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We propose a predictive radiative seesaw model at one-loop level with a flavor dependent gauge 
symmetry U (1)xB3−xe−μ+τ and Majorana fermion dark matter. For the neutrino mass matrix, we obtain 
an A1 type texture (with two zeros) that provides us several predictions such as the normal ordering 
for the neutrino masses. We analyze the constraints from lepton flavor violations, relic density of dark 
matter, and collider physics for the new U (1)xB3−xe−μ+τ gauge boson. Within the allowed region, the 
LHCb anomalies in B → K ∗μ+μ− and B → K�+�− with � = e or μ can be resolved, and such Z ′ could 
be also observed at the LHC.
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1. Introduction

Non-zero neutrino masses and their flavor mixings require 
physics beyond the standard model (SM). One of the attractive 
mechanisms for generating neutrino masses and mixings is the so-
called radiative seesaw in which the smallness of neutrino mass is 
explained by the suppression from the loop factor. In this class of 
radiative neutrino mass models, dark matter (DM) candidate often 
appears naturally if we assign dark Z2 parity to stabilize the DM 
candidates (some earlier works are found in refs. [1–5]).

The predictive neutrino mass model can be achieved by ap-
plying some symmetry which distinguishes fermion flavor. Flavor 
dependent U (1) gauge symmetry is one of the interesting candi-
dates which is discussed in the case of tree level neutrino mass 
generation [6,7]. Furthermore, flavor dependent U (1) gauge sym-
metries including the quark sector have been motivated in order to 
explain various anomalies1 in B → K (∗)μ+μ− [6]; 2.6σ anomaly 
in lepton-universality in the ratio R K ≡ BR(B → Kμ+μ−)/BR(B →

* Corresponding author.
E-mail addresses: pko@kias.re.kr (P. Ko), nomura@kias.re.kr (T. Nomura), 
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1 Chiral U (1)′ gauge theories with additional Higgs doublets carrying nonzero 

U (1)′ charges were discussed in Refs. [8–11] in order to accommodate the top 
forward–backward asymmetry (FBA) at the Tevatron. Since this anomaly has been 
less significant now, we do not consider this case further. But the model building 
issues addressed in Refs. [8–11] still remain valid and relevant in other flavor de-
pendent U (1)′ models for B physics anomalies.
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SCOAP3.
Kμ+μ−) = 0.745+0.090
−0.074 ± 0.036 by the LHCb [12], and sizable de-

viation measured in angular distributions of B → K ∗μ+μ− [13]. 
These anomalies can be accounted by a shift in the Wilson coef-
ficient C9 of the semileptonic operator O 9 [14,15] which can be 
induced by flavor dependent Z ′ interaction in down quark sector.

In this paper, we propose a radiative seesaw model based on 
flavor dependent and anomaly free U (1)xB3−xe+μ−τ gauge symme-
try and extra discrete Z2 symmetry to ensure DM stability. The 
active neutrino mass matrix is induced at one loop level where 
Z2 odd particles propagate inside the loop including the DM can-
didate which is the lightest Z2 odd SM singlet Majorana fermion 
with nonzero U (1)′ charge. Then structure of the mass matrix for 
the Majorana fermion is restricted and determined by the flavor 
dependent U (1)′ charge assignments. We also study phenomenol-
ogy associated with Z ′ boson, such as collider constraints, sig-
natures at the LHC and the Wilson coefficients contributing to 
B → K (∗)μ+μ− obtained from flavor dependent Z ′ interaction. 
Then we show predictions in the neutrino mass matrix by car-
rying out numerical analysis taking into account constraints from 
lepton flavor violation, thermal relic density of DM and various 
constraints on Z ′ interaction.

In Sec. 2, we introduce our model Lagrangian and discuss par-
ticle properties and their interactions. In Sec. 3 we discuss phe-
nomenology including neutrino mass matrix, charged lepton flavor 
violation, relic density of DM, and some processes related to Z ′
gauge boson including the LHCb anomalies. The numerical analysis 
is carried out in Sec. 4 to find out the parameter region satisfying 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Field contents of fermions and their charge assignments under SU (2)L × U (1)Y × U (1)′ × Z2, where U (1)′ ≡ U (1)xB3−xe−μ+τ (x �= 1), and each of the flavor index is defined 
as i = 1, 2.

Fermions Quarks Leptons

Q i
L ui

R di
R Q 3

L bR tR LLe LLμ LLτ eR μR τR NRe NRμ NRτ

SU (3)C 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1

SU (2)L 2 1 1 2 1 1 2 2 2 1 1 1 1 1 1

U (1)Y
1
6

2
3 − 1

3
1
6 − 1

3
2
3 − 1

2 − 1
2 − 1

2 −1 −1 −1 0 0 0

U (1)′ 0 0 0 x
3

x
3

x
3 −x −1 1 −x −1 1 −x −1 1

Z2 + + + + + + + + + + + + − − −
Table 2
Field contents of scalar bosons and their charge assignments under SU (2)L ×
U (1)Y × U (1)′ × Z2.

Bosons VEV �= 0 Inert

�1 �2 ϕx/3 ϕ2 ϕ1−x η

SU (2)L 2 2 1 1 1 2
U (1)Y

1
2

1
2 0 0 0 1

2
U (1)′ 0 − x

3
x
3 2 1 − x 0

Z2 + + + + + −

experimental constraints and to obtain some prediction for neu-
trino physics. Finally we summarize the results in Sec. 5.

2. Model Lagrangian and particle properties

In this section, we introduce our model and discuss some 
properties for our analysis in the following sections. In the 
fermion sector, we introduce SU (2)L singlet Majorana fermions 
NRe,μ,τ , and impose a flavor dependent gauge symmetry U (1)′ ≡
U (1)xB3−xe−μ+τ as summarized in Table 1, where x(�= 1) is an ar-
bitrary number.2

This combination of U (1)′ is known as anomaly free of the 
gauge symmetry [6].3 Note here that we ignore the kinetic mix-
ing between U (1)′ and U (1)Y assuming it is negligibly small. In 
addition, Z2-odd parity is assigned for the new fermion NR ’s in 
order to forbid the tree level neutrino masses or (and) to assure 
the stability of dark matter (DM).

In the scalar sector, we introduce an SU (2)L doublet inert scalar 
field η, new Higgs doublet �2 with extra U (1) charge, and three 
SU (2)L singlet scalars {ϕ2, ϕ1−x, ϕx/3}, where the lower indices 
represent their charges under U (1)′ as summarized in Table 2. 
We assume that two Higgs doublets �1, �2 and SU (2) singlet 
fields {ϕ2, ϕ1−x, ϕx/3} respectively break electroweak and U (1)′
gauge symmetries spontaneously by their nonzero vacuum expec-
tation values (VEVs), which are denoted by v/

√
2, v ′/

√
2, v2/

√
2, 

v1−x/
√

2 and vx/3/
√

2. The new Higgs doublet �2 is introduced 
in order to induce quark mass matrix element which mix the 3rd 
generation with first and second generations.

The Higgs potential of two doublets are written by

V ⊃μ2
1φ

†
1φ1 + μ2

1φ
†
1φ1 + λ1(�

†
1�1)

2 + λ2(�
†
2�2)

2

+ λ3(�
†
1�1)(�

†
2�2) + λ4|�†

1�2|2 + μϕx/3�
†
1�2 (2.1)

2 Notice here that all the components of neutrino mass matrix are nonzero for 
x = 1, which originates from the structure of the right-handed neutrino mass matrix 
(see Eq. (2.6) below). It follows from the fact that one cannot distinguish NRe from 
NRμ . Then we would lose predictability on the neutrino sector. Therefore we shall 
choose x �= 1 in this paper and keep predictability on the neutrino sector.

3 In this reference, the authors provide several possibilities of charge assignments, 
depending on which a different type of prediction can be obtained in the neutrino 
sector [16].
where ϕx/3 provides a dim-3 operator. Note that we have a mass-
less Goldstone boson associated with second Higgs doublet with-
out the dim-3 operator. Thus ϕx/3 allows us to avoid the con-
straints of a massless boson from SU(2) doublet scalar. Note also 
that scalar potential of ϕ2 and ϕ1−x has global symmetries which 
would induce a massless Goldstone boson since the potential is 
given by |ϕ2|2 and |ϕ1−x|2 due to the U (1)′ symmetry. Such 
global symmetries can be avoided by introducing U (1)′-charged 
scalar; for example ϕx−3 with U (1)′ charge (x − 3) provides a 
term ϕx−3ϕ1−xϕ2 which violate dangerous global symmetries. In 
this paper, we assume all scalar bosons have non-zero masses and 
we abbreviate the complete analysis of the scalar potential.

Yukawa interactions: Under these fields and symmetries, the 
renormalizable Lagrangians for quark and lepton sector are given 
by

−LQ =(yu)i j Q̄ Li �̃1uR j + (yd)i j Q̄ Li �1dR j + (yu)33 Q̄ L3�̃1tR

+ (yd)33 Q̄ L3�1bR + ( ỹu)3i Q̄ L3�̃2uRi

+ ( ỹd)i3 Q̄ Li �2bR + h.c., (2.2)

−LL =ye L̄Le �1eR + yμ L̄Lμ�1μR + yτ L̄Lτ �1τR + yN1 L̄Le η̃NRe

+ yN2 L̄Lμη̃NRμ + yN3 L̄Lτ η̃NRτ

+ M23(N̄c
Rμ

NRτ + N̄c
Rτ

NRμ) + f1ϕ2N̄c
Rμ

NRμ

+ f2ϕ
∗
2 N̄c

Rτ
NRτ + f13ϕ

∗
1−x(N̄c

Re
NRτ + N̄c

Rτ
NRe ) + c.c.,

(2.3)

where (i, j) = 1, 2, �̃ ≡ iσ2�
∗ , and σ2 is the second Pauli matrix.

After two Higgs doublet develops nonzero VEVs, we obtain the 
quark mass matrix such that

Mu = 1√
2

⎛
⎝ v(yu)11 v(yu)12 0

v(yu)21 v(yu)22 0
0 0 v(yu)33

⎞
⎠

+
⎛
⎝ 0 0 0

0 0 0
(ξu)31 (ξu)32 0

⎞
⎠ , (2.4)

Md = 1√
2

⎛
⎝ v(yd)11 v(yd)12 0

v(yd)21 v(yd)22 0
0 0 v(yd)33

⎞
⎠ +

⎛
⎝ 0 0 (ξd)13

0 0 (ξd)23
0 0 0

⎞
⎠ ,

(2.5)

where ξu,d ≡ ỹu,d v ′/
√

2. Note that the second term of Eqs. (2.4)
and (2.5) are obtained from the last two terms of Eq. (2.2) asso-
ciated with the VEV of second Higgs �2. Thus the mass matrices 
have the same structure as discussed in Ref. [6]. Note that ele-
ments with ξu,d are considered to be small perturbation effects 
generating realistic 3 × 3 CKM mixing matrix, and the (33) el-
ements are v(yu(d))33 ∼ √

2mt(b) . As in the SM, the quark mass 
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matrices are diagonalized by unitary matrices U L,R and D L,R which 
change quark fields from interaction basis to mass basis: uL,R →
U †

L,R uL,R(dL,R → D†
L,RdL,R). Thus the mass matrices Mu,d are re-

lated to diagonal mass matrices as follows:

Md = D Lmd
diag D†

R , Mu = U Lmu
diagU †

R , (2.6)

where md
diag = diag(md, ms, mb) and mu

diag = diag(mu, mc, mt). We 
find that off-diagonal elements associated with 3rd generations 
are more suppressed for Mu(Mu)† and (Md)† Md than those in 
(Mu)† Mu and Md(Md)†. Then U L and D R can be approximated to 
be close to unity matrix since they are respectively associated with 
diagonalization of Mu(Mu)† and (Md)†Md . Thus we can approx-
imate V C K M = U †

L D L 
 D L and D R 
 1 [6]. The details of quark 
Yukawa couplings with two Higgs doublet are discussed in Ref. [6], 
and we omit the further discussion here.

Z ′ couplings to SM fermions: After the aforementioned fields ro-
tations into the mass basis, the Z ′ couplings to the SM fermions 
are written as

LZ ′ f f ⊃g′ (−xēγ μe − μ̄γ μμ + τ̄ γ μτ − xν̄eγ
μ P Lνe

−ν̄μγ μ P Lνμ + ν̄τ γ
μ P Lντ + x

3
t̄γ μt

)
Z ′
μ

+ xg′ (d̄αγ μ P Ldβ�
dL
αβ + d̄αγ μ P Rdβ�

dR
αβ

)
Z ′
μ, (2.7)

where g′ is the gauge coupling constant associated with the U (1)′ . 
The coupling matrices �dR and �dL for down-type quarks are given 
approximately by

�dL 
 1

3

⎛
⎜⎝

|Vtd|2 Vts V ∗
td Vtb V ∗

td

Vtd V ∗
ts |Vts|2 Vtb V ∗

ts

Vtd V ∗
tb Vts V ∗

tb |Vtb|2

⎞
⎟⎠ , �dR 


⎛
⎝ 0 0 0

0 0 0
0 0 1

3

⎞
⎠ ,

(2.8)

where Vqq′ s are the elements of CKM matrix and we applied the 
relation V C K M 
 D L as we discussed above.

Exotic Majorana fermion mass matrix is defined in the basis
[NRe , NRμ, NRτ ]T as follows:

MN ≡
⎡
⎣ 0 0 M13

0 M22 M23
M13 M23 M33

⎤
⎦ , (2.9)

where we simply assume these elements are positive and real, and 
define M22 ≡ f1 v2/

√
2, M33 ≡ f2 v2/

√
2, and M13 ≡ f13 v1−x/

√
2. 

Then MN is diagonalized by orthogonal mixing matrix V as

V T MN V = D N ≡ [M1, M2, M3] , NRe,μ,τ = V NR1,2,3 , (2.10)

where M1,2,3 is the mass eigenstate.

3. Phenomenology

3.1. Active neutrino masses and lepton flavor violating processes

The Active neutrino mass matrix is then given at one-loop level 
by [1]

−(mν)i j = 1

32π2

3∑
k=1

(yNi V ik)D Nk (yN j V jk)

×
(

m2
R

m2 − D2
ln

[
m2

R

D2

]
− m2

I

m2 − D2
ln

[
m2

I

D2

])

R Nk Nk R Nk Nk
≈ 1

8π2

λ5 v2

m2
R + m2

I

3∑
k=1

yNi (V ik D Nk V T
kj)yN j

= 1

8π2

λ5 v2

m2
R + m2

I

yNi (MN)i j yN j , (3.1)

where λ5 is the quartic coupling of (�†η)2, mR(I) is the mass 
eigenstate of real (imaginary) part of neutral component of η, and 
we have used Eq. (2.10) in the last equation. Here we assume to be 
D N << mR(I) , which could be natural if we consider the fermion 
DM case. Since yN is diagonal, the form of active neutrino mass 
matrix is proportional to the one of MN in Eq. (2.9), therefore we 
have some predictions of type A1 through the texture analysis [16]. 
Then MN can be rewritten in terms of PMNS matrix U MN S and 
mass eigenvalues of active neutrino Dν by mν ≡ U MN S Dν U T

MN S , 
where we define Dν ≡ U †

MN SmνU∗
MN S . Combining Eq. (3.1), D N can 

be rewritten in terms of neutrino observables and some input pa-
rameters such as yN by

D N ≈ −εV ∗ y−1
N U MN S DνU T

MN S y−1
N V †, (3.2)

where ε ≡ 8π2(m2
R +m2

I )

λ5 v2 . In our numerical analysis, we will show 
some predictions combined with the other phenomenologies such 
as LFVs and DM, adapting the recent global data [17] up to 3σ
confidential level.

Lepton flavor violations (LFVs) are induced from the term yN at one-
loop level, and its branching ratio is given by

BR(�i → � jγ ) = 48π3αemCij

G2
F m2

�i

(
|aRij |2 + |aLij |2

)
, (3.3)

aRij =
∑

α=1,2,3

y∗
Ni

yN j V †
αi V jαm�i

(4π)2
Flf v(Nα,η±), (3.4)

aLij =
∑

α=1,2,3

y∗
Ni

yN j V †
αi V jαm� j

(4π)2
Flf v(Nα,η±), (3.5)

Flf v(a,b)

= 2m6
a + 3m3

am3
b − 6m2

am4
b + 6m6

b + 12m4
am2

b ln(mb/ma)

12(m2
a − m2

b)4
,

(3.6)

where η± is the singly charged component of η, G F ≈ 1.17 × 10−5

[GeV]−2 is the Fermi constant, αem ≈ 1/137 is the fine struc-
ture constant, C21 ≈ 1, C31 ≈ 0.1784, and C32 ≈ 0.1736. Exper-
imental upper bounds are respectively given by BR(μ → eγ ) �
4.2 × 10−13 [18], BR(τ → eγ ) � 3.3 × 10−8, and BR(τ → μγ ) �
4.4 × 10−8 [19].

Muon anomalous magnetic moment (muon g-2: �aμ) can be induced 
via yN with negative contribution, which is in conflict with the 
current experiment �aμ = (26.1 ± 8.0) × 10−10 [20]. However an-
other source via the additional Z ′ gauge boson can also be induced 
by

�aZ ′
μ ≈ g2

Z ′
8π2

1∫
0

da
2ra(1 − a)2

r(1 − a)2 + a
, (3.7)

where r ≡ (mμ/M Z ′ )2, and Z ′ is the new gauge vector boson. Thus 
we could explain the sizable muon (g − 2) if we can satisfy the 
constraint from the neutrino trident process: M Z ′ �0.4 GeV with 
g′ � 10−3 [21]. This can be realized by the limit x = 0. However 
this is nothing but a typical gauged μ − τ symmetry [22]. Thus we 
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discuss parameter region with heavier Z ′ mass which does not in-
clude the region solving muon g − 2 in 1σ level. When we apply 
the upper bound of g′/mZ ′ � (550 GeV)−1 from the neutrino tri-
dent process [21], we obtain �aμ � 3 × 10−10, which is smaller 
than the measured value but it is within 3σ level deviation. It 
could be tested in future experiments.

3.2. Dark matter

Here we consider the lightest Majorana fermions X ≡ N1 as our 
DM, and assume M Z ′ > mX to forbid the mode of 2X → 2Z ′ for 
simplicity.4 Also we neglect mixings among neutral component of 
(�, ϕ2, ϕ1−x, ϕx/3) to simply suppress Higgs portal interaction for 
avoiding the constraint from direct detection searches. Therefore 
the dominant contribution to DM annihilation in estimating the 
relic density arises from Yukawa coupling.

Then the relevant Lagrangian in terms of mass eigenstates is 
given by

L =
3∑

i=1

yNi V i1[−�̄iη
− P R X + ν̄iη

∗ P R X] + c.c. (3.8)

+ g′

2
(−x|V 11|2 − |V 21|2 + |V 31|2) X̄γ μ X Z ′

μ +LZ ′ f f ,

where the last term is given in Eq. (2.7). We have three relevant 
precesses to explain the relic density: X X̄ → �i �̄ j , X X̄ → νi ν̄ j , and 
X X̄ → tt̄ via the Yukawa terms yN and the gauge interaction with 
Z ′ involving g′ , where we have s, t, u channels only for i = j, while 
t, u channels for i �= j.5 We apply the vrel expansion approxima-
tion [24] to estimate the relic density of DM, taking up to the 
S- and P -wave contributions in the annihilation amplitudes. Then 
the formula for thermal relic density �h2 is approximately given 
by [25]

�h2 ≈ 4.28 × 109x2
f√

g∗M P [(−3 + 4x f )aeff + 12x f beff] , (3.9)

where M P ≈ 1.22 × 1019 [GeV] is the Planck mass, g∗ ≈ 100 is 
the total number of effective relativistic degrees of freedom at 
the time of freeze-out, and x f ≈ 25 is defined by M X/T f at the 
freeze out temperature (T f ), aeff is the total contributions to the 
S-wave, and beff is the total contributions to the P -wave, respec-
tively. The observed relic density reported by Planck suggests that 
�h2 ≈ 0.12 [26]. But in our numerical analysis below, we will use 
more relaxed value 0.11 � �h2 � 0.13.

3.3. Z ′ phenomenology and experimental constraints on its couplings

Here we discuss phenomenology of Z ′ boson such as the con-
straints on interactions, the contribution to B → K (∗)�+�− , and the 
direct Z ′ production cross section at the LHC.

LEP constraint: The Z ′ couplings to leptons induce the following 
effective interactions;

Lef f = 1

1 + δe�

g′ 2

M2
Z ′

C�(ēγ μe)(�̄γμ�) (3.10)

where Ce = x2, Cμ = −x and Cτ = x in our charge assignments. In 
this case, the strongest constraint comes from the e+e− → μ+μ−
measurement at LEP [27]:

4 See Ref. [23] in the case of M Z ′ < mX .
5 Since these formulae are complicated, we will include the numerical form in-

stead writing down explicitly.
M Z ′√
xg′ > 4.6 TeV. (3.11)

We will impose this constraint in the following numerical analysis.
The constraint from neutrino trident production: The couplings of 

Z ′ to the second generation of lepton is constrained by the neu-
trino trident process νe N → νe Nμ+μ− where N denotes a nu-
cleon. Taking into account the CCFR data, this constraint is roughly 
approximated as mZ ′/g′ ≥ 550 GeV at the 95% C.L. for a heavy Z ′
boson case [21]. When we take g′ = g2(
 0.65), the mass of Z ′
should satisfy mZ ′ ≥ 358 GeV.

Z ′ contribution to the b → s�̄� decay: The anomalies in the angu-
lar observable P ′

5 associated with full angular distribution of B →
K ∗μ+μ− (with K ∗ → K −π+) and in the lepton-universality vio-
lation R K = BR(B → Kμ+μ−)/BR(B → K e+e−) can be accounted 
by the shift in the Wilson Coefficient Cμμ

9 , which is defined by 
�B = 1 effective Hamiltonian as

Heff = − G F αVtb V ∗
ts√

2π
C��

9 (s̄γ μ P Lb)(�̄γμ�) + h.c. (3.12)

We have suppressed other operators for simplicity, since they do 
not play any important role regarding those two B physics anoma-
lies considered here as long as the Wilson coefficients of those 
operators do not receive new physics contributions. The global fit 
of the value for Cμμ

9 is obtained in Ref. [15] based on LHCb data 
as follows;

�Cμμ
9

C S M
9

= −0.21 : (best fit value),

[−0.27,−0.13] (at 1σ), [−0.32,−0.08] (at 2σ), (3.13)

where �Cμμ
9 indicates new physics contribution and C S M

9 = 4.07
at μb = 4.8 GeV. Note that the SM contribution C S M

9 is lepton fla-
vor universal, unlike to �Cμμ

9 .
In the model proposed in Sec. 2, the flavor-dependent Z ′ inter-

action shall induce the following effective Hamiltonian:

�Heff = g′ 2 Vtb V ∗
ts

3M2
Z ′

X�(s̄γ μ P Lb)(�̄γμ�) (3.14)

where Xe = x2 and Xμ = −Xτ = x. Thus the shift of Cμμ
9 relative 

to its SM value would be given by

�Cμμ
9 = −x

√
2π

3G F α

(
g′

M Z ′

)2

. (3.15)

Therefore, applying the LEP constraint Eq. (3.11), we find the range 
of �Cμμ

9 such that

−0.46 � �Cμμ
9 ≤ 0, (3.16)

where the dependence on x is canceled since the upper limit 
of g′/M Z ′ is proportional to 1/

√
x. The magnitude of |�Cμμ

9 | is 
smaller than best fit value (�Cμμ

9 
 −0.85) but it is within 2σ
range as shown in Eq. (3.13).

Note that �Cee
9 is suppressed by an extra factor of x in our 

model. Thus it is possible to explain the anomaly in lepton-
universality in b → s�̄�: R K = BR(B → Kμ+μ−)/BR(B →
K e+e−) = 0.745+0.090

−0.074 ± 0.036 measured by LHCb, which shows a 
2.6σ deviation from the SM prediction. Here the R K can be rewrit-
ten in terms of X�� = �C��

9 − �C��
10 (� = e, μ) where �C��

10 = 0
in our model, and its allowed region is found to be [28,29]; 
0.7 ≤ Re[Xe − Xμ] ≤ 1.5, applying the R K data with 1σ errors. 
This condition can be interpreted as

−0.75 � �Cμμ
9 � −0.35, (3.17)
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Fig. 1. σ(pp → Z ′)B R(Z ′ → μ+μ−) as a function of mZ ′ at √s = 13 TeV with var-
ious values of x. The red curve shows the upper limit from the ATLAS experiment. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

where Xe << Xμ is used. Therefore our value of Cμμ
9 in Eq. (3.16)

can be accommodated with the range.
Z ′ production at the LHC: The U (1)′ gauge boson Z ′ can be 

produced at the LHC since it couples to quarks. The dominant 
production process is given by b̄b → Z ′ where the couplings to 
other quarks are suppressed by small CKM matrix elements (see 
Eq. (2.8)). The Z ′ mainly decays into μ+μ− and τ+τ− pairs 
with their branching ratios (BR’s) as BR(Z ′ → μ+μ−) 
 BR(Z ′ →
τ+τ−) 
 0.5 for small x(� 0.3) where we assume masses of 
scalar bosons with couplings which is not suppressed by x are 
heavier than M Z ′/2. Thus the dimuon channel provides the most 
clear signature of Z ′ . To estimate the production cross section 
for pp → Z ′ → μ+μ− , we implement the relevant interactions 
into CalcHEP [30] and use the CTEQ6 parton distribution func-
tions (PDFs) [31]. Fig. 1 shows the σ(pp → Z ′)BR(Z ′ → μ+μ−)

at 
√

s = 13 TeV as a function of mZ ′ where we have fixed g′ = g2
and applied various values of x. The cross section is compared with 
the upper bound from the ATLAS experiments which is indicated 
as red curve [32]. We find that mZ ′ < 1 TeV is allowed for x < 0.3
and the constraint is weaker for smaller value of x. Further param-
eter region can be tested by searching for the dimuon signature of 
Z ′ at the LHC run 2. Here pp → μ+μ− process in the SM provides 
a background of the signal events and the cross section is σ ∼ 0.1
pb when we apply invariant mass cuts of Mμ+μ− > 400 GeV. Thus 
sizable significance can be obtained with sufficient integrated lu-
minosity; for example significance of Nsignal/

√
NBG ∼ 3 is obtained 

with 100 fb−1 when the signal cross section is 0.003 pb, where 
Nsignal(BG) is the number of signal (background) events. The signif-
icance can be further improved by taking appropriate kinematical 
cuts, however, the detailed event simulation is beyond the scope 
of this work.

4. Numerical analysis

In this section, we perform the numerical analysis and show 
some predictions. First of all, we select the range of input parame-
ters as follows:

x ∈ [0.001,0.5], yN1 ∈ [10−5,10−4], yN2 ∈ [10−4,10−3],
yN1 ∈ [10−3,10−2], δC P ∈ [0,2π ],
mν3 ∈ [10−12,10−9] [GeV], mR ≈ mI ∈ [3000,5000] [GeV],
M Z ′ ∈ [100,1500] [GeV], (4.1)
Fig. 2. Correlation between ρ and σ which are Majorana phases.

where δC P is Dirac phase in the neutrino sector, and we fix the 
new U (1)′ gauge coupling to be g′ = g2(≈ 0.654). Due to the type 
A1 texture of the neutrino mass matrix, obvious predictions are as 
follows, which are independent of the other phenomenologies as 
well as the above ranges of input parameters as already discussed 
in ref. [16].

1. The third neutrino mass is almost fixed to be mν3 ≈ (4.8–5.3) ×
10−11 [GeV].

2. Only the normal ordering of the neutrino masses is allowed.
3. Two Majorana CP phases ρ and σ correlate each other and be-

have as the red line in Fig. 2, where V ≡ U MN S P with P ≡
diag. (eiρ, eiσ ,0) in Ref. [16]. And sign(σρ) < 0 is predicted.

4. Neutrinoless double beta decay is predicted to be 〈mee〉 ≡∑
i=1−3 mνi V 2

ei ≈ O (0.01) eV, which follows from the above two 
predictions.

Here we have used the global neutrino oscillation data at 3σ con-
fidential level [17]. Notice here that δC P is allowed in all the pos-
sible range, δC P ∈ [0, 2π ].

The other properties are shown in Fig. 3 that satisfies the neu-
trino oscillation data, LFVs, LEP bound, and thermal relic density of 
DM where the allowed region of our DM mass is at 100–600 [GeV], 
and the mass of mR(I) is likely to be a free parameter in the up-
per left figure. The correlation between M X and M Z ′ is shown in 
the right upper figure, in which the lower bound comes from the 
assumption M Z ′ < M X , while we took into account the constraints 
from LEP experiment in Eq. (3.11) and from neutrino trident pro-
duction. In addition, the bottom figure shows the soft correlation 
between x and M Z ′ , in which the upper bound also comes from 
the LEP experiment.

5. Conclusions and discussions

In this paper, we have proposed a predictive radiative seesaw 
model at one-loop level with a flavor dependent gauge symme-
try U (1)xB3−xe−μ+τ , in which we have considered the Majorana 
fermion dark matter. We have obtained a two zero texture with A1
type that provides us the normal ordered neutrino mass spectra 
with mν3 ≈ 5 × 10−11 [GeV]. Also specific patterns of two Majo-
rana phases are obtained in Fig. 2. The other properties are shown 
in Fig. 3, and we have found the allowed region of our DM mass is 
at 100–600 [GeV], and the mass of mR(I) is likely to be the free pa-
rameter in the upper left figure. The correlation between M X and 
M Z ′ is shown in the right upper figure, in which the lower bound 
comes from the assumption M Z ′ < M X , and the constraints from 
LEP experiment and neutrino trident production are taken into ac-
count. The bottom figure shows the soft correlation between x and 
M Z ′ , in which the upper bound of x also comes from the LEP ex-
periment for each value of M Z ′ .
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Fig. 3. These three figures satisfy the neutrino oscillation data, LFVs, LEP bound, and thermal relic density of DM, where the upper-left figure shows the scattering plot 
between M X and mR(I) , the upper-right figure shows the scattering plot between M X and M Z ′ , and the bottom figure shows the scattering plot between x and M Z ′ . The red 
dashed line indicates the constraint from neutrino trident production for g′ = g2(
 0.65). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
We also discussed phenomenology of Z ′ which has flavor de-
pendent couplings to SM fermions. The flavor violating interaction 
in the down quark sector can induce a sizable contribution to 
the Wilson coefficient Cμμ

9 which can be within 2σ value ob-
tained from global fitting by LHCb data. Although magnitude of 
our |Cμμ

9 | is less than the best fit value it can be an explana-
tion of anomalies in the measurements of B → K ∗μ+μ− . Re-
markably we found anomaly in lepton-universality measurement 
BR(B → Kμ+μ−)/BR(B → K e+e−) can be explained within our 
model. In addition, we estimated cross section of the process 
pp → Z ′ → μ+μ− at the LHC 13 TeV which provides a clear signa-
ture of flavor-dependent Z ′ in our model. In particular, Z ′ lighter 
than O (1) TeV is allowed by current data and further parameter 
space can be tested in the future data of LHC experiments.
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