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Enea Romano1,2, and Sergio Andrés Vallejo-Peña1

1ICRANet, Piazza della Repubblica 10, I–65122 Pescara
2Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

Abstract
We analyze cosmic microwave background (CMB) data taking into account the effects of a mo-

mentum dependent effective sound speed (MESS). This approach allows to study the effects of

primordial entropy in a model independent way, and its implementation requires a minimal modi-

fication of existing CMB fitting numerical codes developed for single scalar field models.

We adopt a phenomenological approach, and study the effects a local variation of the MESS

around the scale where other analysis have shown some deviation from an approximately scale

invariant curvature perturbation spectrum. We obtain a substantial improvement of the fit with

respect to a model without MESS, showing that primordial entropy modeled by MESS can be an

explanation of these deviations.
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I. INTRODUCTION

According to the standard cosmological model primordial curvature fluctuations produced

during inflation provided the seeds for the CMB (cosmic microwave background) anisotropies

and for the formation of large scale structure (LSS). The simplest models of inflation are

based on a slowly rolling single scalar field, whose perturbations evolve according to the

Sasaki-Mukhanov equation, producing a nearly scale invariant power spectrum of primordial

comoving curvature perturbations, which is consistent with CMB observations, but the

observational data at same scales also show some evidence of deviation from scale invariance,

which in single scalar field models could be explained for example by temporary violations

of the slow-roll conditions [1–27].

Other possible explanations of these features of the primordial curvature spectrum are

multi-fields models [28, 29], modified gravity theories [30], or a combination of the two. A

model independent approach to the study of primordial curvature perturbations was recently

proposed in [31], in which a new equation was derived, generalising the Sasaki-Mukhanov

equation to any physical system satisfying Einstein’s equation, including multi-fields or mod-

ified gravity theories, by introducing two new effective quantities, the momentum dependent

effective sound speed (MESS) and the space dependent effective sound speed (SESS).

This approach is valid for any model in which a total effective stress-energy-momentum

tensor (EST) can be defined, including the multi-fields and modified gravity cases, under

the provision of moving to the r.h.s of the gravitational field equations the geometrical

terms associated to the modification of gravity. One convenient aspect of this approach is

the similarity of the equations with the Sasaki-Mukhanov equation, which allows minimal

modifications of existing CMB Boltzmann codes, such as CLASS or CAMB, in order to

analyse CMB data in a model independent way. In this paper we will show the results of

analyzing CMB data with a modified version of CLASS.

II. MESS APPROACH

For scalar perturbations with respect to a flat FLRW background, according to the scalar-

vector-tensor decomposition (SVT), the most general metric and effective stress energy mo-
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mentum tensor (EST) perturbations take the form

ds2 = −(1 + 2A)dt2 + 2a∂iBdx
idt+ a2 {δij(1 + 2C) + 2∂i∂jE} dxidxj , (1)

T 0
0 = −(ρ+ δρ) , T 0

i = (ρ+ P )∂i(v +B) ,

T ij = (P + δP )δij + δik∂k∂jΠ−
1

3
δij

(3)

∆ Π . (2)

where v is the velocity potential and
(3)

∆≡ δkl∂k∂l.

For any physical system admitting a Lagrangian formulation we can take the variation

with respect to the metric to obtain the corresponding EST. As a consequence all the results

derived using eqs.(1-2) are general and can be applied to any theory for which an EST can

be computed, including multi-fields and modified gravity.

Note that we have not chosen any gauge in eqs.(1-2). The comoving slices gauge, or

simply comoving gauge for brevity, is defined by the condition (T 0
i)c = 0, where we denote

with a subscript c any quantity evaluated in the comoving gauge. The metric and the

perturbed EST in the comoving gauge are denoted as

ds2 = −(1 + 2γ)dt2 + 2a∂iµ dx
idt+ a2 {δij(1 + 2R) + 2∂i∂jν} dxidxj , (3)

(T 0
0)c = −(ρ+ β) , (4)

(T ij)c = (P + α)δij + δik∂k∂jΠ−
1

3
δij

(3)

∆ Π . (5)

where we have defined the gauge invariant quantities α = δPc, β = δρc, γ = Ac, µ = Bc, ζ =

Cc, ν = Ec.

For a single scalar field minimally coupled to gravity, the comoving gauge and the uniform

field gauge (or unitary gauge) coincide, but they are different for more complex systems.

In order to the study the evolution of cosmological perturbations in the standard approach

[32] entropy perturbations Γ are defined according to [33]

α(t, xi) = cs(t)
2β(t, xi) + Γ(t, xi) , (6)

where cs is interpreted as sound speed and is a function of time only. It was shown [31] that

there is an alternative approach which does not require the notion of entropy perturbations,

and involves the solution of a single differential equation

R̈+
∂t(Z

2)

Z2
Ṙ − v2s

a2
(3)

∆ R+
v2s
ε

(3)

∆ Π +
1

3Z2
∂t

(
Z2

Hε

(3)

∆ Π

)
= 0 , (7)
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where Z2 ≡ εa3/v2s and an effective space dependent sound speed (SESS) has been defined

as

v2s(t, x
i) ≡ α(t, xi)

β(t, xi)
. (8)

In this approach the effects of entropy perturbations on curvature perturbations are

encoded in the SESS. In fact, we can combine eq.(6) and (8) to get the relation between

entropy and the SESS

v2s = c2s

1 +
Γ

2Hε

(
Ṙ+ 1

3Hε

(3)

∆ Π

)

−1

. (9)

The definition of entropy perturbations given in eq.(6) is invariant under the transformations

c2s → c̃s(t)
2 = cs(t)

2 + ∆cs(t)
2 , (10)

Γ→ Γ̃(t, xi) = Γ(t, xi)−∆cs(t)
2β(t, xi) , (11)

where ∆cs(t)
2 is an arbitrary function of time only. Thus, the definition of entropy is not

unique as it is shown by the invariance of eq.(6) under these transformations. This ambiguity

in the definition of the entropy perturbations and sound speed cs(t) also motivates the

introduction of the SESS, which is a uniquely gauge invariant quantity.

The momentum dependent effective sound speed (MESS) ṽk(t)2 is defined according to

ṽ2k(t) ≡
αk(t)

βk(t)
, (12)

in order to derive a similar equation to eq. (7) in momentum space [34]

R̈k +
∂t(Z̃

2
k)

Z̃2
k

Ṙk +
ṽ2k
a2
k2Rk −

ṽ2k
ε
k2Πk −

1

3Z̃2
k

∂t

(
Z̃2
k

Hε
k2Πk

)
= 0 , (13)

where Z̃2
k ≡ εa3/ṽ2k. Since the product of the Fourier transforms of two functions is the

transform of the convolution of the two functions, the MESS ṽk(t) defined in eq.(12) is not

the Fourier transform of the SESS vs(xµ) defined in eq. (8).

In this paper we will consider the case of an isotropic EST, for which eq. (13) reduces to

R̈k +
∂t(Z̃

2
k)

Z̃2
k

Ṙk +
ṽ2k
a2
k2Rk = 0 . (14)
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It can be shown that the Sasaki-Mukhanov equation can be obtained from eq. (14) when ṽk

is a function of time only.

It is important to note that the MESS approach can be applied to any system for which

an appropriate EST can be obtained, including multiple fields, modified gravity theories,

combinations of the two, and supergravity, and is particularly useful for model independent

analysis in which the MESS is treated as a phenomenological quantity constrained by the

data.

III. INFLATIONARY MODEL

In order to solve the perturbations equation we need to define the evolution of the back-

ground. For definiteness we model the background with a single minimally couple scalar

field, but we solve the MESS perturbation equation shown in the previous section. The

action for a scalar is given by

S =

∫
dx4
√−g

(
R

16πG
+

1

2
gµν∂µφ∂νφ− V (φ)

)
(15)

where R is the Ricci scalar, gµν is the FLRW metric and V (φ) is the inflation potential. By

taking the variation with respect to the metric we can obtain the Friedmann’s equation

H2 =

(
a

ȧ

2
)

=
8πG

3

(
1

2
φ̇2 + V (φ)

)
, (16)

and the variation with respect to the field gives

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0 . (17)

The slow-roll parameters are defined as

ε ≡ − Ḣ

H2

η ≡ ε̇

εH

(18)

In this paper we will consider background models with a quadratic potential

V (φ) = V2φ
2 =

1

2
m2φ2 , (19)

where m is the inflaton mass.

There is no fundamental reason behind the choice of this potential, we just use it as an

example for applying the MESS approach, and show that a local variation of the effective

sound speed leads to a substantial improvement of the data fitting.
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IV. DATA ANALYSIS USING THE MESS APPROACH

It’s known from the Planck mission [35] data analysis that there are some features in

the primordial scalar spectrum at k ≈ 0.002Mpc−1 and k ≈ 0.0035Mpc−1 [35], and in this

paper we will show how they can be explained by a local variation of the MESS. In order

to study the effects of the MESS on the primordial spectrum we modified the Boltzmann

solver code CLASS [36] and introduced a local momentum dependency in the MESS around

the scale where the main features appear in the primordial spectrum. The fit with different

inflationary models and a more general parametrization of the MESS is left for future works.

We use data sets from the Planck collaboration (Planck 2018 data) [37], and since the MESS

is affecting scalar perturbations we focus our attention on the temperature spectrum.

We modify the Primordial module of CLASS, adding a new routine named

"primordial_inflation_v_k" that computes the MESS and uses it to solve eq.(13) for

curvature perturbations in absence of anisotropies, for the case when the effective sound

speed is not time dependent, which takes the form

R′′k +
∂η(z

2)

z2
R′k + ṽ2kk

2Rk = 0 , (20)

u′′k +

(
ṽ2kk

2 − z′′

z

)
uk = 0 , (21)

where the prime denotes derivatives with respect to conformal time τ , and z2 = 2a2ε.

The initial conditions for curvature perturbations in presence of MESS are taken according

to [31]

uκ(τ0) =
1√

2κṽk
; u′κ(τ0) = − ṽkk√

2κ
. (22)

V. RELATION BETWEEN PRIMORDIAL AND LATE TIME ENTROPY

It is important to observe that the entropy producing the momentum dependency of the

MESS is primordial, i.e. it is related to physical phenomena taking place during inflation,

before reheating. This entropy is not directly related to the entropy of the CMB plasma, and

is only imprinted in the primordial power spectrum which is used as input in the calculation

of the CMB spectrum. The CMB codes such as CLASS are also solving equations involving

the entropy of the CMB plasma, related to the different species composing it, but since the
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Figure 1: The effects on the power spectrum of the MESS, as parametrized in eq.(23), are shown

for different values of A0, with k0 = 2× 10−4Mpc−1 and σ0 = 3× 10−5.

reheating process can be very complicated, it is not easy to relate the primordial to the late

time entropy. Consequently primordial entropy can be investigated primarily from its effects

on the primordial curvature spectrum, which can be studied in a model independent way

using the MESS, independently from the constraints on the late time entropy of the plasma.

The conversion of primordial into late time entropy during reheating goes beyond the

scope of this paper, but due to its generality, the MESS approach could also be used to

study the evolution of curvature perturbations during reheating.
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Figure 2: The effects on the power spectrum of the MESS, as parametrized in eq.(23), are shown

for different values of σ0, with k0 = 2× 10−4Mpc−1 and A0 = 0.1.

VI. MESS PARAMETRIZATION

We fit the data with a local parametrization of the MESS given by

ṽk = 1 + A0e
−(κ−κ0

σ0
)2 (23)

where κ0 is the scale of the feature, σ0 and A0 are the standard deviation and the amplitude

of the Gaussian used to model the MESS. When A0 = 0 we recover the standard value of the

sound speed ṽk = 1 . For the background cosmological parameters, i.e. the current density

of baryons Ωb, the current density of Cold Dark Matter Ωcdm, the reionization optical depth

τ , the acoustic angular scale θ and the coefficient of the quadratic term of the potential

V2 = 1
2
m2
i , we use priors given by the best fit values obtained in Planck data Analysis [38].

We will focus on the main feature of the primordial power spectrum, that is a dip located

8



0.118

0.12

0.122

ω
cd
m

1.04

1.04

1.04

10
0
∗θ

s

0.0333

0.0563

0.0794

τ r
ei
o

1.44e-12 1.51e-12 1.57e-12

V2

2.2 2.24 2.28

100 ωb

1.44e-12

1.51e-12

1.57e-12

V
2

0.118 0.12 0.122

ωcdm
1.04 1.04 1.04

100 ∗ θs
0.0333 0.0563 0.0794

τreio

Without MESS

MESS

Figure 3: Comparison of the background parameters for a model with and without MESS. As can

be seen the effect of MESS is negligible.

at k ≈ 0.002Mpc−1, so we fix k0 to that value.

For ṽk > 1 we obtain a dip of the primordial spectrum, and for ṽk < 1 a bump, as shown

in Fig(1), where the spectra corresponding to different values of A0 are plotted. In Fig(2)

are shown the effects of different values of σ0 on the primordial power spectrum. As can

be seen the width of the MESS σ0 is related to the width of effect on the power spectrum,

while the magnitude of the MESS A0 is related to the amplitude of the effect on the power

spectrum.
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Figure 4: Results of the data fitting analysis for the MESS parameters A0 and σ0.

VII. RESULTS OF THE DATA ANALYSIS

In table(I) we show the best-fit parameters with and without MESS. The fit with MESS

is producing an improvement of the reduced χ2 of about 12 with respect to the model with-

out it. In Fig.(3) we show the marginalised contour plots for the background cosmological

parameters for the models with and without MESS. As can be seen the effect of the MESS

on the estimation of these parameters is negligible. Fig(4) shows that σ0 and A0 are ap-

proximately inversely proportional, i.e. large values of A0 are associated to a smaller width
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Figure 5: In the upper panel it is plotted the CMB temperature spectrum DTT
l = `(`+1)CTT` /(2π),

and in the lower panel the relative difference between a model with and without MESS. As can be

seen the model with MESS is fitting the data better in the range 10 < l < 30.

of the Gaussian σ0.

Fig(5) shows the effect of the MESS on the CMB temperature spectrum. From the

residuals plot we can see that the MESS is improving significantly the fit around the l = 20,

with an improvement of the reduced χ2 of about 12.

VIII. CONCLUSIONS

We have analyzed CMB data with a modified version of the CLASS code, taking into

account the effects of a momentum dependent effective sound speed. This approach allows to

study the effects of primordial entropy in a model independent way, and its implementation

requires a minimal modification of existing codes developed for single scalar field models.
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Parameter Without MESS MESS

100Ωb 2.236± 0.012 2.238± 0.012

ΩCDM 0.119± 0.001 0.119± 0.001

τ 0.056± 0.006 0.057± 0.006

θ 1.0403± 0.0002 1.0340± 0.0002

1012V2 1.5003± 0.0196 1.5069± 0.0206

105σ0 — 2.08+0.59
−0.61

A0 — 1.29+0.50
−0.73

χ2 2789.58 2777.42

Table I: The results of the data fitting with and without MESS are shown for the background and

MESS parameters, as defined in eq.(23). The reduced χ2 of the model with MESS is improved by

about 12 with respect to the model without MESS.

We have considered a local variation of the MESS around the scale where other anal-

ysis have shown some deviation from a scalar invariant curvature perturbation spectrum,

obtaining a substantial improvement of the fit.

In the future it will be interesting to extend the analysis to other more general

parametrizations of the MESS, such as the Piecewise Cubic Hermite Interpolating Poly-

nomial (PCHIP) to investigate systematically possible variations of the MESS at any scale.

It could also be interesting to consider the case when the MESS is time dependent, or other

background models.
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