal should capture in channeling states part
of the halo of the circulating beam and deflect it onto the internal target, where baryons could be produced. The second
crystal should capture a fraction of the baryons, rotate their polarisation vector and simultaneously deflect them into the
detector. If implemented in LHC, the first crystal could be similar to those used as primary crystal-collimator in the LHC
beam collimation studies [19]. The second crystal should have a larger deflection angle in order to induce a large enough
rotation of the polarization vector for an accurate detection of the magnetic dipole moment, as discussed in [20–25].
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Investigating such a sophisticated beam manipulation at lower beam energy in a circular accelerator with warm iron
magnets is the best way to assess its feasibility and evaluate its performance in safer conditions than in a superconducting
collider. A simplified version of the double-crystal configuration was recently implemented in the SPS, for a proof-of-principle.
The setup results from successive modifications of the UA9 layout [26], which had originally been conceived to test the crystal-
assisted collimation process [27]. The initial double-crystal layout and the results recorded in the first SPS test are discussed
in [28]. Operational aspects of the upgraded layout and recent results from the data collected for the first time in a circular
accelerator are reported hereafter, together with their comparison with computer simulations.

2. The double-crystal setup in the CERN-SPS

The SPS is the CERN syncrotron used for fixed target physics in the North Area and as injector for the LHC. It is
made of elements operating at room temperature, in which proton and heavy ion beams can be either accelerated up to 450
GeV per charge or stored for several hours at a plateau of up to 270 GeV per charge. Flexible operational conditions and
resilience to beam loss make the SPS the ideal accelerator to investigate unusual beam manipulations. The double-crystal
configuration implemented in the SPS is schematically shown in Figure 1. The blue lines identify the circulating beam envelope
at 4σ. When properly positioned and oriented, the upstream Crystal1 should channel and deflect the halo particles impinging
within the critical angular range ±θc, producing a single-channeled beam (light green lines). The downstream Crystal2 can
be moved along the transverse horizontal direction to intercept the single-channeled particles and can channel them again,
producing a double-channeled beam (green lines). Both channeled beams can be directed onto the tungsten absorber, 60 cm
long (grey box), and dumped. Two collimator jaws can horizontally enclose the circulating particles to define sharp edges of
the beam envelope for the beam-based alignment of the movable devices. Each component of the UA9 setup is followed by
a high-sensitivity Beam Loss Monitor (BLM) [29], outside the beam pipe, to record secondary particle cascades produced by
particle interactions during operation of the movable devices. The movable Roman pots RP0 and RP1 (pink boxes) contain
Timepix detectors [30] to measure the deflected beam profiles. The Timepix is a hybrid pixel detector developed by the
CERN-based European Medipix2 collaboration [31]. It consists of a CMOS readout circuit (Timepix) bump-bonded to a
300 µm thick silicon pixel detector with a matrix of 256×256 square pixels of 55 µm pitch, for a total area of 1.4 × 1.4
cm2. Each cell in the matrix contains a charge-sensitive preamplifier, a single threshold discriminator, time based logic and
a 14-bit pseudo-random counter with overflow control logic [32]. In Figure 2 one of the two UA9 angular actuators, often
named goniometer, is shown: it is made of two linear actuator distant 50 cm from each other linked by an aluminium bar to
stabilise the mechanical structure. Each goniometer houses two crystals that can be independently positioned and oriented,
during an angular scan. One of the linear actuators can position the corresponding crystal at the edge of the circulating
beam and the other, slightly retracted, can change the crystal angle. The movable structure of the goniometer, shown in the
insert of Figure 2, is conceptually elastic and friction free, however, backlash, hysteresis and non-linearities, detrimental for
alignment accuracy, are in practice unavoidable. Lengthy and delicate corrective actions, investigated and calibrated in the
laboratory and in the SPS test runs, are introduced to control the crystal orientation to the level of 2-3 µrad RMS. They
consist in imposing to reach a given motor positioning always through the same mechanical cycle, thus avoiding inversion of
motion for fine tuning of crystal position and compensating the backlash at the end of the alignment cycle. Static orientation
of the crystal performed without applying the corrective actions may result in a large shift from the required angle. Moreover,
during dynamical scans of the crystal orientation performed at constant rotational speed (angular scans), the angle versus
time correlation is substantially linear: indeed, the one-directional continuous motion guarantees the absence of backlash and
residual non-linear angular variations smaller than 2-3 µrad RMS.

During data-taking runs, a single bunch of ∼ 1011 protons was injected, accelerated and stored in the SPS at 270 GeV
energy, with a typical value of the horizontal emittance εH = 5 nm·rad and with betatron tunes QH = 20.13, QV = 20.18. The
characteristics of Crystal1 and Crystal2 are shown in Table 1. A tungsten target was inserted in front of Crystal2 just before
the very last SPS run, before the CERN accelerator Long Shutdown 2 [33]. The target was mounted on the crystal bending
frame according to the scheme of Figure 3. The target dimensions are indicated in the third column of Table 1, together with
the RMS deflection imparted to 270 GeV protons by Multiple Coulomb Scattering (MCS). The betatron functions of interest
are shown in Table 2. The data discussed in Sections 3 to 6 were collected without the W-T target, those in Section 7 were
recorded with the target in place. The latter ones provide an insight to the additional background that should be rejected for
the optimal exploitation of the physics reach in the double crystal scenario.

3. Optimizing the double-crystal operation

Setting-up a single-channeled beam in the SPS is a well-established operation that can be reliably achieved with the UA9
devices [34]. In order to capture halo particles in channeling states Crystal1 is positioned at the circulating beam periphery
and its orientation is slowly rotated by the angular actuator supporting the crystal. Its optimal orientation is obtained by
identifying the angle at which the particle loss rate in the BLM1 downstream is minimum.

In double channeling operation mode, intercepting the single-deflected beam with Crystal2 and finding its optimal orien-
tation for channeling requires a more complex procedure and more sensitive detectors due to the much lower flux of particles
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Table 1: Characteristics of the crystals and of the target

Crystal1 Crystal2 Target

Name ACP78 ACP75 W-T
Deflection [µrad] 301 197 46*
Length [mm] 4.0 6.0 3.0
Width [mm] 1.5 4.0 5.0
Torsion [µrad/mm] 3.0 4.0
θc [µrad] for 270 GeV p+ 12.19 12.25

*RMS angle imparted to 270 GeV protons by MCS

Table 2: Betatron functions of the double-crystal layout

Element s [m] βx [m] β′x Dx [m] D′x ∆Φx

Crystal1 5121 74.68 1.49 -0.45 -0.0005 0
RP0 5175 76.04 -1.51 -0.851 -0.0174 0.152
Crystal2 5181 93.59 -1.74 -0.946 -0.0174 0.163
Collimator 5222 36.74 -0.761 -0.419 -0.0027 0.285
RP1 5224 40.17 -0.852 -0.415 -0.0027 0.293
Absorber 5244 92.90 -1.730 -0.358 -0.0027 0.348
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being deflected by Crystal1. The Timepix detector in the RP1, inserted into the vacuum pipe during the alignment process,
can considerably ease the search for the optimal orientation by continuously providing the image of both the double- and
single-channeled beam spots. An example of frame recorded by the Timepix in RP1 is shown in Figure 4, where the single-
deflected spot is on the left side and the double-deflected one is on the right side. To improve the display and the subsequent
data analysis, in each frame, the electronic noise is compensated and the distorted signal of the pixels irradiated by a too
large local flux is filtered and smoothed taking into account the average response of the surrounding pixels.

A linear scan of Crystal2 from its garage position towards the circulating beam edge allows identifying its optimal su-
perposition with the single-deflected beam. Keeping the crystal in the amorphous orientation during the scan maximizes
the interaction rate and induces a better detectable shadow in the beam image recorded by the Timepix in RP1 during the
superposition. Such a procedure is well illustrated in Figure 5. The crystal moves at a constant speed of 50 µm/s. The
horizontal axis indicates the instantaneous Crystal2 distance from its garage position. The vertical axis shows the horizontal
projection of the corresponding Timepix image recorded and averaged progressively every 0.5 s. A color code quantifies the
local flux integrated over each pixel column. The beam spot projection is almost constant for most of the scan duration. When
moving from 64.4 mm to 70.4 mm, the crystal position is partially or totally superimposed to the deflected beam trajectory
and the recorded profile is broadened because of MCS. The enlarged region appears inclined because of the finite sizes of the
beam and of the crystal. Moreover, as expected, its horizontal extension Wsh = 4.15±0.14 mm is equal to the Crystal2 width,
indicated in Table 1. The maximum superposition of Crystal2 with the single-deflected beam is obtained at ∼67 mm. In
Figure 6, the horizontal profile of the single-channeled beam is shown as a function of the horizontal distance from the inner
border of the Timepix sensor in RP1, on the side of the circulating beam. The blue scale under the horizontal axis translates
an abscissa value into the corresponding angle at Crystal1, through the appropriate transport matrix. The blue curve shows
the unperturbed profile, while the red one shows the perturbed profile, when Crystal2 is inserted in amorphous orientation at
67 mm position. The mean and the RMS values of the blue distribution are 6.56±0.01 mm and 0.43±0.01 mm, those of the
red one 6.54±0.01 mm and 0.69±0.01 mm, respectively (see also the inserts in Figure 6). The profile mean value, practically
unaffected by Crystal2 insertion, corresponds to the deflection angle θdef = 305±2 µrad, very close to the nominal bending
angle of Crystal1 (see Table 1). The RMS width of the red and blue curves differ because of the MCS occurring in Crystal2.
Simulations provide RMS values of 0.56 mm for Crystal2 OUT and 0.79 mm for Crystal2 IN, in reasonable agreement with
measurements.

Once Crystal2 is centered in the single-channeled beam at 67 mm, an angular scan should help finding the optimal
orientation for channeling. The procedure consists in rotating the crystal at constant speed, typically of 2 µrad/s, while
recording the signal of the Timepix in the RP1. Figure 4 illustrates a typical way of plotting the results. The horizontal axis
shows the Crystal2 angle and the vertical axis the horizontal projection of the corresponding Timepix frames progressively
collected and averaged every 0.5 s. A color code quantifies the local flux. Crystal2 is initially in amorphous orientation (AM)
and the single-channeled beam is just slightly broadened because of the MCS. At around 1600 µrad the volume reflection
(VR) starts to dominate for about 200 µrad. As expected, the width of the VR angular range is very close to the nominal
bending angle of Crystal2 (Table 1). The VR process is accompanied by volume capture (VC), its competing effect, whose
probability is much smaller. The channeling process (CH) appears around 1800 µrad simultaneously with the lower-probability
dechanneling effect (DCH). In the optimal CH orientation, at 1820 µrad, the displacement of the double-deflected beam from
the baricentre of the single-deflected beam is 8.5 mm. Such a value corresponds to a deflection θdef = 192.79 ± 0.15 µrad
imparted by Crystal2, as also shown by the red scale to the left of Figure 7 that translates displacements at the RP1 into
angles at Crystal2, through the betatron transfer matrices. As expected, θdef is in good agreement with the crystal bending
angle in Table 1.

The plot in Figure 7 is very similar to those produced at the external beam-line H8 in the SPS North Area, where crystals
are usually tested and characterized, before their installation in the SPS ring [35]. The crystal alignment in the double-crystal
setup could also be obtained using angular scans in which the loss data are collected by the high-sensitivity BLMs. However,
the resulting procedure might become less straightforward because of the low level of induced losses, especially downstream
Crystal2 [36].

In the double-channeling configuration implemented in the SPS, an undesired effect contributes to increase the fraction of
particles traversing Crystal2 in AM orientation, thus decreasing the channeling efficiency. At the exit of Crystal1, the RMS
divergence of the channeled beam is δRMSθ

CR1
def = θCR1

c = 12.19 µrad. At the entrance of Crystal2, it becomes δRMSθ
CR2
def =

18.9 µrad, as a result of the quadratic composition of the betatronic transport, δRMSθ
CR2
def−MTX = 14.7 µrad, and of the MCS

blow-up, δRMSθ
CR2
def−MCS = 11.9 µrad, induced by the RP0, which is constantly kept into the single-channeled beam to monitor

its flux during the data taking. The value of δRMSθ
CR2
def is, indeed, considerably larger than the critical angle for channeling

of Crystal2, θCR2
c = 12.25 µrad, given in Table 1. The beam divergence can be reduced by retracting the RP0 in the garage

position, however, the mismatch of the beam divergence with the crystal acceptance, due to the accelerator optics, will continue
contributing to the reduction of the channeling efficiency and to the increase of the fraction of particles crossing Crystal2 in
AM orientation. In a possible experimental application in LHC, optical configurations should be implemented to avoid this
mismatch, obviously detrimental for the physics reach of a double crystal scenario.
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4. High-statistics beam measurements

High-statistics runs are performed with the crystals at fixed orientation to measure channeling and volume reflection
efficiencies and collect large samples of data in view of disentangling signal from background. In such cases, the alignment
procedure requires increased care.

Figure 8 shows the 2D image of the single- and double-deflected beams, recorded by the Timepix in RP1, in a high-statistics
run, with the two crystals in static orientation supposed to be optimal for channeling. The color scale gives the particle flux.
The right spot is produced by the double-deflected particles. The left one represents the single-deflected particles that have
interacted with Crystal2, but have not been captured in channeling states. The tiny cloud observed in between the two spots
represents the ensemble of particles dechanneled during the Crystal2 traversal. The blue curve in Figure 9 shows the horizontal
beam profile computed from the data in Figure 8. The asymmetric shape of the left beam spot is caused by the coexistence of
two particle populations not in channeling states, slightly shifted from each other. One population is made of particles that
had amorphous interactions with the crystal and the other is made of volume reflected particles.

An a-posteriori inspection of the effective displacement of the crystal actuators following the command given to the
motors by the remote-control system was recently performed to investigate the effect of a known weakness in the electronic
motor-controller. The analysis suggests that during the crystal alignment an unwanted angular motor slipping could have
happened, although the available data are insufficient to precisely evaluate its amplitude. An approximate estimate of the
misalignment can be obtained, based on the reconstruction of the deflected beam trajectories in Figure 8, complemented by
computer simulations [37–40]. The actual orientations of Crystal1 and Crystal2 during the high-statistics run can be obtained
as follows. The distance between the single- and double-deflected beam baricenters from the circulating beam peripheral at
the azimuth of RP1 are known with an uncertainty of 100 µm, which is the uncertainty of the RP1 beam-based positioning.
Appropriate transfer matrices allow transforming this distance into a crystal orientation through the coefficients 48 µm/µrad
for Crystal1 and 33 µm/µrad for Crystal2, respectively. The resulting value of the actual orientation shift from the optimal
angle, previously recorded during angular scans, is 35±2 µrad for Crystal1 and 20±3 µrad for Crystal2, the angular uncertainty
being originated mainly by the RP1 position uncertainty. The red curve in Figure 9 shows beam profiles corresponding to such
misalignment of the two crystals resulting from numerical simulations. The agreement with the experimental data plotted in
blue is acceptable, although not particularly good. Moreover, beam profiles computed for slightly different angular shifts are
in worst agreement with the experimental data and confirm the soundness of the estimate of the crystal orientation.

Although the orientation of the two crystals is not optimal during the high-statistics runs, we could evaluate the deflection
efficiency from the analysis of the flux of the deflected halo particles. The data in Figure 9 can provide the single-pass channeling
efficiency of Crystal2, by calculating the ratio between the number of particles in the double-channeled peak, within ±3σ, and
the total number of particles detected in the entire Timepix frame, the latter being the total number of particles deflected
by Crystal1. The resulting channeling efficiency of Crystal2 is εCR2

SP = 0.157 ± 0.003, with the error accounting only for the
statistical uncertainty.

The approach described in [41] is used to evaluate the channeling efficiency of the two crystals, using the data of two
linear scans recorded at the beginning of the high-statistics run. Figure 10 shows the results of two linear scans performed
with one of the collimator jaws swiping across the deflected particles at a speed of 50 µm/s. The abscissa represents the
jaw distance from the circulating beam edge. The ordinate gives the counting rate of the downstream BLM. The blue line
shows the case with Crystal1 in channeling orientation and Crystal2 still in AM orientation. The red line shows the case
where both crystals are in channeling orientation. Close to the circulating beam edge, the counting rate is proportional to the
particle flux impinging onto Crystal1 recorded before the linear scan started, therefore this value is used for normalisation.
The counting rate increases while the collimator jaw goes through each deflected beam. After the subtraction of the BLM
offset, the channeling efficiency of each crystal is given by the counting rate increase recorded during each beam crossing,
i.e from -12 mm to -3 mm for single-channeling and from -20 mm to -15 mm for double-channeling, normalized to the rate
recorded close to the beam edge.

The measured values of the channeling efficiency and the corresponding results from computer simulations are summarized
in Tables 3 and 4 and will be discussed in Section 6.

5. Low-statistics beam measurements

The data recorded by the Timepix in RP1 during an angular scan of Crystal2 provide similar information as that of
Figure 7 for many consecutive orientation angles, but with statistics reduced by about two orders of magnitude. In Figure 11
the vertical and horizontal projections of the recorded RP1 Timepix frames, integrated over 3 s, are plotted as a function of
the recording time, during an angular scan of Crystal2 performed at 2 µrad/s rotational speed. Each time bin represents the
beam projection on the relative axis, the vertical in the top plot and the horizontal in the bottom one, integrated over 6 µrad,
i.e over about 0.6× θc. A color code indicates the particle flux density.

In addition to the particles having interacted with the crystal, a continuous flux of background particles, diffusing at
high-speed from the circulating beam, is expected to hit the entire Timepix area, with an intensity decreasing exponentially
with the distance from the closed-orbit [42]. The sectors of the Timepix sensor close to its upper and lower borders are never
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hit by the crystal deflected particles all along the angular scan; there, only the diffusive background is recorded. The analysis
of the counting rates in these sectors allows identifying the background shape, which, as expected, decays exponentially with
the distance from the center-line and is almost independent of the recording time and of the Crystal2 orientation. Spurious
hits are also recorded in the vicinity of the sensor border facing the circulating beam; they are due to showers produced by
particles traversing the inner side of the RP1 box. In the present experimental configuration, they could not be properly
identified and rejected and represent the main source of systematic errors.

The horizontal profiles corresponding to the beam projections at the nine instants marked by the white vertical lines of
Figure 11 are plotted in Figure 12. Each of the nine data-set is identified by the time elapsed from the start of the angular
rotation, shown in the top label, while the abscissa indicates the pixel column number, starting from the inner sensor border,
facing the circulating beam, and the ordinate gives the counting rate of the pixel column, integrated over 3 s. The experimental
data are plotted in dark blue. They are fitted piecewise to better disentangle the contribution of particles that had different
interactions with the crystal. For x ∈ [0, 107], hits of particles having traversed Crystal2 in AM and VR orientations are
expected, superimposed to the diffusive background. The fit is therefore made with two Gaussian curves, taking into account
the exponential shape of the background intensity. The fitting Gaussian of the VR particles is plotted in light blue, the one of
the AM particles in black, respectively, whilst the exponential curve representing the background is not plotted, for the sake
of a better readability. The sum of the two Gaussian and of the exponential curves is shown in red. The agreement of the
fit with the data is excellent in all the nine plots. For x ∈ [107, 185], no fit is performed: only the exponential background,
largely overcoming the expected flux of particles in volume capture, is plotted in green. For x > 185, only particles deflected in
channeling states should hit the sensor plate. The fit is thus made with a single Gaussian, taking into account the exponential
background. The sum of the two fitting function, in red, is very close to the shape of the fitting Gaussian of the channeling
flux, plotted in light blue, and agrees very well with the experimental data. The frame 430 corresponds to the optimal
alignment for channeling, at an angle of 1820 ± 6 µrad, where the error takes into account the angular change during the
frame integration time. The dark blue Gaussian to the left side, centered at x = 208, contains channeled particles; the black
Gaussian to the right side, centered at x = 50, is made of particles in AM orientation; finally the light blue Gaussian, centered
at x = 28, represents particles in VR orientation. The frames recorded at time T=100 s and T=470 s only contain particles
in AM orientation. The frames at T=200 s and T= 230 s show the onset of VR mixed with AM particles. In the frames
from T= 370 s to T=450 s, the onset and the evolution of the CH process is shown. The left peak containing channeled
particles is slowly shifted to the left, because the crystal rotation adds-up to the crystal deflection angle, whilst the right peak
in light-blue containing the VR particles decreases and the black peak with AM particles increases, because of the continuous
shift of the VR tangency point towards the end side of the crystal. It should be pointed out that to enhance the readability
of the nine plots, the vertical scale is selected automatically.

Each frame of the angular scan could be used to evaluate the probability of the various crystal-particle interaction types
that approximately coincides with the recorded population fraction of each process. For such an evaluation, the exponential
background is obviously rejected. Moreover, nuclear interaction events, which cannot be observed in the Timepix sensor, are
produced with very small probability, 0.6 % in AM orientation and 0.03 % in CH orientation [43]. They can thus be neglected,
without affecting the final results. The data analysis resulting from the entire angular scan is shown in Figure 13, where, in
the bottom part, the fractions of particles in AM (blue dots), VR (red dots) and CH (green dots) orientations are plotted as
a function of time, whilst, in the top part, the time-evolution of the baricenter of each ensemble of particles is presented.

In the optimal orientation, at the time frame number 430, the fraction of channeled particles in Crystal2 is εCR2
SP =

0.27 ± 0.02, whilst, during Crystal2 characterisation in the external beam-line H8, it was εCR2
SP = 0.45 ± 0.01 (the efficiency

errors only account for limited statistics). The latter value is obtained in H8 with a low divergence beam, selecting the
incoming particles within ± 1

2θc angular spread, whilst the former value in double-channeling mode is obtained with a beam
divergence of ±1.5θc. Indeed, a smaller deflection efficiency is expected in the SPS, because of the contribution of particles
incident into Crystal2 at angles larger than θc, that cannot be captured in channeling states. Assuming a Gaussian distribution
of the beam divergence, the deflection efficiency reduction should be of about a factor of two, a value not too far from the ratio
between the two experimental values, equal to about 1.7. In optimal alignment, with the RP0 inserted, computer simulations
predict for Crystal 2 an efficiency of 0.268, perfectly matched to the experiment result provided by the angular scan data.
With the RP0 extracted in garage position, instead, the simulation predicts an efficiency of 0.489.

6. Summary of the efficiency measurements in the double-crystal configuration

Measured values and simulation results of the channeling efficiency are summarized in in Tables 3 and 4. Multi-turn (MT)
efficiency is related to the fact that in a circular accelerator particles can traverse the crystal one or several times before hitting
it with the right angle to be channeled. Single-passage (SP) efficiency, instead, refers to the channeling probability for a single
crystal traversal. Efficiencies recorded in the SPS, during the double crystal experiment, are due to multi-turn channeling in
the case of Crystal1 (εCR1

MT ) and in the case of the double-channeling process with Crystal1 and Crystal2 (εDC), and are due
to single-passage for the Crystal2 alone (εCR2

SP ).
Table 3 reports the channeling efficiency from the experimental data and from the corresponding tracking simulations for

the case of the high-statistics run described in Section 4, with the crystals in fixed orientations, not optimal for channeling,
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Table 3: Measured deflection efficiencies in the double-crystal configuration, compared with simulation results. The two crystals are in fixed
orientations, with misalignments of 35 µrad for Crystal1 and 20 µrad for Crystal2 from the optimal channeling orientation.

Timepix data Linear scan data Simulation (RP0 IN)

εCR1
MT – 0.519± 0.028 0.535± 0.001
εCR2
SP 0.157± 0.003 0.154± 0.014 0.151± 0.002
εDC – 0.080± 0.006 0.081± 0.001

Table 4: Measured deflection efficiencies in the double-crystal configuration, compared with simulation results. The two crystals are in optimal
orientation for channeling.

Timepix data H8 data Simulation (RP0 IN) Simulation (RP0 OUT)

εCR1
MT – – 0.929± 0.001 0.929± 0.001
εCR2
SP 0.27± 0.02 0.45± 0.01 0.268± 0.001 0.489± 0.001
εDC – – 0.249± 0.001 0.454± 0.001

with misalignments of 35 µrad for Crystal1 and of 20 µrad for Crystal2, respectively, and with the RP0 inserted into the beam.
The first column gives the channeling efficiency resulting from the Timepix data. The second column presents the efficiencies
based on linear scans and BLM data. The efficiencies resulting from the computer tracking simulations based on SixTrack are
shown in the third column.

Table 4 shows the channeling efficiency obtained from the Timepix data of the angular scan of Crystal2 described in
Section 5, recorded when Crystal2 is in the optimal orientation for channeling together with the results of the relative tracking
simulations. The first column gives the efficiency resulting from the angular scan data. For comparison, the second column
recalls the efficiency recorded during the Crystal2 characterisation at the H8 beam-line [33]. The third and the forth columns
present the efficiencies resulting from SixTrack simulations with RP0 inserted into the beam and retracted in the garage
position, respectively.

The simulation results and the results from the experimental data analysis are in rather close and satisfactory agreement,
in all cases. The only apparent discrepancy between the measured values of εCR2

SP in columns 1 and 3 of Table 4 has been
discussed in Section 5. Moreover, the simulations show a remarkable difference in the channeling efficiency in the cases with
and without misalignments (third column of Tables 3 and 4), indicating the margin of deterioration that an inaccurate setting-
up of the working configuration can introduce. The alignment control and the matching of the beam divergence with the
crystal acceptance for channeling may become of critical importance when proposing a double-crystal setup for higher energy
accelerators, such as LHC.

7. Fixed-Target setup measurements

The effect of a high-Z target was first investigated at the H8 extraction beam-line with a 180 GeV hadron beam [33].
During the test in H8, the single-pass deflection efficiency, defined as the ratio of the number of deflected particles to the
number of particles entering the complete setup (made either of the crystal alone or of the target+crystal) within an angular

range ±θc, was measured. The recorded values were εCR2
SP = 0.45 and εCR2+target

SP = 0.11, respectively. The drastic efficiency
reduction on the crystal-target ensemble was induced by the increase of the beam divergence due to MCS into the target and
the consequent depletion of the particle population with incident angles within the appropriate angular range for channeling.

Once tested, the complete setup was installed in the SPS to evaluate the change in performance of the double-crystal
scenario. Figure 14 shows the single-channeled proton beam deflected by Crystal1, recorded by the Timepix in RP1, after
the traversal of the target+Crystal2 assembly. Crystal1 is in optimal orientation for channeling, whilst Crystal2 is in the
amorphous orientation. The measured deflection angle of Crystal1, θdef = 301 µrad, is equal to the bending angle in Table 1.
Instead, the RMS value of the beam divergence, θRMS

def = 46 µrad, becomes much larger than θc, because of the MCS induced
by the target+Crystal2 ensemble. Results from the angular scan of Crystal2 are shown in Figure 15: in the bottom picture
the projection of the double-channeled particles on the horizontal axis is displayed, whilst in the top picture the channeling
efficiency of Crystal2 as a function of the orientation angle is reported. The angular dependence of the Crystal2 efficiency is
strongly modified by the insertion of the target. Indeed, in comparing the two plots of interest, i.e. the green curve in Figure 13
with the curve in the top part of Figure 15, it becomes clear that the range of crystal orientations for which channeling is
allowed is much wider and its peak flatter when the target is added. It is worth clarifying that the origin of angular referential
in the two plots is different because of the goniometer calibration, subsequent to the modification of Crystal2. The bottom
view of Figure 15 confirms that the double-channeling spot is visible from 490 to 610 µrad. The channeling probability is
maximal at ∼ 560 µrad. In such orientation, the measured single-pass channeling efficiency is εCR2

SP = 0.154. The RMS value
of the εCR2

SP distribution is δθRMS = 0.42 µrad that is, as expected, a value very close to the beam divergence induced by MCS
in the target.
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8. Conclusions

For the first time, a double-crystal setup was successfully implemented in a circular accelerator. Accurate methods to
orient the crystals and record useful data were applied, making use of high-quality crystals, linear and angular actuators,
Timepix sensors housed inside Roman Pots and high-sensitivity BLMs located outside of the vacuum pipe. Despite the short
run time allocated, the experimental procedure was repeated several times, producing deflected beam trajectories and profiles
consistently reproducible and close to simulation predictions.

The optimal crystal orientation was not precisely reached during the high-statistics data-taking run, essentially because
of the motor controller instabilities introducing an undesired sliding of the angular actuator. Nevertheless it was possible to
reliably measure crystal channeling efficiency from other available sets of data. Indeed, channeling efficiency has proved to be
extremely sensitive to even small alignment errors, which could challenge future experiments. In the future an automated online
control of the crystal alignment should possibly avoid positioning errors. Moreover, the mismatch of the beam divergence with
the angular acceptance for channeling at the entrance of Crystal2 was identified as one of the potential sources of reduction of
the channeling efficiency, the other being the increase of the beam divergence during the passage through the target. The run
duration was insufficient to investigate the distribution of the induced background and to disentangle the contribution of the
crystal from that of the target. This issue, crucial to extrapolate to the LHC the double-crystal scenario, should be addressed
in the future.
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Figure 1: Schematic view of the UA9 double-crystal setup operating on a stored proton beam of 270 GeV energy, with εH = 5 nm·rad horizontal
emittance. The beam envelope at 4σ is shown in blue, the two crystals in red, the two Roman pots equiped with Timepix sensors in pink, the
collimator for beam-based alignement in black and the secondary absorber in gray. The single-channeled beam envelope is drawn in light green and
the double-channeled one in dark green. BLMs positions are indicated in light blue. The horizontal axis gives the distance from the conventional
origin of the SPS circle and the vertical axis represents the horizontal distance from the center-line of the beam pipe.
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Figure 2: Mechanical actuator of the UA9 crystals. Each vacuum tank can house two crystals independently adjustable for channeling. Two linear
actuators linked by a bar are visible on the right. One bar can position the crystal at the edge of the circulating beam and the other, slightly
retracted, can change the crystal angle. In the insert, the scheme of principle of the angular actuator is shown.
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Figure 3: Schematic view of the Crystal2 with the target attached to its frame. The green support of the tungsten target, drawn in pink, is screwed
to the Crystal2 holder, with the crystal and the target faces parallel to each other. The red arrow indicates the direction of the incident particles
single-channeled by Crystal1.
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Figure 4: A frame of Timepix in RP1 recorded during the double crystal experimental run. The spot on the left is the image of the single-deflected
beam, while the spot on the right shows the double-deflected one.
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Figure 5: Horizontal projection of the single-deflected beam profile as a function of Crystal2 horizontal position, as detected by Timepix in RP1
during a linear scan. The profile is broadened when Crystal2 interacts with the single-deflected beamlet. The dashed line in black defines the
interaction area. Wsh is equal to Crystal2 width. The color code scale indicates the particle flux.
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Figure 6: Horizontal single-channeled beam profile measured by the Timepix in RP1. ”Crystal2 IN”: Crystal2 is centered onto the single-deflected
beam in amorphous orientation; ”Crystal2 OUT”: Crystal2 is retracted from the beam.
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Figure 8: Timepix image of the single- and double-channeled beams. Crystal2 orientation is 1800 µrad. The right spot is produced by the double-
deflected particles. The left spot represents the particles deflected by Crystal1 that in the interaction with Crystal2 have not been captured in
channeling states. The tiny green cloud between the left and the right spots is due to particles dechanneled during the Crystal2 traversal. The color
scale represents the particle flux per pixel. The frame was recorded during a high-statistics run.
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Figure 9: Horizontal profile of the single- and double-channeled beamlets. The experimental data (blue) are extracted from the frame shown in
Figure 8. In the computer simulations (red), deviations from the optimal channeling orientation of 35 µrad for Crystal1 and 20 µrad for Crystal2
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Figure 11: Angular scan of Crystal2. Each frame is integrated for 3 s, and each time bin represents the beam projection averaged over 6 µrad. The
nine white lines identify the time frames used in Figure 12 for the low-statistics data analysis.
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Figure 12: Timepix frames collected during the angular scan of Crystal2 shown in Figure 11. Each frame, integrated over 3 s, shows the number of
particle hits per pixel column as a function of the pixel column number. The insert on the top of each plot is the recording time in seconds from
the beginning of the Crystal2 rotation. The frames at T=100 s and T=470 s only contain particles in AM orientation. The frames at T=200 s and
T=230 s show the onset of VR mixed with AM particles. In the frames from T=370 s to T=450 s, showing the onset and the evolution of the CH
process, the left peak contains channeled particles, the right peak in red contains a mix of AM and VR particles, eventually disentangled in the
black and the blue Gaussian, respectively. The green curve represents the region of dechanneling. The x-axis gives the distance in mm from the
inner side of the Timepix sensor, facing the circulating beam. The y-axis gives the counting rate averaged over 3 s in each pixel column.
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Figure 13: Data analysis of the Crystal2 angular scan of Figure 11. Top: Time-evolution of the baricenter of the ensemble of particles interacting
with the crystal in AM (blue), VR (red) and channeling (Green) modes, respectively. Bottom: Fraction of particles in AM (blue), VR (red), and
channeling (green) states all along the angular scan. The CH fraction is highest at T=430 s.
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Figure 14: Timepix image of the single-channeled beam after traversing the target and the Crystal2 in AM orientation, integrated over 0.5 s.
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Figure 15: Angular scan of the Target+Crystal2 assembly. Top: Channeling efficiency as a function of the crystal orientation. Bottom: Timepix
image (integrated over 0.5 s) of the horizontal projection of the beam intensity as a function of Crystal2 angle. The RP1 is positioned to cover the
full range of the double-deflected beam.
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