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Abstract

The discovery of three pentaquark peaks — the Pc(4312), Pc(4440) and Pc(4457) — by the LHCb col-
laboration has a series of interesting consequences for hadron spectroscopy. If these hidden-charm objects 
are indeed hadronic molecules, as suspected, they will be constrained by heavy-flavor and SU(3)-flavor 
symmetries. The combination of these two symmetries will imply the existence of a series of five-flavor 
pentaquarks with quark content b̄csdu and bc̄sdu, that is, pentaquarks that contain each of the five quark 
flavors that hadronize. In addition, from SU(3)-flavor symmetry alone we expect the existence of light-flavor 
partners of the three Pc pentaquarks with strangeness S = −1 and S = −2. The resulting structure for the 
molecular pentaquarks is analogous to the light-baryon octet — we can label the pentaquarks as PN

Q′Q̄, 

P�
Q′Q̄, P�

Q′Q̄, P�
Q′Q̄ depending on their heavy- and light-quark content (with N , �, �, � the member of 

the light-baryon octet to which the light-quark structure resembles and Q′, Q̄ the heavy quark-antiquark 
pair). In total we predict 45 new pentaquarks from heavy- and light-flavor symmetries alone, which extend 
up to 109 undiscovered states if we also consider heavy-quark spin symmetry. If an isoquartet (I = 3/2) 
hidden-charm pentaquark is ever observed, this will in turn imply a second multiplet structure resembling 
the light-baryon decuplet: P�

Q′Q̄, P�∗
Q′Q̄, P�∗

Q′Q̄, P�
Q′Q̄.
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1. Introduction

The discovery by the LHCb collaboration of three hidden-charm pentaquarks [1] — the 
Pc(4312), Pc(4440) and Pc(4457) — extends the previous observation of the Pc(4450) peak 
in 2015 [2]. Their masses and widths (in MeV) are

mPc1 = 4311.9 ± 0.7+6.8
−0.6 , �Pc1 = 9.8 ± 2.7+3.7

−4.5 , (1)

mPc2 = 4440.3 ± 1.3+4.1
−4.7 , �Pc2 = 20.6 ± 4.9+8.7

−10.1 , (2)

mPc3 = 4457.3 ± 0.6+4.1
−1.7 , �Pc3 = 6.4 ± 2.0+5.7

−1.9 , (3)

where from now on we will use the notation Pc1, Pc2 and Pc3 for these three pentaquarks. The 
Pc1 is 8.9 MeV below the D̄�c threshold, while the Pc2 and Pc3 are 21.8 and 4.8 MeV below 
the D̄∗�c threshold, respectively (where we have considered these thresholds in the isospin-
symmetric limit). This, together with the existence of hidden-charm pentaquark predictions in 
the molecular picture before their experimental observation [3–9], suggests a molecular inter-
pretation of these pentaquarks, i.e. that they are bound states of a charmed antimeson and a 
charmed baryon [10–15], though this is not the only explanation that has been considered by 
theoreticians [16–18].

Heavy-hadron molecules are highly symmetrical: their light- and heavy-quark content implies 
that they are constrained both by SU(3)-flavor symmetry [19,20] and heavy-quark symme-
try [21,22]. Heavy-quark symmetry has in turn different manifestations, namely heavy-quark 
spin symmetry (HQSS), heavy-flavor symmetry (HFS) and heavy-antiquark-diquark symme-
try (HADS) [23], which altogether provide deep insights into the molecular spectrum [24–32]. 
The application of HQSS to the particular case of the LHCb pentaquarks implies that the Pc1, 
Pc2 and Pc3 actually belong to a multiplet composed of seven members [12,14,33,34], four of 
which have not been observed yet. Before knowing that the Pc(4450) peak contained two peaks, 
HQSS was already used to predict a JP = 5/2− D̄∗�∗

c molecular pentaquark and other part-
ner states [6,35–38]. In the past HFS and HADS have been applied to heavy meson-antimeson 
molecules to explain spectroscopic relations among known molecular states [30] or to deduce 
the existence of new states [31]. In this manuscript we will explore what are the consequences of 
SU(3)-flavor symmetry and HFS if the hidden-charm pentaquarks are indeed molecular.

2. Symmetries

First, we will consider the constraints that HFS and SU(3)-flavor symmetry impose on the 
potential between a heavy antimeson and a heavy baryon. HFS refers to the fact that the structure 
of a heavy-light hadron (i.e. the “brown muck” around the heavy quark) is independent of the 
flavor of the heavy quark. As applied to heavy-hadron molecules, HFS implies that the potential 
among heavy hadrons is independent of the flavor of the heavy quarks inside the heavy hadrons. 
The clearest example of this symmetry in molecular states are the Zc’s and Zb’s resonances [30], 
which are repeated in the charm and bottom sectors and are conjectured to be D(∗)D̄∗ and B(∗)B̄∗
2
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Table 1
The SU(3)-flavor structure of the potential for heavy meson-baryon molecules, where the heavy meson belongs to a 
SU(3)-flavor triplet and the heavy baryon to a sextet. The heavy meson-baryon potential can be decomposed into an 
octet and decuplet component, from which the octet piece corresponds to the potential for the hidden-charm molecular 
candidates. As a consequence other molecular pentaquarks belonging to the octet representation are also expected to 
bind. In addition to the SU(3)-flavor decomposition, the S-wave potential can be further decomposed into its light-quark 
structure, which is not explicitly shown here.

Molecule I S V Veigen

P̄�Q
1
2 0 V O −

P̄�Q
3
2 0 V D −

P̄�′
Q

0 −1 V O −

P̄�′
Q

− P̄s�Q 1 −1

(
1
3 V O + 2

3 V D −
√

2
3 (V O − V D)

−
√

2
3 (V O − V D) 2

3 V O + 1
3 V D

)
{V O,V D}

P̄�Q − P̄s�
′
Q

1
2 −2

(
1
3 V O + 2

3 V D −
√

2
3 (V O − V D)

−
√

2
3 (V O − V D) 2

3 V O + 1
3 V D

)
{V O,V D}

P̄s�Q 0 −3 V D −

bound states, respectively. If applied to the molecular pentaquarks, from HFS we expect the po-
tentials in the D̄�c, D̄�b , B�c and B�b two-body systems to be identical (plus similar relations 
for the D̄�∗

c , D̄∗�c and D̄∗�∗
c family of molecules). For simplicity we will often use the generic 

notation P and P ∗ for the JP = 0−, 1− heavy mesons and �Q and �∗
Q for the JP = 1/2+ and 

3/2+ heavy baryons, irrespective of whether they are their charm or bottom versions. In addition 
we will use the notation Ps , P ∗

s for the heavy mesons with S = 1 and �′
Q, �∗

Q (�Q, �∗
Q) for the 

heavy baryons with S = −1 (S = −2).
If we now consider SU(3)-flavor symmetry instead, it happens that the P̄ , P̄s heavy an-

timesons and the �Q, �′
Q and �Q heavy baryons belong to the 3 and 6 representation of the 

SU(3)-flavor group, respectively.1 Two-body heavy antimeson-baryon states can be decomposed 
into 3 ⊗ 6 = 8 ⊕ 10, i.e. into the octet and decuplet representations, where the SU(3) Clebsch-
Gordan coefficients can be consulted in Ref. [39]. This octet and decuplet decomposition is not 
dependent on the nature of the pentaquarks, but on their light-quark content, and it has indeed 
been previously pointed out for compact pentaquarks [40]. Within the molecular explanation, 
this decomposition specifically implies that the heavy antimeson-baryon potential can be decom-
posed into a linear combination of an octet and decuplet contribution

V = λOV O + λDV D , (4)

with V O and V D the octet and decuplet pieces and λO , λD numerical coefficients. We show 
the full decomposition in Table 1, which happens to be surprisingly simple: for most heavy 
antimeson-baryon molecules, the potential is a pure octet or decuplet contribution. In turn, this 
is easily explained from the observation that the resulting pentaquarks have the same quantum 
numbers as the corresponding octet or decuplet light baryons. Even for the P̄�′

Q − P̄s�Q and 
P̄�Q − P̄s�

′
Q molecules (where the dash indicates that these channels couple), for which the 

potential is a 2 × 2 matrix, when we look at the eigenvalues we recover

1 We will not consider explicitly the difference between ground- and excited-state heavy hadrons, as it does not affect 
their light-flavor structure.
3
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V = {V O,V D} , (5)

depending on the linear combination of the two channels, with the octet eigenvalue corresponding 
to

|8〉 = −
√

1

3
|P̄�′

Q(I = 1)〉 +
√

2

3
|P̄s�Q〉 , (6)

|8〉 = −
√

1

3
|P̄�Q〉 +

√
2

3
|P̄s�

′
Q〉 , (7)

and the decuplet eigenvalue to

|10〉 =
√

2

3
|P̄�′

Q(I = 1)〉 +
√

1

3
|P̄s�Q〉 , (8)

|10〉 =
√

2

3
|P̄�Q〉 +

√
1

3
|P̄s�

′
Q〉 . (9)

These two molecular systems, P̄�′
Q − P̄s�Q and P̄�Q − P̄s�

′
Q, will adopt the lowest-energy 

configuration, be it either the octet or decuplet one. In the absence of additional experimental 
information and knowing that the Pc1, Pc2 and Pc3 hidden-charm pentaquarks most probably 
belong to the octet, we naively expect the lowest-energy configuration to be the octet.2

Owing to heavy-flavor symmetry, the potential is expected to be independent of the flavor of 
the heavy quarks. This implies in particular that the octet configurations

D̄�′
b(I = 0) , D̄�′

b(I = 1) − D̄s�b , (10)

B�′
c(I = 0) , B�′

c(I = 1) − Bs�c , (11)

which contain the five quark flavors that hadronize, will display as much attraction as the hidden-
charm pentaquarks. Out of the four five-flavor configurations, the strange-isoscalar molecules 
[D̄�′

b(0), B�′
c(0)] are relatively easy to deal with (they are single-channel systems). For the 

strange-isovector molecules [D̄�′
b(I = 1) − D̄s�b , B�′

c(I = 1) −Bs�c] we have a two-channel 
problem where the thresholds are separated by about 20 MeV and 40 MeV for the isovector 
b̄csqq and bc̄sqq pentaquark configurations, respectively. The question is whether this energy 
gap will prevent a predominantly octet molecular state to form or not. The answer depends on 
the comparison of the momentum scales of the binding mechanism and the coupled-channel 
dynamics. The typical momentum scale of the coupled channels3 in the previous cases is about 
250 MeV and 350 MeV for the b̄csud and bc̄sud pentaquarks, while the binding mechanism 
is expected to be short-ranged (e.g. vector-meson exchange), with a momentum scale of the 
order of (0.5 − 1.0) GeV give or take. As a consequence, we expect the isovector five-flavor 
pentaquarks to bind (a conjecture which we confirm by means of concrete calculations in what 
follows).

2 We notice that a recent work [41] has predicted a series of cc̄sss (P�
c ) pentaquarks (but compact, instead of molec-

ular). This suggests that a few of the decuplet configurations might be attractive as well.
3 This momentum scale is defined as 

√
2μ�, with μ the reduced mass of the system and � the mass gap between the 

channels.
4
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3. Effective field theory description

To explicitly check the effects of the previous symmetries, we will describe the pentaquarks 
as non-relativistic meson-baryon bound states interacting by means of a contact-range potential 
that is heavy- and SU(3)-flavor symmetric.

This choice is not arbitrary, but corresponds with the lowest or leading order (LO) effective 
field theory (EFT) description of the heavy antimeson and heavy baryon two-body system. EFTs 
exploit the existence of a separation of scales to formulate generic low energy descriptions of 
physical systems. The idea is to identify characteristic low and high energy scales Q and M such 
that Q/M � 1 and then express every physical quantity as a power series in terms of the ratio 
Q/M . The first term in this series is the LO, the second is the next-to-leading order (NLO), and 
so on.

For molecular pentaquarks the required scale separation manifest itself as follows: the typical 
low energy scale Q is of the order of (100 − 200) MeV and can be identified with the pion mass 
or the binding momentum of the pentaquarks. At this scale the meson-baryon dynamics is well 
known and involves the exchanges of pions and other pseudoscalar mesons. The high energy 
scale M is in the (0.5 − 1.0) GeV range and can be identified with the rho meson mass or the 
momentum scale at which the internal structure of the hadrons becomes evident. This part of 
the interaction is less well-known and might very well involve non-molecular components of the 
pentaquark wave function. EFT parametrizes it as a series of contact-range operators.

Our LO description of the pentaquarks only involves the contact-range potential. This choice 
is justified (i) from a well-known EFT observation that indicates that the existence of shallow 
bound states (e.g. the deuteron or near-threshold states such as hadronic molecules) increases 
the importance of contact-range interactions at low energies [42,43] and (ii) from concrete EFT 
calculations for the LHCb pentaquarks that suggest that pion exchanges are NLO and thus a 
perturbative correction to the LO results [44].

From the previous, the LO S-wave interaction binding the Pc1, Pc2 and Pc3 molecular pen-
taquarks will be given by the Lagrangian

Lcontact = CO
i

∑
IS

(oabc
IS MaP

J
i Bbc)

†(oabc
IS MaP

J
i Bbc) , (12)

where CO
i is the (octet) coupling constant, i = 1, 2, 3 is the index with which we label the hidden-

charm pentaquarks, Ma is a triplet heavy meson with the quark content |Q̄qa〉, where qa = u, d, s
depending on the flavor index a, Bbc a sextet heavy baryon with quark content |Q 1√

2
(qbqc +

qcqb)〉 (i.e. symmetric in the flavor indices), oabc
IS is a tensor in flavor space that projects the heavy 

antimeson-baryon system in an octet state with given isospin I and strangeness S (the exact form 
of this tensor can be deduced from Table 1), and P J

i is a projector into the corresponding spin 
channel J if there is more than one.4 For molecular pentaquarks, the spin of the Pc1 will be 
J = 1

2 , while for the Pc2 and Pc3 it will be either J = 1
2 or 3

2 , though we do not know which 
of these two pentaquarks corresponds to each of the two possible spin configurations. We are 

4 The form of this projector is trivial (P1 = 1) for the Pc1 pentaquark, while P2 and P3 depend on the spin of the 
Pc2 and Pc3 pentaquarks, which is either J = 1

2 or 3
2 , where the projector for the |JM〉 spin configuration in the 

D̄∗�c system takes the form 〈1m1|PJM | 1
2 m2〉 = 〈1m1

1
2 m2|JM〉, i.e. it coincides with the Clebsch-Gordan coefficients 

coupling a D̄∗ meson and �c baryon with spin wave functions |1m1〉 and | 1 m2〉 to total spin |JM〉.
2
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also assuming that the decuplet contact-range interaction is subleading, which is why it is not 
included in the Lagrangian above.

The previous Lagrangian generates a simple contact-range potential of the type

〈p′|V |p〉 = CO
i (�)f (

p

�
)f (

p′

�
) , (13)

where we have regularized the potential, originally a Dirac delta in momentum space, with 
the Gaussian regulator f (x) = e−x2

and a cutoff �. For the cutoff we choose the range 
� = (0.5 − 1.0) GeV, i.e. around the ρ meson mass. With this potential we solve a coupled-
channel Lippmann-Schwinger equation of the type

φA(k) +
∑
B

∫
d3p

(2π)3 〈k|VAB |p〉 φB(p)

MB + p2/(2μB) − MP

= 0, (14)

where A, B are indices for the channels we are considering, φA the vertex function (i.e. the 
wave function �A times the propagator, φA(p) = [MA + p2/(2μA) − MP ] �A(p)), VAB the 
potential between channels A and B , MB the total mass of the heavy antimeson and baryon 
comprising channel B , μB their reduced mass and MP the mass of the molecular pentaquark 
we are predicting. We notice that the only configurations with more than one channel are the 
(I, S) = (1, −1) and ( 1

2 , −2), see Table 1. For illustrative purposes we consider the bound-state 
equation for a Gaussian regulator in the single-channel case, in which it reduces to

1 + CO
i (�)

μA

4π2 I0(γA,�) = 0 , (15)

with γA = √
2μA(MA − MP ) the wave number of the molecular pentaquark and where I0 is 

given by

I0(γA,�) = √
2π � − 2 e2γ 2

A/�2
πγA erfc

(√
2γA

�

)
, (16)

where erfc (x) is the complementary error function.
If we determine the CO

i couplings from reproducing the masses of the i = 1, 2, 3 Pci pen-
taquark, for � = 0.75 GeV we obtain the couplings

CO
1 = −1.19 (−(2.17 − 0.80)) fm2 , (17)

CO
2 = −1.44 (−(2.88 − 0.93)) fm2 , (18)

CO
3 = −1.02 (−(1.80 − 0.71)) fm2 , (19)

where the values in parentheses correspond to varying the cutoff in the (0.5 −1.0) GeV window.5

With these couplings, for � = 0.75 GeV we predict the location of the c̄b five-flavor pentaquarks 
to be

m(P �
c̄b) = 7783+6

−5 , 7907 ± 7 , 7930+5
−4 MeV , (20)

m(P �
c̄b) = 7765+6

−5 , 7892+8
−9 , 7914+5

−4 MeV , (21)

5 For simplicity, we have not considered the errors esteeming from the uncertainties in the pentaquark masses, see 
Eqs. (1)-(3), nor from the further dependence of these masses on the resonance profile, check for instance Ref. [45] in 
which the Pc(4312) is found to be a virtual (instead of a bound) state.
6
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where the uncertainty comes from varying the cutoff (i.e. taking � = (0.5 − 1.0) GeV), but does 
not include the SU(3) symmetry breaking effects, which we discuss later. For the cb̄ five-flavor 
pentaquarks we predict instead

m(P �

cb̄
) = 7829+10

−9 , 7858+12
−10 , 7883+8

−7 MeV , (22)

m(P �

cb̄
) = 7804+6

−5 , 7835+8
−7 , 7858+5

−4 MeV . (23)

The complete list of predictions (including not only cutoff but also SU(3)-flavor uncertainties) 
can be consulted in Table 2.

The spectrum of Table 2 implies that each of the observed hidden-charm pentaquarks belongs 
to a light/heavy-flavor multiplet with 16 members. As three hidden-charm pentaquarks have been 
observed, this means a total of 48 states (of which 45 are so far unobserved). The experimental 
observation of these pentaquarks could be achieved by means of the SU(3)-flavor and HFS ana-
logues of the J/�N decay channel that has been used in the discovery of the Pc1, Pc2 and Pc3. 
For instance, the five-flavor pentaquarks P �

cb̄
and P �

cb̄
could be detected by means of their B+

c �

and B+
c � decays.

Even though for the moment we have not considered HQSS explicitly, it is easy to figure out its 
consequences: from HQSS we expect the hidden-charm pentaquarks to come in multiplets of up 
to seven members [6,35–37]. Within the scope of contact-range EFTs incorporating HQSS [38], 
the observation of the Pc1, Pc2 and Pc3 pentaquarks suggests that the aforementioned septuplet is 
probably complete [12,48], meaning that there are 4 unobserved states. This result is reproduced 
in most schemes that include HQSS, e.g. models with a compact core coupled to the molecular 
degrees of freedom [34], indicating that it depends on HQSS instead of the specific dynamics 
generating the pentaquarks. The bottom-line is that if we compound the HQSS multiplets with 
the SU(3)-flavor and HFS ones, the heavy molecular pentaquark family could contain a total of 
112 states (3 observed, 109 to be discovered), as we will discuss later.

Among the results in Table 2 it is interesting to notice the strange-isoscalar P �
c partners of the 

three LHCb pentaquarks, which were predicted (together with the pentaquarks) nearly a decade 
ago [3,4]. This prediction has been recently updated in Ref. [49], which uses a contact-range 
theory where the couplings are saturated by vector-meson exchange and the regularization is set 
as to reproduce the Pc(4312) pentaquark. The prediction of Ref. [49] for the mass of the D̄�′

c

molecule is 4436.7 MeV, which happens to be pretty close to ours (check Table 2). Refs. [50,51]
have also made a series of molecular pentaquark predictions which closely match ours.

On the experimental side it is worth mentioning that a P �
c pentaquark — the Pcs(4459) — 

has been observed by the LHCb collaboration [52], but owing to its mass it is probably a D̄∗�c

molecule [53–56]. As such it involves a 3̄ charmed baryon (�c, �c) instead of a sextet one (�c, 
�′

c, �c and their excited states), which means that this pentaquark is not expected to be one of the 
SU(3)-flavor partners of the Pc(4312), Pc(4440) and Pc(4457) that we predict here. Nonetheless, 
the Pcs(4459) will prove useful as a phenomenological cross-check of the size of SU(3)-flavor 
violations, as we will argue later. Regarding the possible five-flavor partners of the Pcs(4459), 
there is a recent exploration in Ref. [57].

4. Uncertainties

We are predicting the molecular pentaquarks within a contact-range EFT, which entails that 
they are amenable to systematic error estimations. A conventional way to estimate these the-
oretical errors is to vary the predictions within a sensible cutoff window (which is what we 
7
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Table 2
The heavy- and light-flavor symmetry partners of the LHCb pentaquark trio, the Pc(4312), Pc(4440) and Pc(4457) (or 
Pc1, Pc2, Pc3 for short). This includes the five-flavor pentaquarks with quark content b̄csdu and bc̄sdu. The column 
“Molecule” displays the two-hadron system under consideration, I the isospin, S the strangeness, BP the binding energy, 
MP the mass (where MP = Mth − BP , with Mth the mass of the corresponding heavy antimeson-baryon threshold, for 
which we take the isospin symmetric limit of the masses listed in the Review of Particle Physics (RPP) [46]) and “Partner” 
represents which hidden-charm pentaquark (Pci , i = 1, 2, 3) is the partner of the predicted state. In the coupled-channel 
cases, the binding energy is calculated relative to the channel with the lowest mass. For the calculations we use a contact-
range EFT, with the potential of Eq. (13) and a Gaussian regulator with a cutoff � = 0.75 GeV. The error comes from two 
different sources, which are added in quadrature: (i) varying the cutoff in the � = (0.5 −1.0) GeV range and (ii) assuming 
a 20% uncertainty in SU(3)-flavor symmetry as applied to the contact-range couplings (this second error only pertains 
pentaquarks with strangeness). In general the SU(3)-flavor uncertainty dominates in the cc̄, cb̄, bc̄ sectors, while for the 
bb̄ pentaquarks the bulk of the errors come from the cutoff variation (in agreement with theoretical expectations [47]).

Molecule I S BP MP Partner Molecule I S BP MP Partner

D̄�c
1
2 0 Input Input Pc1 B�c

1
2 0 27.5+9.5

−8.0 7710.5+8.0
−9.5 Pc1

D̄∗�c
1
2 0 Input Input Pc2 B∗�c

1
2 0 43.6+10.6

−9.3 7734.6+9.3
−10.6 Pc2

D̄∗�c
1
2 0 Input Input Pc3 B∗�c

1
2 0 18.6+7.6

−6.0 7759.7+6.0
−7.6 Pc3

D̄�′
c 0 −1 9.6+10.4

−7.3 4436.3+7.3
−10.4 Pc1 B�′

c 0 −1 29+18
−16 7829+16

−18 Pc1

D̄∗�′
c 0 −1 23+16

−13 4565+13
−16 Pc2 B∗�′

c 0 −1 45+23
−21 7858+21

−23 Pc2

D̄∗�′
c 0 −1 5.4+7.7

−4.7 4581.8+4.7
−7.7 Pc3 B∗�′

c 0 −1 20+15
−12 7883+12

−15 Pc3

D̄�′
c − D̄s�c 1 −1 5.2+9.4

−5.0 4416.7+5.0
−9.4 Pc1 B�′

c − Bs�c 1 −1 20+17
−14 7801+14

−17 Pc1

D̄∗�′
c − D̄∗

s �c 1 −1 18+16
−12 4548+12

−16 Pc2 B∗�′
c − B∗

s �c 1 −1 36+22
−19 7833+19

−22 Pc2

D̄∗�′
c − D̄∗

s �c 1 −1 2.0+6.5
−2.0 4563.7+2.0

−6.5 Pc3 B∗�′
c − B∗

s �c 1 −1 12+13
−10 7857+10

−13 Pc3

D̄�c − D̄s�
′
c

1
2 −2 2.6+9.4

−2.6 4544.2+2.6
−9.4 Pc1 B�c − Bs�

′
c

1
2 −2 14+17

−13 7931+13
−17 Pc1

D̄∗�c − D̄∗
s �′

c
1
2 −2 16+16

−13 4675+13
−15 Pc2 B∗�c − B∗

s �′
c

1
2 −2 31+23

−20 7963+23
−20 Pc2

D̄∗�c − D̄∗
s �′

c
1
2 −2 0.4+6.2

−0.4 4690.3+0.4
−6.2 Pc3 B∗�c − B∗

s �′
c

1
2 −2 7.3+13.0

−8.2 7986.5+8.2
−13.0 Pc3

D̄�b
1
2 0 20.2+5.3

−4.7 7660.1+4.7
−5.3 Pc1 B�b

1
2 0 48+23

−18 11044+18
−23 Pc1

D̄∗�b
1
2 0 37.5+7.3

−6.5 7784.2+6.5
−7.3 Pc2 B∗�b

1
2 0 68+25

−28 11070+28
−25 Pc2

D̄∗�b
1
2 0 14.3+4.7

−4.0 7807.4+4.0
−4.7 Pc3 B∗�b

1
2 0 37+19

−15 11101+15
−19 Pc3

D̄�′
b

0 −1 20+15
−12 7783+12

−15 Pc1 B�′
b

0 −1 49+29
−25 11166+25

−29 Pc1

D̄∗�′
b

0 −1 38+20
−18 7907+18

−20 Pc2 B∗�′
b

0 −1 68+34
−30 11192+34

−30 Pc2

D̄∗�′
b

0 −1 15+12
−10 7930+10

−12 Pc3 B∗�′
b

0 −1 38+25
−21 11222+21

−25 Pc3

D̄�′
b

− D̄s�b 1 −1 16+14
−12 7765+12

−14 Pc1 B�′
b

− Bs�b 1 −1 40+28
−24 11140+24

−28 Pc1

D̄∗�′
b

− D̄∗
s �b 1 −1 34+20

−18 7892+18
−20 Pc2 B∗�′

b
− B∗

s �b 1 −1 59+33
−29 11161+29

−33 Pc2

D̄∗�′
b

− D̄∗
s �b 1 −1 11+12

−10 7914+12
−10 Pc3 B∗�′

b
− B∗

s �b 1 −1 30+26
−19 11199+26

−19 Pc3

D̄�b − D̄s�
′
b

1
2 −2 15+15

−12 7888+12
−15 Pc1 B�b − Bs�

′
b

1
2 −2 35+29

−24 11267+24
−29 Pc1

D̄∗�b − D̄∗
s �′

b
1
2 −2 34+20

−18 8013+18
−20 Pc2 B∗�b − B∗

s �′
b

1
2 −2 56+34

−29 11295+30
−34 Pc2

D̄∗�b − D̄∗
s �′

b
1
2 −2 11+12

−9 8037+9
−12 Pc3 B∗�b − B∗

s �′
b

1
2 −2 26+24

−19 11325+19
−24 Pc3

have done for the five-flavor pentaquarks in Eqs. (20)-(23)). Here the cutoff floats from 0.5 to 
1 GeV, which can be either identified with the mass of the vector mesons or with the momenta at 
which the internal structure of the hadrons starts to be resolved. For the cc̄ family of pentaquarks 
this translates into a systematic error of less than 1 MeV, which explains why the predictions 
of other theoretical works [49–51] are basically identical to ours. Yet this uncertainty is calcu-
8
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lated under the assumption that SU(3)-flavor symmetry is perfectly preserved, which is not the 
case. Violations of SU(3)-flavor symmetry relations are usually of the order of 20%, as esti-
mated from the difference between the pion and kaon weak decay constants (fπ 
 130 MeV and 
fK 
 160 MeV). From this, within the EFT we are using we can easily take into account the 
SU(3)-flavor symmetry breaking effects by randomly varying the CO

i couplings by 20% around 
their central values. For � = 0.75 GeV, this translates into an uncertainty of 2 −15 MeV depend-
ing on the specific cc̄ pentaquark, where the largest uncertainties correspond to the states with 
the largest binding energies.

For the cb̄, c̄b and bb̄ molecular pentaquarks the situation is different owing to the consid-
erably larger cutoff dependence (about 5, 10 and 20 − 30 MeV respectively), which we will 
discuss in the next paragraph. The SU(3)-flavor uncertainties in these cases will be 10 − 20 and 
15 − 25 MeV for the cb̄/c̄b and bb̄ cases, respectively. That is, while for the cc̄, cb̄, c̄b the un-
certainties are dominated by flavor symmetry breaking effects, for the bb̄ pentaquarks cutoff 
variation tends to be the largest source of uncertainty.

However, the application of SU(3)-flavor symmetry remains theoretical in the sense that we do 
not really have a clear molecular example from where we can determine how well this symmetry 
works at the quantitative level. Two qualitative examples are already known:

(i) The Zc(3900) [58] and Zcs(3985) [59] (Zc and Zcs from now on), which have been theo-
rized to be I = 1 D∗D̄ [30,60,61] and I = 1

2 D∗
s D̄ − DsD̄

∗ [62,63] molecules, respectively.
(ii) The Pcs(4459) pentaquark [52], which has been theorized to be an I = 0 D̄∗�c bound 

state [53–56].

In the first case, the SU(3) decomposition of heavy meson-antimeson states is 3 ⊗ 3̄ = 1 ⊕ 8, 
i.e. a singlet and an octet representation, where the Zc and Zcs both belong to the octet and thus 
their potential is expected to be the same [29,62]. But it happens that the masses of the Zc and 
Zcs resonances are above their corresponding meson-antimeson thresholds, which means that 
they are not necessarily bound states but more probably resonances (or even virtual states if we 
take into account that their Breit-Wigner masses might not correspond to their physical masses). 
If this happens to be the case, they will require a different contact-range EFT description than 
the one we employ here for the pentaquarks (or the direct extraction of the couplings from the 
data instead of the masses, as done in Refs. [61,62]), which renders it difficult to make direct 
comparisons between the Zc’s and the Pc’s.

In the second case, as pointed out previously, the �c charmed baryon is a flavor antitriplet and 
the D̄∗�c system will essentially belong to a different and independent representation of SU(3). 
That is, the D̄∗�c potential can be described with a new coupling constant D(�), i.e.

〈p′|V |p〉 = D(�)f (
p

�
)f (

p′

�
) , (24)

the value of which is in principle unrelated to the CO
i (�) couplings we have used to reproduce 

the three Pc pentaquarks. However, phenomenological models based on vector-meson exchanges 
predict that D = CO

1 [3,4], i.e. the I = 0 D̄∗�c and I = 1
2 D̄�c potentials are expected to be 

similar. Concrete calculations with the same type of EFT, regulator and cutoff range we have 
used for the Pc1, Pc2 and Pc3 yield D = 1.17 CO

1 when calibrating D(�) to the Pcs(4459) mass, 
showing a 17% discrepancy from D = CO

1 . The more complete analysis of Ref. [54] (which in-
cludes a series of effects not considered here, like coupled channel dynamics or the double-peak 
solution considered in the experimental analysis of Ref. [52]) provides a compatible figure of 
9
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D = (0.90 − 1.11) CO
1 , which deviates a merely 10% away from the phenomenological relation 

D = CO
1 . The previous numbers are well within the 20% SU(3) uncertainty estimated from the 

fπ and fK difference. This is despite the fact that the D = CO
1 relation is based on phenomenol-

ogy, from which further uncertainties (beyond SU(3) symmetry breaking) should be expected.
Regarding HFS, as already pointed out, its application beyond the cc̄ sector has a serious 

limitation in terms of model dependence within the contact-range EFT framework. The cutoff 
dependence of the predictions becomes larger as the reduced mass of the system is increased, 
from merely 1 MeV at most in the hidden-charm sector to a couple of tens of MeV in the hidden-
bottom sector. This limitation was already pointed out in Ref. [47], where here we merely confirm 
the impossibility of making model independent predictions with HFS. Yet we notice that there 
is systematicity in this model dependence, as increasing the cutoff � invariably leans towards 
more binding. This is important, as it implies that the conclusion that the cb̄, c̄b and bb̄ molec-
ular pentaquarks bind is indeed model independent, with the model dependence limited to how 
much they bind. In fact it can be shown that for two-body molecular systems where the potential 
respects HFS (i.e. the potential is independent of the heavy-quark mass), the binding energy B2
increases monotonically with the reduced mass μ, ∂B2/∂μ � 0 (check Appendix A for further 
details). That is, though the specific masses of the cb̄, c̄b and bb̄ pentaquarks are model depen-
dent to a certain extent, the fact that these systems bind is a model independent outcome of the 
calculations.

5. Including heavy-quark spin symmetry

Previously we have made the simplifying assumption that the potentials binding the Pc1, 
Pc2 and Pc3 pentaquarks are unrelated. However, HQSS connects the potentials of these 
three configurations and allows for a common description of the P̄�Q, P̄ ∗�Q and P̄ ∗�∗

Q

molecules [6,35–37] (where here we will concentrate on the consequences of HQSS for the type 
of contact-range EFTs we are using). The disadvantage though is that we do not know which of 
the Pc2 and Pc3 pentaquarks corresponds to the J = 1

2 and 3
2 D̄∗�c configurations. As a conse-

quence there are two possible set of predictions for the P̄ (∗)�
(∗)
Q family of molecules, depending 

on which spin identification we propose for the Pc2 and Pc3 pentaquarks.
HQSS indicates that the |Q̄q〉 and |Qqq〉 family of heavy hadrons are related by means of 

rotations of the spin of the heavy quark. Indeed, we can group the ground and excited states of a 
heavy hadron in a single superfield, which for the S-wave heavy mesons and baryons are defined 
as

H = 1√
2

[
P + �σ · �P ∗] , (25)

�S = 1√
3

�σ B6 + �B∗
6 , (26)

where for simplicity we are ignoring the SU(3)-flavor indices and with P , P ∗ the J = 0, 1 heavy 
mesons, B6, B∗

6 the J = 1
2 , 3

2 heavy baryons and �σ the Pauli matrices. With the previous defini-
tions, the lowest-order contact-range Lagrangian describing molecular pentaquarks reads [38]

Lcontact = Ca Tr[H †H ] �S† · �S

+ Cb

3∑
Tr[H †σiH ] �S† · (Ji

�S) , (27)

i=1

10
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where Ji are the i = 1, 2, 3 spin-1 matrices. The terms proportional to the couplings Ca and Cb

correspond to central and spin-spin contact-range interactions. Thus, the practical implication 
of the HQSS version of the contact-range Lagrangian is that the CO

i couplings we previously 
defined in Eq. (12) can be decomposed in central and spin-spin components:

CO
i → CO

a + λi C
O
b , (28)

where the explicit decomposition for the three known molecular pentaquark candidates is

VC(P̄�Q) = CO
a , (29)

VC(P̄ ∗�Q,J = 1
2 ) = CO

a − 4

3
CO

b , (30)

VC(P̄ ∗�Q,J = 3
2 ) = CO

a + 2

3
CO

b , (31)

while for the four potentially unobserved configurations we will have

VC(P̄�∗
Q) = CO

a , (32)

VC(P̄ ∗�∗
Q,J = 1

2 ) = CO
a − 5

3
CO

b , (33)

VC(P̄ ∗�∗
Q,J = 3

2 ) = CO
a − 2

3
CO

b , (34)

VC(P̄ ∗�∗
Q,J = 5

2 ) = CO
a + CO

b . (35)

Now, for the Pc1 pentaquark the identification of its particle and spin channel is trivial: J = 1
2

D̄�c. Meanwhile this is not the case for the Pc2 and Pc3 pentaquarks: both are expected to be 
D̄∗�c molecules, but what is not clear is which one is the spin J = 1

2 and 3
2 state, as their spins 

have not been experimentally determined yet. Thus there are two possibilities:

(i) that the Pc2 and Pc3 pentaquarks are J = 1
2 and 3

2 states, respectively, thus following the 
standard pattern of mass increasing with spin, which we will call scenario A, and

(ii) the opposite pattern, mass decreasing with spin, is scenario B.

These scenarios have been named following the convention found in Ref. [12]. Different theo-
retical works prefer scenario A [11,64], scenario B [34,48,65,66], do not find a strong prefer-
ence [12,44] or explore alternative possibilities [67,68]. Scenario A has recently been explained 
as a consequence of the short-range interaction of the light-quarks within the heavy antimeson 
and heavy baryon composing the pentaquarks [69]. Scenario B appeared before the discovery 
of the pentaquark trio, for instance in Ref. [35], and has received explanations both in terms of 
pion [7] and vector meson exchanges [70].

Here, we will calibrate the CO
a and CO

b couplings to the masses of the Pc1 and Pc3 pentaquarks 
in scenarios A and B, leading to

CO
a = −1.17 (−(0.78 − 2.16)) fm2 (A) , (36)

CO
b = +0.21 (+(0.11 − 0.54)) fm2 (A) , (37)

CO
a = −1.30 (−(0.85 − 2.52)) fm2 (B) , (38)

CO = −0.21 (−(0.11 − 0.54)) fm2 (B) , (39)
b
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depending on the scenario, where the intervals in parentheses refer to the cutoff variation (i.e. 
(0.5 − 1.0) GeV). From this we can calculate the complete spectrum of the D̄∗�c, D̄∗�∗

c and 
their SU(3)- and heavy-flavor counterparts, where we show the results in Tables 3 (cc̄ and bc̄

sectors) and 4 (cb̄ and bb̄ sectors). We find that most pentaquark configurations (112 in total) 
bind within theoretical uncertainties (which are computed as before).

6. Compositeness of the pentaquarks

Here we have described the pentaquarks as meson-baryon bound states, which implicitly 
assumes that they are predominantly molecular or composite in nature. Yet, owing to the un-
specified nature of the interaction binding the meson and the baryon (which could have its origin 
in elementary components, e.g. a five-quark compact core [34,36]) and the finite binding energy 
of these states, it is sensible to expect that they will not be purely molecular.

From the EFT point of view, our assumption that the wave function of a pentaquark only 
involves meson-baryon degrees of freedom is expected to be valid up to O(Q/M) corrections:

|PQQ′ 〉 = |meson-baryon〉 ×
(

1 −O(
Q

M
)

)

+ O(
Q

M
) |compact〉 . (40)

Here a caveat is in place: the wave function is not an observable and as a consequence there will 
always remain a degree of ambiguity on whether a particular state is composite or not (or how 
composite it is). In fact, the EFT framework usually does not rely on including new degrees of 
freedom at subleading orders in the wave function to improve predictions. Instead, it includes 
new contact-range operators acting on the degrees of freedom already present, which means that 
compact components often manifest as energy dependence.

Be it as it may, EFT can be used to derive a dimensional estimation of the compositeness 
(Xcomp, i.e. the probability of the meson-baryon component) of the pentaquarks

Xdim
comp(PQQ′) = 1 −O(

Q

M
) = 1

1 +O(
Q
M

)

≈ 1

1 + xc

√
2μB2
mρ

+O(
Q

M
) , (41)

where we have reordered the terms in order to obtain an expression that is suitable when Q/M

is not small (i.e. when the binding energy is closer to the limit at which the EFT will fail, so 
we only have Q/M < 1 but not Q/M � 1). In the second line we have particularized for the 
choice Q = γ2 = √

2μB2 and M = mρ , where xc is a numerical constant of O(1) for which we 
will choose xc = 1. This yields a compositeness of around Xdim

comp = (0.85, 0.78, 0.88) for the 
Pc1, Pc2 and Pc3 pentaquarks in the cc̄ sector, (0.76, 0.70, 0.79) and (0.71, 0.67, 0.75) for c̄b
and cb̄, respectively, while merely a value of (0.60, 0.56, 0.63) for their bb̄ counterparts. As a 
comparison, for the deuteron (γ2 = 45 MeV) we will obtain a compositeness of 0.94, compatible 
with a pure molecular interpretation. Yet, we remind that these estimates are purely based on 
a comparison of scales and are not very precise. This is illustrated by the numerical factor xc

in Eq. (41), where by taking xc = 1/2 or xc = 2 instead of xc = 1 (all of which are O(1)), the 
compositeness will change by a factor of order Q/M .
F.-Z. Peng, M.-Z. Liu, Y.-W. Pan et al. Nuclear Physics B 983 (2022) 115936
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Table 3
The heavy-quark spin, heavy-flavor and light-flavor symmetry partners of the Pc(4312), Pc(4440) and Pc(4457) pen-
taquarks, where in this table we consider the configurations with heavy-quark content cc̄ and bc̄. The predictions depend 
on which are the assumptions made for the spin of the Pc(4440) and Pc(4457) pentaquarks: scenario A refers to the 
Pc(4440) and Pc(4457) having spin J = 1

2 and 3
2 , while scenario B considers the opposite identification. The columns 

“Molecule”, I , S, BP and MP have the same meaning as in Table 2, while J refers to the spin of the molecular configu-
ration and “Scenario” to the two aforementioned possibilities (A & B). In the coupled-channel cases, the binding energy 
is calculated relative to the channel with the lowest mass. The calculations use the contact-range EFT of Eq. (13) and 
a Gaussian regulator with a cutoff � = 0.75 GeV. The uncertainties are obtained from two sources (and then summed 
in quadrature): the error coming from varying the cutoff in the (0.5 − 1.0) GeV window and an expected violation of 
SU(3)-flavor symmetry of 20% in the contact-range couplings (this later error only applies to configurations containing 
strangeness). The notation −(BP /MP ) indicates a configuration that does not bind for the central estimation of the pa-
rameters, but could have binding energy BP / mass MP within uncertainties. For the mass of the �∗

b
(which has not been 

experimentally observed yet), we simply assume m(�∗
b
) − m(�b) 
 m(�∗

b
) − m(�′

b
) 
 m(�∗

b
) − m(�′

b
) 
 20 MeV; 

the effect of the �∗
b

mass on the predictions of the P̄ ∗�∗
b

-P̄ ∗
s �∗

b
pentaquarks is minimal though because the lowest mass 

threshold corresponds to the P̄ ∗
s �∗

b
two-hadron system.

Molecule I S BP MP J Scenario Molecule I S BP MP J Scenario

D̄�∗
c

1
2 0 8.4+0.5

−0.4 4376.9+0.4
−0.5

3
2 A D̄�∗

c
1
2 0 14.0+0.6

−0.6 4371.4+0.6
−0.6

3
2 B

D̄∗�∗
c

1
2 0 25.9+0.3

−0.4 4500.7+0.4
−0.3

1
2 A D̄∗�∗

c
1
2 0 3.2+0.2

−0.2 4523.5+0.2
−0.2

1
2 B

D̄∗�∗
c

1
2 0 15.8+0.1

−0.0 4510.9+0.0
−0.1

3
2 A D̄∗�∗

c
1
2 0 9.9+0.1

−0.0 4516.8+0.0
−0.0

3
2 B

D̄∗�∗
c

1
2 0 3.2+0.1

−0.2 4523.5+0.2
−0.1

5
2 A D̄∗�∗

c
1
2 0 25.9+0.3

−0.4 4500.7+0.4
−0.3

5
2 B

D̄�∗
c 0 −1 9.2+10.1

−7.1 4503.7+7.1
−10.1

3
2 A D̄�∗

c 0 −1 15+13
−10 4498+10

−13
3
2 B

D̄∗�∗
c 0 −1 27+17

−15 4627+15
−17

1
2 A D̄∗�∗

c 0 −1 3.6+6.5
−3.5 4650.5+3.5

−6.5
1
2 B

D̄∗�∗
c 0 −1 17+13

−11 4638+11
−13

3
2 A D̄∗�∗

c 0 −1 10.7+6.5
−7.8 4643.5+7.8

−6.5
3
2 B

D̄∗�∗
c 0 −1 3.5+6.5

−3.4 4650.5+3.4
−6.5

5
2 A D̄∗�∗

c 0 −1 27+17
−15 4627+15

−17
5
2 B

D̄�∗
c − D̄s�

∗
c 1 −1 4.5+8.7

−4.4 4481.9+4.4
−8.7

3
2 A D̄�∗

c − D̄s�
∗
c 1 −1 9.6+12.0

−8.0 4477.0+12.0
−8.0

3
2 B

D̄∗�∗
c − D̄∗

s �∗
c 1 −1 21+17

−14 4609+14
−17

1
2 A D̄∗�∗

c − D̄∗
s �∗

c 1 −1 0.8+4.8
−0.8 4629.5+0.8

−4.8
1
2 B

D̄∗�∗
c − D̄∗

s �∗
c 1 −1 11.4+12.7

−9.0 4618.9+9.0
−12.7

3
2 A D̄∗�∗

c − D̄∗
s �∗

c 1 −1 6.1+9.7
−5.6 4624.3+5.6

−9.7
3
2 B

D̄∗�∗
c − D̄∗

s �∗
c 1 −1 0.8+4.8

−0.8 4629.5+0.8
−4.8

5
2 A D̄∗�∗

c − D̄∗
s �∗

c 1 −1 21+17
−14 4609+14

−17
5
2 B

D̄�∗
c − D̄s�

∗
c

1
2 −2 1.4+8.4

−1.4 4612.6+1.4
−8.4

1
2 A D̄�∗

c − D̄s�
∗
c

1
2 −2 5.7+12.0

−5.7 4608.2+5.7
−12.0

1
2 B

D̄∗�∗
c − D̄∗

s �∗
c

1
2 −2 18+17

−14 4739+14
−17

1
2 A D̄∗�∗

c − D̄∗
s �∗

c
1
2 −2 −(2.7) −(4755.1) 1

2 B

D̄∗�∗
c − D̄∗

s �∗
c

1
2 −2 8.4+12.9

−8.2 4749.4+8.2
−12.9

3
2 A D̄∗�∗

c − D̄∗
s �∗

c
1
2 −2 3.1+9.7

−3.1 4754.7+3.1
−9.7

3
2 B

D̄∗�∗
c − D̄∗

s �∗
c

1
2 −2 −(2.7) −(4755.1) 5

2 A D̄∗�∗
c − D̄∗

s �∗
c

1
2 −2 18+17

−14 4739+14
−17

5
2 B

D̄�∗
b

1
2 0 19.1+4.3

−3.7 7680.7+3.7
−4.3

3
2 A D̄�∗

b
1
2 0 26.6+5.0

−3.6 7673.2+3.6
−5.0

3
2 B

D̄∗�∗
b

1
2 0 41.9+7.8

−7.2 7799.2+7.2
−7.8

1
2 A D̄∗�∗

b
1
2 0 11.1+4.3

−3.6 7830.0+3.6
−4.3

1
2 B

D̄∗�∗
b

1
2 0 29.2+6.3

−5.6 7811.9+5.6
−6.3

3
2 A D̄∗�∗

b
1
2 0 21.4+5.5

−4.7 7819.7+4.7
−5.5

3
2 B

D̄∗�∗
b

1
2 0 11.1+4.3

−3.6 7830.0+3.6
−4.3

5
2 A D̄∗�∗

b
1
2 0 41.9+7.8

−7.1 7799.2+7.1
−7.8

5
2 B

D̄�∗
b

0 −1 22+18
−10 7800+10

−17
3
2 A D̄�∗

b
0 −1 29+21

−12 7792+12
−21

3
2 B

D̄∗�∗
b

0 −1 42+22
−20 7920+20

−22
1
2 A D̄∗�∗

b
0 −1 11.3+10.6

−8.3 7951.1+8.3
−10.6

1
2 B

D̄∗�∗
b

0 −1 29+17
−15 7933+15

−17
3
2 A D̄∗�∗

b
0 −1 22+15

−13 7941+13
−15

3
2 B

D̄∗�∗
b

0 −1 11.3+10.5
−8.3 7951.1+8.3

−10.5
5
2 A D̄∗�∗

b
0 −1 42+22

−20 7920+20
−22

5
2 B

D̄�∗
b

− D̄s�
∗
b

1 −1 15+14
−11 7786+11

−14
3
2 A D̄�∗

b
− D̄s�

∗
b

1 −1 23+17
−14 7778+14

−17
3
2 B

D̄∗�∗
b

− D̄∗
s �∗

b
1 −1 38+22

−20 7906+20
−22

1
2 A D̄∗�∗

b
− D̄∗

s �∗
b

1 −1 8.0+10.2
−7.2 7936.7+7.2

−10.2
1
2 B

(continued on next page)
13
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Table 3 (continued)

Molecule I S BP MP J Scenario Molecule I S BP MP J Scenario

D̄∗�∗
b

− D̄∗
s �∗

b
1 −1 28+18

−15 7919+15
−18

3
2 A D̄∗�∗

b
− D̄∗

s �∗
b

1 −1 18+15
−12 7927+12

−15
3
2 B

D̄∗�∗
b

− D̄∗
s �∗

b
1 −1 8.0+10.2

−7.2 7936.7+7.2
−10.2

5
2 A D̄∗�∗

b
− D̄∗

s �∗
b

1 −1 38+22
−20 7906+20

−22
5
2 B

D̄�∗
b

− D̄s�
∗
b

1
2 −2 13+14

−11 7909+11
−14

3
2 A D̄�∗

b
− D̄s�

∗
b

1
2 −2 21+17

−14 7901+14
−17

3
2 B

D̄∗�∗
b

− D̄∗
s �∗

b
1
2 −2 38+22

−20 8029+20
−22

1
2 A D̄∗�∗

b
− D̄∗

s �∗
b

1
2 −2 6.8+10.4

−7.3 8059.2+7.3
−10.4

1
2 B

D̄∗�∗
b

− D̄∗
s �∗

b
1
2 −2 25+18

−15 8041+15
−18

3
2 A D̄∗�∗

b
− D̄∗

s �∗
b

1
2 −2 17+15

−12 8049+12
−15

3
2 B

D̄∗�∗
b

− D̄∗
s �∗

b
3
2 −2 6.8+10.4

−7.3 8059.2+7.3
−10.4

5
2 A D̄∗�∗

b
− D̄∗

s �∗
b

5
2 −2 38+22

−20 8029+20
−22

5
2 B

Actually, there is a rich literature dealing with ways of quantifying the compositeness of a 
state [71–82], which we can use to obtain a refined estimation of Xcomp. They began with the 
compositeness criterion proposed by Weinberg [71–73], which can be written as

XW
comp =

√
1

1 − 2 r0
a0

, (42)

where a0 and r0 are the scattering length6 and effective range and which showed in a model-
independent way that the deuteron is probably composite. It actually returns Xcomp > 1 for the 
deuteron, which indicates we are using the previous formula beyond its domain of validity (r0 < 0
for obtaining Xcomp < 1 for a bound state, not to mention that there will be corrections coming 
from the range of the interaction, as already pointed in [73]), but this result is usually interpreted 
as molecular. The bottom-line though is that the Weinberg criterion relies heavily on the sign of 
the effective range of the purported components of the state: if positive (negative) the state will 
be predominantly composite (elementary). As a consequence the application of this criterion will 
lead to the conclusion that the pentaquarks we are dealing with here are mostly molecular. This 
however will be an artifact of the formalism we are using: our LO calculation automatically 
generates a positive effective range, which is a consequence of the dynamics we are using.7

Besides, even though it is evident that the energy dependence of a compact core coupled to a 
two-hadron system is such that it will generate a negative effective range, a sufficiently short-
ranged potential combined with a large binding energy implies a sizable superposition of the 
hadrons and, owing to their finite size, also a degree of non-compositeness. From this and other 
arguments, extensions of the Weinberg criterion have been proposed that apply to situations 
different from a bound state with negative effective range [74–82].

A recent proposal of a model-independent estimation of the compositeness of a state is the 
following [80]

X̃comp =
√

1

1 + 2| r0
a0

| , (43)

6 In our convention, for attractive potentials a0 < 0 in the absence of bound states and a0 > 0 when there is one bound 
state.

7 Only at NLO will we be able to obtain a negative effective range, as it is at this order that energy and momentum 
dependent corrections to the contact-range potential enter. Unfortunately this calculation implies new couplings, the 
calibration of which require meson-baryon scattering data that are not available at the moment.
14
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Table 4
Same as Table 3 but for the cb̄ and bb̄ sectors.

Molecule I S BP MP J Scenario Molecule I S BP MP J Scenario

B�∗
c

1
2 0 27.0+8.6

−7.3 7770.6+7.3
−8.6

3
2 A B�∗

c
1
2 0 35.5+9.8

−8.4 7762.2+8.4
−9.8

3
2 B

B∗�∗
c

1
2 0 49+12

−10 7794+10
−12

1
2 A B∗�∗

c
1
2 0 15.6+7.0

−5.8 7827.3+5.8
−7.0

1
2 B

B∗�∗
c

1
2 0 35.6+9.8

−8.5 7807.3+8.5
−9.8

3
2 A B∗�∗

c
1
2 0 27.1+8.7

−7.3 7815.7+7.3
−8.7

3
2 B

B∗�∗
c

1
2 0 15.6+7.0

−5.8 7827.3+5.8
−7.0

5
2 A B∗�∗

c
1
2 0 49+12

−10 7794+10
−12

5
2 B

B�∗
c 0 −1 28+18

−15 7897+15
−18

3
2 A B�∗

c 0 −1 37+21
−18 7888+18

−21
3
2 B

B∗�∗
c 0 −1 51+25

−23 7919+23
−25

1
2 A B∗�∗

c 0 −1 17+13
−11 7954+11

−13
1
2 B

B∗�∗
c 0 −1 37+21

−18 7933+18
−21

3
2 A B∗�∗

c 0 −1 29+18
−15 7942+15

−18
3
2 B

B∗�∗
c 0 −1 17+13

−11 7954+11
−13

5
2 A B∗�∗

c 0 −1 51+25
−23 7919+23

−25
5
2 B

B�∗
c − Bs�

∗
c 1 −1 19+16

−13 7866+13
−16

3
2 A B�∗

c − Bs�
∗
c 1 −1 27+19

−16 7858+17
−19

3
2 B

B∗�∗
c − B∗

s �∗
c 1 −1 40+24

−21 7893+21
−24

1
2 A B∗�∗

c − B∗
s �∗

c 1 −1 9.2+11.2
−8.1 7924.4+8.1

−11.2
1
2 B

B∗�∗
c − B∗

s �∗
c 1 −1 27+19

−16 7906+19
−16

3
2 A B∗�∗

c − B∗
s �∗

c 1 −1 20+16
−13 7914+13

−16
3
2 B

B∗�∗
c − B∗

s �∗
c 1 −1 9.2+11.2

−8.1 7924.4+8.1
−11.2

5
2 A B∗�∗

c − B∗
s �∗

c 1 −1 40+24
−21 7893+21

−24
5
2 B

B�∗
c − Bs�

∗
c

1
2 −2 12+16

−11 8000+11
−16

3
2 A B�∗

c − Bs�
∗
c

1
2 −2 20+19

−16 7993+16
−19

3
2 B

B∗�∗
c − B∗

s �∗
c

1
2 −2 35+25

−22 8026+22
−25

1
2 A B∗�∗

c − B∗
s �∗

c
1
2 −2 3.9+10.7

−3.9 8057.1+3.9
−10.7

1
2 B

B∗�∗
c − B∗

s �∗
c

1
2 −2 22+20

−16 8040+16
−20

3
2 A B∗�∗

c − B∗
s �∗

c
1
2 −2 14+16

−12 8048+12
−16

3
2 B

B∗�∗
c − B∗

s �∗
c

3
2 −2 3.9+10.7

3.9 8057.1+3.9
−10.7

5
2 A B∗�∗

c − B∗
s �∗

c
5
2 −2 35+25

−22 8026+22
−25

5
2 B

B�∗
b

1
2 0 46+21

−17 11065+17
−21

3
2 A B�∗

b
1
2 0 57+23

−9 11055+9
−23

3
2 B

B∗�∗
b

1
2 0 73+26

−22 11084+22
−26

1
2 A B∗�∗

b
1
2 0 32+18

−14 11125+14
−18

1
2 B

B∗�∗
b

1
2 0 57+23

−19 11100+19
−23

3
2 A B∗�∗

b
1
2 0 47+21

−17 11110+17
−21

3
2 B

B∗�∗
b

1
2 0 32+18

−14 11125+14
−18

5
2 A B∗�∗

b
1
2 0 73+26

−22 11084+22
−26

5
2 B

B�∗
b

0 −1 47+28
−24 11186+24

−28
3
2 A B�∗

b
0 −1 54+30

−27 11176+27
−30

3
2 B

B∗�∗
b

0 −1 73+35
−32 11205+32

−35
1
2 A B∗�∗

b
0 −1 33+23

−19 11246+19
−23

1
2 B

B∗�∗
b

0 −1 58+31
−27 11221+27

−31
3
2 A B∗�∗

b
0 −1 47+28

−24 11231+24
−28

3
2 B

B∗�∗
b

0 −1 33+23
−19 11246+19

−23
5
2 A B∗�∗

b
0 −1 73+35

−32 11205+32
−35

5
2 B

B�∗
b

− Bs�
∗
b

1 −1 39+27
−22 11161+22

−27
3
2 A B�∗

b
− Bs�

∗
b

1 −1 49+30
−26 11151+26

−30
3
2 B

B∗�∗
b

− B∗
s �∗

b
1 −1 65+35

−31 11183+31
−35

1
2 A B∗�∗

b
− B∗

s �∗
b

1 −1 26+22
−17 11223+17

−22
1
2 B

B∗�∗
b

− B∗
s �∗

b
1 −1 49+30

−26 11199+26
−30

3
2 A B∗�∗

b
− B∗

s �∗
b

1 −1 40+27
−23 11208+23

−27
3
2 B

B∗�∗
b

− B∗
s �∗

b
1 −1 26+22

−17 11223+17
−22

5
2 A B∗�∗

b
− B∗

s �∗
b

1 −1 65+35
−31 11183+31

−35
5
2 B

B�∗
b

− Bs�
∗
b

1
2 −2 33+27

−22 11288+22
−27

3
2 A B�∗

b
− Bs�

∗
b

1
2 −2 43+30

−26 11278+26
−30

3
2 B

B∗�∗
b

− B∗
s �∗

b
1
2 −2 60+35

−31 11309+31
−35

1
2 A B∗�∗

b
− B∗

s �∗
b

1
2 −2 21+22

−17 11349+17
−22

1
2 B

B∗�∗
b

− B∗
s �∗

b
1
2 −2 45+30

−26 11324+26
−30

3
2 A B∗�∗

b
− B∗

s �∗
b

1
2 −2 35+27

−23 11334+23
−27

3
2 B

B∗�∗
b

− B∗
s �∗

b
3
2 −2 21+22

−17 11349+17
−22

5
2 A B∗�∗

b
− B∗

s �∗
b

5
2 −2 60+35

−31 11309+31
−35

5
2 B

which returns X̃comp < 1, where the calculation of a0 and r0 for our contact-range the-
ory is explained in Appendix B. This criterion would provide a compositeness of X̃comp =
(0.73, 0.67, 0.76) for each of the three LHCb pentaquarks (i.e. Pc1, Pc2, Pc3), (0.66, 0.62, 0.68)

and (0.63, 0.61, 0.65) for the c̄b and cb̄ ones and (0.59, 0.57, 0.60) for the hidden-bottom Pb1, 
Pb2 and Pb3 pentaquarks. However, the problem here is that we are using a LO EFT description 
with only one parameter (the binding energy), which means that the value of the effective range 
15
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thus obtained is only a dimensional estimation within our EFT. For comparison the composite-
ness of the deuteron (a0 = 5.419 fm, r0 = 1.753 fm [83]) with this criterion will be 0.78, but in 
this case there is plenty of experimental information available about neutron-proton scattering, 
i.e. a0 and r0 are well-known.

Regardless of the specific criterion used to estimate compositeness (after all, the wave function 
is not an observable), it seems that in general the hidden-charm pentaquarks are less composite 
than the deuteron, and as we move into heavier flavor sectors their compositeness reduces further. 
This is in turn compatible with the observation that the EFT description is less convergent and 
has larger uncertainties for two-body systems with larger binding energies. Thus, as binding 
increases with the reduced mass, we expect compositeness to decrease accordingly.

7. Flavor symmetry and non-molecular explanations

The present predictions have been done under the assumption that the hidden-charm pen-
taquarks are molecular. But, as a matter of fact, the light- and heavy-flavor symmetries we have 
used here are expected to apply to other light-heavy hadrons as well, independently of their na-
ture (though the uncertainties stemming from the violations of these symmetries could be very 
different). For instance, the existence of this type of pentaquark multiplets has been predicted in 
the compact [40] and hadroquarkonium pictures [84,85]. Theoretical explorations in the previous 
pictures have been mostly concentrated in the hidden-charm sector, where the mass splittings of 
the octet [m(P �

c ) −m(P N
c ), m(P �

c ) −m(P N
c ) and m(P �

c ) −m(P N
c )] are 141, 205 and 315 MeV

for compacts pentaquarks [40] and 150, 217 and 327 MeV for hadrocharmonia [86]. These mass 
splittings happen to be larger than for molecular pentaquarks (125, 105 and 232 MeV) and might 
provide a way to distinguish their nature if they are observed. For the hidden-bottom sector there 
are indeed predictions of P N

b pentaquarks in the local hidden-gauge approach of Ref. [87] and 
in models considering a five-quark core and pion exchanges [36]. It is plausible that other theo-
retical models of Q′Q̄ pentaquarks will lead to analogous predictions for their flavor partners, as 
these predictions are constrained by symmetry principles (instead of the details of the dynamics, 
which will matter for how the spectrum is organized in terms of quantum numbers, spin-spin 
splitting, etc.). Recent calculations of qqsQ′Q̄ pentaquarks in the hadroquarkonium [85] and 
chiral quark models [88] provide further support for this conjecture.

8. Summary

The observation of the LHCb hidden-charm pentaquarks in combination with SU(3)- and 
heavy-flavor symmetries leads to the prediction of a series of flavor partners. In particular, 
pentaquarks (molecular and non-molecular [40] alike) are expected to form a light-flavor octet 
reminiscent of the light-baryon octet and are also expected to appear in the cb̄, c̄b and bb̄ sec-
tors as well as in the original hidden-charm sector where they have been discovered. We denote 
these pentaquarks as P N

Q′Q̄, P �

Q′Q̄, P �

Q′Q̄, P �

Q′Q̄, with the superscript and subscript referring to 

their light- and heavy-quark structure, respectively (which we shorten to P N
Q , P �

Q , P �
Q and P �

Q

when the heavy flavors coincide Q′ = Q, i.e. for hidden-flavor). For predicting their masses, we 
have made use of a contact-range theory with a natural cutoff in the range � = (0.5 − 1.0) GeV. 
Among the predictions, it is worth noticing the existence of five-flavor pentaquarks, i.e. pen-
taquarks containing all the five flavors that hadronize (P �

cb̄
, P �

c̄b , P �

cb̄
, P �

c̄b in our notation) in the 
7770 −7910 MeV region. The five-flavor pentaquarks could be detected via their B±

c � and B±
c �

decays.
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The predictions made in this work assume the LHCb pentaquarks to be meson-baryon bound 
states the dynamics of which can be described in terms of a contact-range theory. It is worth 
noticing that the applicability of this description decreases with increasing binding energy, as 
this implies pentaquarks that are less composite, and with heavier reduced masses owing to the 
model-dependent nature of HFS [47]. This is reflected in the larger uncertainties, particularly in 
the hidden-bottom sector. Yet, it is sensible to expect these predictions to be more dependent on 
the general symmetry principles we have applied than on the details of the dynamics generat-
ing the pentaquarks, e.g. models with a compact five-quark core coupled to the meson-baryon 
degrees of freedom do reproduce the hidden-charm pentaquarks [34] and also predict the hidden-
bottom ones [36], giving credence to the aforementioned conjecture. Thus it might be the case 
that the light- and heavy-flavor symmetry partners of the hidden-charm pentaquarks exist irre-
spective of the binding mechanism, though the details of the spectrum will be different than in 
the molecular case.
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Appendix A. Heavy-quark mass dependence of the binding energy

Here we consider the variation of the binding energy of a heavy hadron molecule with respect 
to the heavy-quark mass. If the potential between two heavy hadrons does not depend on the 
heavy-quark mass, it can be shown that the binding energy increases with the heavy-quark mass 
(in agreement with naive expectations).

At leading order in the 1/mQ expansion, we can write the Schrödinger equation for a heavy 
hadron molecule as follows

−∇2�Q(�r) + 2μQ VQ(�r)�Q(�r) = −2μQBQ�Q(�r) , (A.1)

where the subindex Q indicates the dependence (explicit and implicit) on the heavy-quark mass, 
�Q is the wave function, μQ the reduced mass of the molecule, VQ the potential and BQ the 
17
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two-body binding energy. We can construct a Wronskian identity for the Schrödinger equation 
at two different heavy-quark masses as follows

−
(
�Q′∇2�Q − �Q∇2�Q′

)
+2

(
μQ VQ − μQ′VQ′

)
�Q �Q′

= −2 (μQBQ − μQ′BQ′)�Q �Q′ , (A.2)

where, again, Q and Q′ represent the different quantities we are considering at mQ and mQ′ , 
respectively. The Wronskian identity can be integrated, leading to

2
∫

d3�r (
μQ VQ − μQ′VQ′

)
�Q(�r)�Q′(�r) =

−2 (μQBQ − μQ′BQ′)
∫

d3�r �Q(�r)�Q′(�r) (A.3)

where the kinetic term disappears because it is exactly differentiable and can be rewritten as a 
surface term, which vanishes if we consider bound state solutions. Now we will consider a small 
change in the heavy-quark mass, which we can symbolically indicate by

Q′ = Q + δ Q . (A.4)

We can deduce that∫
d3�r �Q(�r)�Q′(�r) = 1 + (δ Q)2 , (A.5)

which is a consequence of the normalization of the wave function (i.e. 〈�Q|�Q〉 = 〈�Q′ |�Q′ 〉 =
1, which is why the δQ term vanishes). If we assume that the potential does not depend on the 
heavy-quark mass, i.e. VQ = VQ′ , we can use the previous result to prove that

2 δμQ 〈VQ〉 = −2 δ(μQBQ) , (A.6)

which we can differentiate to obtain

〈VQ〉 = −BQ − μQ

∂BQ

∂μQ

. (A.7)

If we take into account

〈TQ〉 + 〈VQ〉 = −BQ , (A.8)

where 〈TQ〉 ≥ 0 is the kinetic energy of the heavy molecule, we can rewrite the binding energy 
dependence on the reduced mass as

〈TQ〉 = μQ

∂BQ

∂μQ

(A.9)

or, equivalently

∂BQ

∂μQ

≥ 0 , (A.10)

as a consequence of the fact that the kinetic energy is positive. That is, the system will become 
more bound the heavier the mesons (this is a model-independent result). What is difficult (and 
model-dependent) is to determine by what amount. Finally, we notice that including a heavy-
quark mass dependence of the type VQ = V0 + 1

mQ
V1 + . . . in the potential does only induce 

1/mQ corrections to the previous relation, which can be safely neglected in the heavy-quark 
mass limit.
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Appendix B. Calculation of the effective range expansion parameters

The evaluation of the different compositeness conditions available in the literature usually 
require the effective range parameters as input. Here we briefly explain how to calculate them. 
We begin by writing down the relation between the effective range expansion and the on-shell 
T-matrix (Tos):

−2π

μ
Re

[
1

Tos(k)

]
= − 1

a0
+ 1

2
r0 k2 +

∞∑
n=2

vnk
2n , (B.1)

where a0 is the scattering length, r0 the effective range, vn the shape parameters, k the center-
of-mass momentum and μ refers to the reduced mass of the two-body system. For attractive 
potentials, the previous convention implies a0 < 0 if there is no bound state (or an even number 
of bound states) and a0 > 0 if there is an odd number of bound states. The on-shell T-matrix 
corresponds to the following matrix element of the full T-matrix

Tos(k) = 〈k|T (k)|k〉 , (B.2)

where T obeys the Lippmann-Schwinger equation, which for scattering states takes the form

T = V + V G0(E + iε)T , (B.3)

with G0(E) = 1/(E − H0) the resolvent operator and E = k2/2μ the center-of-mass energy of 
the system. If we consider a regularized contact-range of the type

〈p′|VC |p〉 = C(�)f (
p′

�
)f (

p

�
) , (B.4)

then the explicit solution of the Lippmann-Schwinger equation for the on-shell T-matrix reads

Re

[
1

Tos(k)

]
= 1

C(�)
− μ

π2 P
∞∫

0

p2dp

k2 − p2 f 2(
p

�
) , (B.5)

where P denotes the principal value of the integral. By expanding in powers of the center-of-
mass momentum, we arrive at

1

a0
= 2π

μ

1

C(�)
+ 2

π

∞∫
0

dp f 2(
p

�
) , (B.6)

r0 = − 4

π

∞∫
0

dp

p2

(
f 2(

p

�
) − f 2(0)

)
, (B.7)

where we can appreciate that at LO in our contact-range theory r0 depends solely on the regulator 
and cutoff, i.e. EFT merely provides a dimensional estimation of its size. If we particularize for 
our choices of regulator function, cutoff and couplings, we will obtain the values of a0 and r0

that we have used as input for Eq. (43).
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