Search for Dark Matter in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Moriond Electroweak 2021

DD. 03. 2021

Alexander Leopold, on behalf of the **ATLAS** collaboration

Motivation

The "Mono-Higgs" signature contains:

- Higgs boson, reconstructed from diphoton channel
- DM particles recoil against diphoton system, don't leave any momentum
- Analysis profits from **diphoton trigger** (instead of E_T^{miss} trigger)
- Good sensitivity in the lower E_T^{miss} range
- Provides complementarity with $h(\rightarrow b\bar{b}) + E_T^{miss}$ channel
- Uses full Run 2 data (139 fb⁻¹)

3 models considered in this analysis:

2HDM+a model used for the category optimisation Results also interpreted in Z'2HDM and Z'B model

Conf Note: ATLAS-CONF-2020-054

\Rightarrow Higgs boson h in all models assumed to have mass of 125 GeV!

Analysis overview

Event pre-selection: 2 photons ($105 \le m_{\gamma\gamma} \le 160 \text{ GeV}$) and $E_T^{miss} > 90 \text{ GeV}$ *« all objects reconstruted w.r.t. the diphoton vertex (VX)*

Background rejection cuts:

- ΔE_T^{miss} (diphoton VX, hardest VX) < 30 GeV \leftarrow reject fake E_T^{miss}
- electron & muon veto « *reject Vγ and Vγγ backgrounds*

Categorisation performed with BDT, using 2 input variables:

$$S_{E_{T}}^{\text{miss}} = E_{T}^{\text{miss}} / \sqrt{\sum E_{T}}$$
$$P_{T}^{\gamma\gamma}$$

Category	Category name	Selection
1	high $E_{\rm T}^{\rm miss}$, BDT tight	$E_{\rm T}^{\rm miss} > 150$ GeV, $0.950 < {\rm BDT}$ score $<$
2	high $E_{\rm T}^{\rm miss}$, BDT loose	$E_{\rm T}^{\rm miss} > 150$ GeV, $0.694 < { m BDT}$ score <
3	low $E_{\rm T}^{\rm miss}$, BDT tight	$ ~E_{\rm T}^{\rm miss} < 150$ GeV, $0.864 < {\rm BDT}$ score $<$
4	low $E_{\rm T}^{\rm miss}$, BDT loose	$ E_{\rm T}^{\rm miss} < 150$ GeV, $0.386 < { m BDT}$ score <

Inder Leopold

Exp. and theor. uncertainties

Uncertainty on non-resonant background modelling estimated via "spurious signal" test

PU reweighting to obtain same profile in data and MC

Signal interpolation method concerns the limit setting only

QCD scale uncertainty: uncertainty on the cross-section from higher order terms

PDF & α_S uncertainty

Table shows representative values for the impact on the most sensitive category (high E_T^{miss} , tight BDT) Source

Experiment

Luminosity Trigger effic Vertex selec Photon ener Photon ener Photon iden Photon iden Photon isola ATLFASTII s $E_{\rm T}^{\rm miss}$ recons Pileup rewei Signal effici Non-resonar

Theoretical

Factorization PDF+ $\alpha_{\rm S}$ in γ Factorization PDF+ $\alpha_{\rm S}$ in γ Multi-parton $\mathcal{B}(H \rightarrow \gamma \gamma)$

	ľ

		Backgrounds [%]		
	Signals [%]		Non-res backgr	
tal				
,	1.7	1.7	-	
ciency	1.0	1.0	-	
ction (inclusive cat.)	< 0.01	< 0.01	-	
rgy scale	1.0	1.2	-	
rgy resolution	0.3	0.4	-	
ntification efficiency	1.3	1.3	-	
ation efficiency	1.3	1.4	-	
simulation	2.0	—	-	
struction and jet uncertainty	2.8	1.7	-	
eighting	2.3	2.0	-	
iency interpolation	< 13	_	-	
nt background modeling	_	_	6.8	
on and renormalization scale in migration	1.3	3.5	-	
migration	1.2	1.0	-	
on and renormalization scale in cross section	< 20	< 2.8	-	
cross section	< 32	2.8	-	
n interactions, ISR/FSR, hadronization	3.0	3.0	-	
·)	1.73	1.73	-	

Results

"SM Higgs" peak and signal modelled with double-sided Crystal Ball function (gaussian core and power laws in the tails)

Non-resonant BG modelled by smoothly falling function \Rightarrow template method, parameters estimated from $m_{\gamma\gamma}$ sidebands $(105 < m_{\gamma\gamma} < 120 \text{ GeV}, 130 < m_{\gamma\gamma} < 160 \text{ GeV})$

Unbinned maximum likelihood fit performed simultaneously on all 4 signal categories to extract the signal strength

» No significant excess above the SM prediction observed

Category	High $E_{\rm T}^{\rm miss}$ BDT tight	High $E_{\rm T}^{\rm miss}$ BDT loose	Low $E_{\rm T}^{\rm miss}$ BDT tight	Low $E_{\rm T}^{\rm miss}$ BDT loose			
Data	12	29	11	143			
Backgrounds							
SM Higgs boson	3.74 ± 0.25	3.40 ± 0.28	3.12 ± 0.23	9.9 ± 1.5			
Non-resonant	7.8 ± 1.3	25.3 ± 2.3	9.8 ± 1.5	130 ± 5			
Total	11.6 ± 1.3	28.7 ± 2.3	12.9 ± 1.5	140 ± 5			
Z'_B model, $m_{Z'_B} = 1000$ GeV, $m_{\chi} = 50$ GeV							
Signal yields	0.7 ± 3.1	0.1 ± 0.6	0.1 ± 0.6	0.1 ± 0.6			
Z'-2HDM model, $m_A = 800$ GeV and $m_{\chi} = 500$ GeV							
Signal yields	0.6 ± 3.1	0.1 ± 0.4	0.05 ± 0.26	0.03 ± 0.17			
2HDM+a model, $m_A = 600$ GeV, $m_a = 200$ GeV, $\tan \beta = 1.0$, $\sin \theta = 0.35$							
Signal yields	0.6 ± 3.1	0.2 ± 1.2	0.1 ± 0.5	0.1 ± 0.7			

nder Leopold

Interpretation

Results are interpreted in the framework of 95% CL upper limits on the cross sections times branching fraction of the considered models

-> displayed as exclusion contours

$h \rightarrow \gamma \gamma$ "common" pre-selection

Trigger: 2015 - 2016: 2 loose photons (35 GeV, 25 GeV) 2017 - 2018: 2 medium photons (35 GeV, 25 GeV) « keep trigger rates constant

- ≥1 Vertex reconstructed
- 2 photons ($p_T > 25$ GeV) within $|\eta| < 2.37$, excluding $1.37 < |\eta| < 1.52$ (crack region)
- tight photon identification and isolation requirements
- (Sub) leading photon needs to pass $p_T/m_{\gamma\gamma} < 0.35(0.25)$ « optimised for 125 GeV resonance
- found within $105 \le m_{\gamma\gamma} \le 160 \text{ GeV}$
- the vertex selection in diphoton events (NN)

<u>Jets:</u>

- Particle flow jets
- $p_T > 25 \text{ GeV}, |\eta| < 4.4$
- pileup suppression cuts

Electrons:

- $p_T > 10 \text{ GeV}, |\eta| < 2.47$
- exclude crack region
- medium WP
- $|d_0|/\sigma_{d_0} < 5.0, |z_0|\sin\theta < 0.5$

<u>Muons:</u>

- $p_T > 10 \text{ GeV}, |\eta| < 2.7$
- medium WP
- $|d_0|/\sigma_{d_0} < 3.0, |z_0|\sin\theta < 0.5$

Missing transverse momentum (E_T^{miss}) :

- neg. vector sum of the transverse momenta of all hard object
- soft E_T^{miss} reconstructed from tracks

Diphoton vertex: spatial resolution provided by granularity of EM calorimeter is used to improve

BDT training

Goal: train single BDT, retain good BG/Signal separation power for all models and parameter spaces

- Background: Data control region (NTI data, at least one photon fails tight ID or isolation req.)
- Signal: 2HDM+a with low $-E_T^{miss}$ spectrum $(\tan\beta=1, \sin\theta=0.7, m_A=300 \text{ GeV}, m_a=250 \text{ GeV})$

 \Rightarrow "BG-like" signal chosen to exploit correlations low E_T^{miss} region with the BDT and preserve good sensitivity in the high E_T^{miss} region

Presentation title

Alexa

10