CERN Accelerating science

002759295 001__ 2759295
002759295 005__ 20230131112151.0
002759295 0248_ $$aoai:cds.cern.ch:2759295$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002759295 0247_ $$2DOI$$a10.1007/978-981-19-2354-8_95
002759295 037__ $$9arXiv$$aarXiv:2103.13685$$chep-ex
002759295 035__ $$9arXiv$$aoai:arXiv.org:2103.13685
002759295 035__ $$9Inspire$$aoai:inspirehep.net:1853431$$d2023-01-30T12:29:21Z$$h2023-01-31T03:03:07Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002759295 035__ $$9Inspire$$a1853431
002759295 041__ $$aeng
002759295 100__ $$aShaikh, [email protected]$$tGRID:grid.473481.d$$uSaha Inst.$$vSaha Institute of Nuclear Physics, 700064 Kolkata, India$$vMugberia Gangadhar Mahavidyalaya, 721425 Purba Medinipur, India
002759295 245__ $$9arXiv$$aRecent bottomonium measurements in pp, p-Pb and Pb-Pb collisions at forward rapidity with ALICE at the LHC
002759295 246__ $$9arXiv$$aRecent bottomonium measurements in pp, p--Pb and Pb--Pb collisions at forward rapidity with ALICE at the LHC
002759295 269__ $$c2021-03-25
002759295 260__ $$c2022-10-06
002759295 300__ $$a5 p
002759295 500__ $$9arXiv$$a4 pages, 6 figures, Proceedings of XXIV DAE-BRNS High Energy Physics
  Symposium 2020
002759295 520__ $$9Springer$$aIn ultrarelativistic nucleus–nucleus collisions, a deconfined state of strongly interacting matter is thought to be produced, commonly known as the quark–gluon plasma (QGP). Quarkonia, bound states of a heavy quark and antiquark, are important probes to study the properties of the QGP. At the LHC, bottomonium (b$\overline{\text {b}}$) is of particular interest to study the QGP complementarily to the lighter charmonium (c$\overline{\text {c}}$) system. In addition to the measurements in nucleus–nucleus collisions, reference measurements in proton–proton and proton–nucleus collisions have been also carried out in order to better understand the bottom quark production and cold nuclear matter effects. ALICE measures the bottomonium production in the dimuon decay channel at forward rapidity ($2.5<y_\mathrm{{lab}}<4.0$) with the muon spectrometer. In this contribution, the recent measurements of bottomonium nuclear modification factors and azimuthal anisotropies in Pb–Pb collisions are presented. The bottomonium production in p–Pb and pp collisions is also discussed.
002759295 520__ $$9arXiv$$aIn ultrarelativistic nucleus-nucleus collisions, a deconfined state of strongly interacting matter is thought to be produced, commonly known as the quark--gluon plasma (QGP). Quarkonia, bound states of a heavy quark and antiquark, are an important probe to study the properties of the QGP. At the LHC, bottomonium (b$\rm\overline{b}$) is of particular interest to study the QGP complementarily to the lighter charmonium (c$\rm\overline{c}$) system. In addition to the measurements in nucleus-nucleus collisions, reference measurements in proton-proton and proton-nucleus collisions have been also carried out in order to better understand the bottom quark production and cold nuclear matter effects. ALICE measures the bottomonium production in the dimuon decay channel at forward rapidity ($2.5<y_{\rm {lab}}<4.0$) with the muon spectrometer. In this contribution, the recent measurements of bottomonium nuclear modification factors and azimuthal anisotropies in Pb--Pb collisions are presented. The bottomonium production in p--Pb and pp collisions are also discussed.
002759295 540__ $$3preprint$$aCC BY-NC-SA 4.0$$uhttp://creativecommons.org/licenses/by-nc-sa/4.0/
002759295 540__ $$3preprint$$aexclusive license to Springer Nature Singapore Pte Ltd
002759295 542__ $$3publication$$dThe Author(s)$$g2022
002759295 595__ $$aFor annual report
002759295 65017 $$2arXiv$$ahep-ex
002759295 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002759295 6531_ $$9author$$aQGP
002759295 6531_ $$9autthor$$aQuarkonium
002759295 6531_ $$9author$$aCNM
002759295 6531_ $$9author$$aNuclear modification factor
002759295 693__ $$aCERN LHC$$eALICE
002759295 690C_ $$aCERN
002759295 690C_ $$aARTICLE
002759295 710__ $$gALICE Collaboration
002759295 773__ $$c517-521$$pSpringer Proc. Phys.$$v277$$wC20-12-14.7$$y2022
002759295 8564_ $$82285433$$s12101$$uhttps://cds.cern.ch/record/2759295/files/2019-07-09-Fig4_04062019.png$$y00005 The $\Upsilon$(1S) $R_{\rm AA}$ in Pb--Pb at $\sqrt{s_{\rm NN}}$ = 5.02 (5.44) TeV (left). The $\Upsilon$(1S) $v_{2}$ coefficient integrated over the transverse momentum range $2<p_{\rm T}<15$ GeV/$c$ in three centrality intervals compared to that of inclusive J/$\psi$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV (right).
002759295 8564_ $$82285434$$s11312$$uhttps://cds.cern.ch/record/2759295/files/2020-08-17-Integrated_CS_Upsilon1S_ALICE_LHCb_vs_Energy.png$$y00000 Inclusive $\Upsilon$(nS) production cross sections as a function of the collision energy in pp collisions of ALICE and LHCb measurements (left). Relative quarkonium yield as a function of the relative charged-particle density in pp collisions at $\sqrt{s}$ = 13 TeV (right).
002759295 8564_ $$82285435$$s47613$$uhttps://cds.cern.ch/record/2759295/files/npartRAA_transport.png$$y00004 The $\Upsilon$(1S) $R_{\rm AA}$ in Pb--Pb at $\sqrt{s_{\rm NN}}$ = 5.02 (5.44) TeV (left). The $\Upsilon$(1S) $v_{2}$ coefficient integrated over the transverse momentum range $2<p_{\rm T}<15$ GeV/$c$ in three centrality intervals compared to that of inclusive J/$\psi$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV (right).
002759295 8564_ $$82285436$$s92717$$uhttps://cds.cern.ch/record/2759295/files/2020-05-22-RpA_Y_1S_W_Moldel_8TeV_LHCb.png$$y00002 The $\Upsilon$(1S) $R_{\rm {pPb}} $ as a function of $y_{\rm cms}$ with different model predictions in p--Pb collisions at $\sqrt{s_{\rm NN}}$ =  8.16 TeV (left). $\Upsilon$(nS) $R_{\rm {pPb}} $ as a function of $y_{\rm cms}$ with nCTEQ15 shadowing predistion including the comover interaction.
002759295 8564_ $$82285437$$s995117$$uhttps://cds.cern.ch/record/2759295/files/2020-05-25-quarkonium.png$$y00001 Inclusive $\Upsilon$(nS) production cross sections as a function of the collision energy in pp collisions of ALICE and LHCb measurements (left). Relative quarkonium yield as a function of the relative charged-particle density in pp collisions at $\sqrt{s}$ = 13 TeV (right).
002759295 8564_ $$82285438$$s68417$$uhttps://cds.cern.ch/record/2759295/files/2020-05-22-RpA_1S_2S_3S.png$$y00003 The $\Upsilon$(1S) $R_{\rm {pPb}} $ as a function of $y_{\rm cms}$ with different model predictions in p--Pb collisions at $\sqrt{s_{\rm NN}}$ =  8.16 TeV (left). $\Upsilon$(nS) $R_{\rm {pPb}} $ as a function of $y_{\rm cms}$ with nCTEQ15 shadowing predistion including the comover interaction.
002759295 8564_ $$82285439$$s3161921$$uhttps://cds.cern.ch/record/2759295/files/2103.13685.pdf$$yFulltext
002759295 960__ $$a13
002759295 962__ $$b2757272$$k517-521$$njatni20201214
002759295 980__ $$aConferencePaper
002759295 980__ $$aARTICLE