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Received: 15 March 2019 / Revised: 24 May 2020 / Accepted: 4 June 2020 /

© The Author(s) 2020

Abstract
Highlighting important information of a network is commonly achieved by using random
walks related to diffusion over such structures. Complex networks, where entities can have
multiple relationships, call for a modeling based on hypergraphs. But, the limitation of
hypergraphs to binary entities in co-occurrences has led us to introduce a new mathemati-
cal structure called hyperbaggraphs, that relies on multisets. This is not only a shift in the
designation but a real change of mathematical structure, with a new underlying algebra. Dif-
fusion processes commonly start with a stroke at one vertex and diffuse over the network.
In the original conference article—(Ouvrard et al. 2018)—that this article extends we have
proposed a two-phase step exchange-based diffusion scheme, in the continuum of spectral
network analysis approaches, that takes into account the multiplicities of entities. This dif-
fusion scheme allows to highlight information not only at the level of the vertices but also at
the regrouping level. In this paper, we present new contributions: the proofs of conservation
and convergence of the extracted sequences of the diffusion process, as well as the illustra-
tion of the speed of convergence and comparison between classical and modified random
walks; the algorithms of the exchange-based diffusion and the modified random walk; the
application to two use cases, one based on Arxiv publications and another based on Coco
dataset images. All the figures have been revisited in this extended version to take the new
developments into account.
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1 Introduction

Multimedia collections, and among them text collections, often require to model com-
plex relationships, that are potentially multi-modal, based either on natural relations or on
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similarity-based groupings. Connections between entities call for a modeling of potentially
complex multi-adic relations, that most of the time cannot be reduced to pairwise relation-
ships. Hypergraphs where relations are based on subsets of a given set enhance the modeling
of multi-adic relations. A multi-adic relationship can be viewed either as a group or a co-
occurrence. Also, hypergraphs can be used to model the complex co-occurrence networks
induced by the different facets of an information space—[25].

Nonetheless, in real co-occurrence networks, some elements might repeat themselves
more than once, or require an individual weighting at the group level. Sets fail at captur-
ing this information, while multisets, where elements have a multiplicity, naturally handle
it. Moving from sets to multisets is not only a change in designation, but an effective math-
ematical paradigm shift, as the algebra involved behind is not the same. Collections of
multisets are then the next step in the modeling. In [26, 27], we have introduced hyper-
bag-graphs (hb-graphs for short) as a generalization of hypergraphs to support multisets. A
hb-graph is a family of multisets over a same universe, designated as the vertex set. The
multisets play the role of hyperedges in hypergraphs and are called hb-edges. Hypergraphs
appear as a sub-category of this new mathematical category that hb-graphs constitute.

The step forward consists in highlighting important information conveyed by these com-
plex networks. Traditional approaches in hypergraphs includes random walks—[1, 44].
Particularly, in [1], the authors show that putting hyperedge-based weights on vertices pro-
vides a better information retrieval. In these two approaches—[1, 44]—, the focus is mainly
put on vertices; but, most of the time, in such modeling, the information carried by the
links is semantically significant, as it represents the reference used for building the co-
occurrences. Also, having a way to highlight important information from the reference is
also interesting. Multimedia databases, such as image databases or document databases are
potential applications of such means of highlighting information. For instance, different
metadata can be attached to a document such as authors, author keywords, processed key-
words, categories, added tags. If the users are able to attach tags to documents, it can be
important to weight them individually in the context of each document. The same can apply
to an image, with other features that are based on the image analysis. Hb-graphs fit to model
such information spaces—[29].

We want to address the following research question: “Can we find a network model
and a diffusion process that not only rank vertices but also rank hb-edges in hb-graphs?”.
In [24], we have developed an iterative exchange approach in hb-graphs with two-phase
steps that allows to extract information not only at the vertex level but also at the hb-edge
level. In this article, which is an extended version of [24], we not only present the contri-
butions of [24]—that included the introduction of the exchange-based diffusion process as
a means to rank both vertices and hb-edges, and were formalizing the exchanges by using
hb-graphs, and presenting a novel visualisation of co-occurrences network—, but also add
new contributions.

In [24], we have validated our approach by using lab-generated hb-graphs. We continue
here to use this approach, as mimicking real datasets by randomly generated ones is not
only a warranty for reproducibility, but also for robustness of the results obtained. We illus-
trate the extracted information using the exchange process by a hb-graph visualisation that
highlights not only vertices but also hb-edges.

We show that the exchange-based diffusion process provides proper coloring of vertices
with high connectivity and highlights hb-edges with a normalisation approach—allowing
small hb-edges to have a chance to be highlighted. We apply this approach to process the
metadata contained in the results retrieved by querying Arxiv through its API in order to



Multimedia Tools and Applications

visualize the results: we will show how it can be used to allow further query expansion. We
give a last use case on Coco dataset images.

In summary, the contributions of this extended version include: the proofs of conserva-
tion and convergence of the extracted sequences of the diffusion process, as well as the
illustration of the speed of convergence and comparison to classical and modified random
walks; the algorithms of the exchange-based diffusion and the modified random walk; the
application to two use cases, one based on Arxiv publications and another one based on
images of the Coco dataset.

In Section 2, the mathematical background and the related work is given. The construc-
tion of the formalisation of the exchange process is presented in Section 3. Results and
evaluation are given in Section 4 and future work and conclusion are addressed in Section 5.

2 Mathematical background and related work

For the mathematical background, we give a minimal mathematical formalization. However,
the interested reader can refer to [28] which contains all the necessary mathematics and to
[26, 27] for a full introduction on hb-graphs.

2.1 Hypergraphs

Hypergraphs have been introduced in [3]; we use nonetheless the definition given in [4],
as it relaxes the constraint on the hyperedges to cover the vertex set. A hypergraph over a
finite set of vertices is defined as a family of subsets of this vertex set. A hypergraph will
be said edge-weighted if there exists an application that associates a positive real number to
each hyperedge.

Hypergraphs fit to model multi-adicity in structures where the traditional pairwise rela-
tionship of graphs is insufficient: they are used in many areas such as social networks in
particular in collaboration networks—[22, 23]—, co-author networks—[13] and [37]—,
chemical reactions—[38]—, genome—[6]—, VLSI design—[15]—and other applications.
Hypergraphs are also used in information retrieval for different purposes such as query
formulation in text retrieval [2] and in music recommendation [5]. Several applications
of hypergraphs exist based on the diffusion process firstly developed in [44]. In [11], the
authors use the diffusion process developed in [44] for 3D-object retrieval and recogni-
tion by building multiple hypergraphs of objects based on their 2D-views. In [43], multiple
hypergraphs are constructed to characterize the complex relations between landmark images
and are gathered into a multi-modal hypergraph that allows the integration of heterogeneous
sources to provide content-based visual landmark searches. Hypergraphs are also used in
multi-feature indexing to help image retrieval [41]. For each image, a hyperedge gathers
the most similar images based on different features. Hyperedges are weighted by average
similarity. A spectral clustering algorithm is then applied to divide the dataset into a given
number of sub-hypergraphs. A random walk on these sub-hypergraphs retrieves significant
images: they are used to build a new inverted index, useful to query images. In [40], a
joint-hypergraph learning is achieved for image retrieval, combining efficiently a semantic
hypergraph based on image tags with a visual hypergraph based on image features.

Evaluating the importance of vertices in hypergraphs by random walks has been largely
studied. In [44], a random walk on a edge-weighted hypergraph is defined by choosing a
hyperedge with a probability proportional to its weight and, within that hyperedge, a vertex
randomly chosen using a uniform law. This random walk has a stationary state which is
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shown to correspond to a vector proportional to the vector of vertex degrees in [10]. This
process differs from the one we propose: our diffusion process is done in successive steps
from a random initial vertex on vertices and hb-edges, taking into account the multiplicities
of the vertices inside each hb-edge.

In [1], the authors use a random walk on hypergraphs using weight functions both on
hyperedges and vertices. The vertex weights are hyperedge-based: it is achieved using a
vector of weights associated to each vertex. The random walk is similar to the one in [44],
but additionally takes into account the vertex weight in the probability law for choosing the
vertex inside the hyperedge. They show on a publication dataset that this modified random
walk gives a ranking of vertices with higher precision than random walks using unweighted
vertices. However, this process differs again from our proposal since our process not only
enables simultaneous alternative updates of vertices and hb-edges values but also provides
hb-edge ranking. We also introduce a new theoretical framework to perform our diffusion
process.

Diffusion processes are tightly tied to random walks. In [17], the authors use random
walks in hypergraph for image matching. In [19], the authors build higher order random
walks in hypergraph and construct a generalised Laplacian attached to the graphs generated
from their random walks.

2.2 Multisets

Multisets—also known as bags or msets—have a long use in many domains. But before
developing their use in different domains, we firstly give the main definitions on multisets
mainly based on [35].

A multiset Am = (A,m)1 is a pair composed of a set A of distinct objects—called the
universe of the multiset—and, of a multiplicity function m with a range potentially in the
real numbers set. The support A�

m of the multiset Am corresponds to the elements of the
universe that have a non-zero multiplicity. When the range of the multiset is a subset of the
non-negative integers, we call it a natural multiset. A natural multiset can be viewed as an
unordered list of elements with possible repetitions.

The m-cardinality of a multiset Am, written #mAm, corresponds to the sum of the
multiplicities of the elements of its universe.

Different operations can be defined on multisets of same universe as inclusion, union,
intersection and sum. As mentioned in [35], De Morgan’s laws on multisets do not hold.
Defining complementation and difference requires to fix a limit in m-cardinality to the
multisets as given in [12].

Multisets, under the appellation bag, appear in different domains such as text model-
ing, image description and audio [32]. In text representation, bag of words have been first
introduced in [14]: bags are lists of words with repetitions, i.e. multisets of words on a uni-
verse. Many applications occur with different approaches. Bags of words have been used for
instance in fraud detection [31]. More recently, bags of words have been used successfully
for translation by neural nets as a target for the translation as a sentence can be translated
in many different ways [20]. In [8], multi-modal bag of words have been used for cross
domains sentiment analysis.

Bags of visual words is the transcription to image of textual bags of words; in bags of
visual words, a visual vocabulary based on image features is built to allow the description

1We systematically use fraktur font for multisets in order to make a clear distinction with sets.
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of images as bags of these features. Since their introduction in [36], many applications
have been achieved: in visual categorization [7], in image classification and filtering [9], in
image annotation [39], in action recognition [30], in land-use scene classification [42], in
identifying mild traumatic brain injuries [21] and in word image retrieval [33].

Bags of concepts are an extension of bags of words to successive concepts in a text [16].
A recent extension of these concepts is given in [34] where bag of graphs are introduced
to encode in graphs the local structure of a digital object: bags of graphs are declined into
bags of singleton graphs and bags of visual graphs. Using the hb-graphs as we propose in
this article will allow to extend this approach, by taking advantage of multi-adicity and also
of the multiplicity of vertices specific to each hb-edge.

2.3 Hb-graphs

Hb-graphs are introduced in [26]. A hb-graph is a family of multisets with the same uni-
verse V and with support a subset of V . The msets are called the hb-edges and the elements
of V the vertices. We consider for the remainder of the article a hb-graph H = (V ,E) , with
V = {

vi : i ∈ �n�
}
2 and E = (

ej
)
j∈�p�

the family of its hb-edges.
Each hb-edge ei ∈ E has V as universe and a multiplicity function associated to it:

mei
: V → W where W ⊂ R

+. For a general hb-graph, each hb-edge has to be seen as a
weighted system of vertices, where the weights of each vertex are hb-edge dependent.

A hb-graph where the multiplicity range of each hb-edge is a subset of the non-negative
integer set is called a natural hb-graph. A hypergraph is a natural hb-graph where the
hb-edges have multiplicity one for every vertex of their support.

The support hypergraph of a hb-graph H = (V ,E) is the hypergraph whose vertices
are the ones of the hb-graph and whose hyperedges are the support of the hb-edges in a
one-to-one way. We write it H = (

V,E
)
, where E = (e�)e∈E.

The m-degree of a vertex vi ∈ V of a hb-graph H—written degm (vi) = dm (vi)—is
defined as the sum of the multiplicity of vi in each hb-edge of the hb-graph.

The matrix H = [
mj (vi)

]
i∈�n�
j∈�p�

is called the incident matrix of the hb-graph H.

A weighted hb-graph Hw = (V ,E, we) is a hb-graph H = (V ,E) where the hb-edges
are weighted by we : E → R

+∗. An unweighted hb-graph is then a weighted hb-graph with
we

(
ej

) = 1 for all ej ∈ E.
A strict m-path uej1vi1 . . . ejs v in a hb-graph H from a vertex u to a vertex v is a vertex

/ hb-edge alternation, where the intermediate vertices belong to the intersection of the hb-
edges immediately surrounding them. In a natural hb-graph, a strict m-path is not unique
as many copies of the same vertex can coexist in the intersection. Moreover, in natural hb-
graphs, there are two notions of paths: a strict and a large one: some copies of the vertex are
possibly not in the intersection of the two surrounding hb-edges and can exist only in one
of the two hb-edges.

A strict m-path in a hb-graph corresponds to a unique path in the hb-graph support hyper-
graph called the support path. In this article we abusively call it a path of the hb-graph.
The length of a path corresponds to the number of hb-edges it is going through.

Representations of hb-graphs can be achieved either by using sub-mset representations
or by using edge representations. In the edge representation, an extra-node is added to each
hb-edge and the thickness of the link between the extra-node of a hb-edge and the vertices

2We note �n� = {i : 1 � i � n ∧ i ∈ N}.
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in the support of the hb-edge is made proportional to their multiplicity in the hb-edge. More
details on these representations can be found in [26].

We give in Fig. 1 an example of such representation of a hb-graph for keywords extracted
from sentences in which stop words have been removed. The number of words occurrences
differs from one sentence to another: it is given as a multiplicity specific to the correspond-
ing hb-edge that represents the sentence. The universe of the hb-graph is the set of words
where the stop words has been removed.

3 Exchange-based diffusion in hb-graphs

We introduce in this section a diffusion process based on the exchange of information
between the vertices and the hb-edges. Traditionally, diffusion processes are achieved using
an initial stroke on a vertex that propagates over the network structure. Diffusion processes
can be approximated using random walks. When the random walk takes place on a net-
work, either graph or hypergraph based, vertices can be ranked by using the number of times
they are reached. Teleportation is introduced in these random walks to avoid loops. Several
random walks are often necessary in order to average their results.

The idea in the exchange-based diffusion is to propose a mechanism that mimics the
behavior of a population where agents—vertices—have equal resources at the beginning
and can exchange them only via intermediates—hb-edges—they are belonging to and share
the resources according to the multiplicities of these agents.

We consider a weighted hb-graph H = (V ,E, we) with |V | = n and |E| = p; we write
H its incidence matrix.

At time t, we set a distribution of values over the vertex set:

αt :
{

V → [0; 1]
vi �→ αt (vi)

.

Fig. 1 An example of hb-graphs: four sentences and their associated bag of words with removed stop words
and the incidence matrix of the hb-graph
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and a distribution of values over the hb-edge set:

εt :
{

E → [0; 1]
ej �→ εt

(
ej

) .

We write PV,t = (αt (vi))i∈�n� the row state vector of the vertices at time t and PE,t =(
εt

(
ej

))
j∈�p�

the row state vector of the hb-edges.

The initialisation is done such that
∑

vi∈V

α0 (vi) = 1 and the information value is concen-

trated uniformly on the vertices at the beginning of the diffusion process and, consequently,

each hb-edge has a zero value associated to it. Writing αref = 1

|V | , we set for all vi ∈ V :
α0 (vi) = αref and for all ej ∈ E, ε

(
ej

) = 0.
We consider an iterative process with two-phase steps. At every time step, the first phase

starts at time t and ends at t + 1

2
, followed by the second phase between time t + 1

2
and

t + 1. In Fig. 2, we illustrate this principle using the example in Fig. 1. A more general
figure of the principle of this iterative process is given in [24, 28]. The iterative process
conserves the overall value held by the vertices and the hb-edges, meaning that we have at

any t ∈
{
1

2
k : k ∈ N

}
:

∑

vi∈V

αt (vi) +
∑

ej ∈E
εt

(
ej

) = 1.

During the first phase between time t and t + 1

2
, each vertex vi of the hb-graph shares its

value αt (vi) hold at time t with the hb-edges it is connected to.
In an unweighted hb-graph, the fraction of αt (vi) given by vi of m-degree dvi

=
degm (vi) to each hb-edge is

mj (vi)

degm (vi)
, which corresponds to the ratio of the multiplicity

of the vertex vi due to the hb-edge ej over the total m-degree of hb-edges containing vi in
their support.

In a weighted hb-graph, each hb-edge has a weight we

(
ej

)
. The value αt (vi) of the

vertex vi is shared by accounting not only the multiplicity of the vertices in the hb-edge but
also the weight we

(
ej

)
of the hb-edge ej .

The weights of the hb-edges are stored in a column vector:

wE = (
we

(
ej

))�
j∈�p�

.

We also consider the weight diagonal matrix:

WE = diag
((

we

(
ej

))
j∈�p�

)
.

We introduce the weighted m-degree matrix:

Dw,V = diag
((

dw,vi

)
i∈�n�

)
= diag (HwE) .
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Fig. 2 Diffusion by exchange: principle of the two phases on the example of Fig. 1: phase 1 occurs from t to

t + 1

2
and phase 2 occurs from t + 1

2
to t + 1
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where dw,vi
is called the weighted m-degree of the vertex vi . It is:

dw,vi
= degw,m (vi) =

∑

j∈�p�

mj (vi) we

(
ej

)
.

The contribution of the vertex vi to the value ε
t+ 1

2

(
ej

)
attached to the hb-edge ej of weight

we

(
ej

)
is:

δε
t+ 1

2

(
ej | vi

) = mj (vi) we

(
ej

)

dw,vi

αt (vi) .

It corresponds to the ratio of the weighted multiplicity of the vertex vi in ej over the total
weighted m-degree of the hb-edges where vi is in the support.

We remark that if vi /∈ e�j :
δε

t+ 1
2

(
ej | vi

) = 0.

And the value ε
t+ 1

2

(
ej

)
is calculated by summing over the vertex set:

ε
t+ 1

2

(
ej

) =
∑

i∈�n�

δε
t+ 1

2

(
ej | vi

)
.

Hence, we obtain:
P
E,t+ 1

2
= PV,tD

−1
w,V HWE. (1)

The value given to the hb-edges is subtracted to the value of the corresponding vertex, hence
for all i ∈ �n� :

α
t+ 1

2
(vi) = αt (vi) −

∑

j∈�p�

δε
t+ 1

2

(
ej | vi

)
.

Claim (No information on vertices at t + 1

2
) It holds:

∀i ∈ �n� : α
t+ 1

2
(vi) = 0.

Proof For all i ∈ �n� :
α

t+ 1
2
(vi) = αt (vi) −

∑

j∈�p�

δε
t+ 1

2

(
ej | vi

)

= αt (vi) −
∑

j∈�p�

mj (vi) we

(
ej

)

dw,vi

αt (vi)

= αt (vi) − αt (vi)

∑

j∈�p�

mj (vi) we

(
ej

)

dw,vi

= 0.

Claim (Conservation of the information of the hb-graph at t + 1

2
) It holds:

∑

vi∈V

α
t+ 1

2
(vi) +

∑

e∈E
ε
t+ 1

2
(e) = 1.
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Proof We have:

∑

vi∈V

α
t+ 1

2
(vi) +

∑

e∈E
ε
t+ 1

2
(e) =

∑

ej ∈E
ε
t+ 1

2

(
ej

)

=
∑

ej ∈E

∑

i∈�n�

δε
t+ 1

2

(
ej | vi

)

=
∑

ej ∈E

∑

i∈�n�

mj (vi) we

(
ej

)

dw,vi

αt (vi)

=
∑

i∈�n�

αt (vi)

∑

ej ∈E
mj (vi) we

(
ej

)

dw,vi

=
∑

i∈�n�

αt (vi)

= 1.

During the second phase which starts at time t+ 1

2
, the hb-edges share their values across

the vertices they hold taking into account the vertex multiplicities within the hb-edge.
The contribution to αt+1 (vi) given by a hb-edge ej is proportional to ε

t+ 1
2
in a factor

corresponding to the ratio of the multiplicity mj (vi) of the vertex vi to the hb-edge m-
cardinality:

δαt+1
(
vi | ej

) = mj (vi)

#mej
ε
t+ 1

2

(
ej

)
.

The value αt+1 (vi) is then obtained by summing on all values associated to the hb-edges
that are incident to vi :

αt+1 (vi) =
∑

j∈�p�

δαt+1
(
vi | ej

)
.

Writing DE = diag
((
#mej

)
j∈�p�

)
the diagonal matrix of size p × p, it comes:

P
E,t+ 1

2
D−1

E
H� = PV,t+1. (2)

The values given to the vertices are subtracted to the value associated to the corresponding
hb-edge. Hence, for all j ∈ �p� :

εt+1
(
ej

) = ε
t+ 1

2

(
ej

) −
∑

i∈�n�

δαt+1
(
vi | ej

)
.

Claim (The hb-edges have 0 value at t + 1) It holds:

εt+1
(
ej

) = 0.



Multimedia Tools and Applications

Proof For all i ∈ �p� :
εt+1

(
ej

) = ε
t+ 1

2

(
ej

) −
∑

i∈�n�

δαt+1
(
vi | ej

)

= ε
t+ 1

2

(
ej

) −
∑

i∈�n�

mj (vi)

#mej
ε
t+ 1

2

(
ej

)

= ε
t+ 1

2

(
ej

)
⎛

⎜
⎝1 −

∑

i∈�n�

mj (vi)

#mej

⎞

⎟
⎠

= 0.

Claim (Conservation of the information of the hb-graph at t + 1) It holds:
∑

vi∈V

αt+1 (vi) +
∑

ej ∈E
εt+1

(
ej

) = 1.

Proof
∑

vi∈V

αt+1 (vi) +
∑

e∈E
εt+1 (e) =

∑

vi∈V

αt+1 (vi)

=
∑

vi∈V

∑

j∈�p�

δαt+1
(
vi | ej

)

=
∑

vi∈V

∑

j∈�p�

mj (vi)

#mej
ε
t+ 1

2

(
ej

)

=
∑

j∈�p�

ε
t+ 1

2

(
ej

)

∑

vi∈V

mj (vi)

#mej

=
∑

j∈�p�

ε
t+ 1

2

(
ej

)

= 1.

Regrouping (1) and (2):

PV,t+1 = PV,tD
−1
w,V HWED−1

E
H�. (3)

It is valuable to keep a trace of the intermediate state P
E,t+ 1

2
= PV,tD

−1
w,V HWE as it records

the importance of the hb-edges.
Writing T = D−1

w,V HWED−1
E

H�, it follows from (3):

PV,t+1 = PV,tT . (4)

Claim (Stochastic transition matrix) T is a square row stochastic matrix of dimension n.

Proof Let consider:

A = (
aij

)
i∈�n�j∈�p�

= D−1
w,V HWE ∈ Mn,p

and:
B = (

bjk

)
j∈�p�k∈�n�

= D−1
E

H� ∈ Mp,n.
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A and B are non-negative rectangular matrices. Moreover:

aij = mj (vi) we

(
ej

)

dw,vi

and, it holds:

∑

j∈�p�

aij =

∑

j∈�p�

mj (vi) we

(
ej

)

dw,vi

= 1.

bjk = mj (vk)

#m

(
ej

) and it holds:

∑

k∈�n�

bjk =

∑

k∈�n�

mj (vk)

#mej
= 1.

We have: PV,t+1 = PV,tAB where:

T = AB =
⎛

⎝
∑

j∈�p�

aij bjk

⎞

⎠

i∈�n�k∈�n�

.

It yields:

∑

k∈�n�

∑

j∈�p�

aij bjk =
∑

j∈�p�

aij

∑

k∈�n�

bjk

=
∑

j∈�p�

aij

= 1.

Hence T = AB is a non-negative square matrix with its row sums all equal to 1: it is a row
stochastic matrix.

Claim (Properties of T) Supposing that the hb-graph is connected, the exchange-based
diffusion matrix T is aperiodic and irreducible.

Proof This stochastic matrix is aperiodic, due to the fact that any vertex of the hb-graph
retrieves a part of the value it has given to the hb-edge, hence tii > 0 for all i ∈ �n�.

Moreover, as the hb-graph is connected, the matrix is irreducible as all states can be
joined from any state.
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Claim The sequence
(
PV,t

)
t∈N , with PV,t = (αt (vi))i∈�n� , in a connected hb-graph

converges to the state vector πV such that:

πV =
⎛

⎜
⎝

dw,vi∑

k∈�n�

dw,vk

⎞

⎟
⎠

i∈�n�

.

Proof We denote by π an eigenvector of T = (cik)i∈�n�k∈�n� associated to the eigenvalue
1. We have πT = π .

Let consider u = (
dw,vi

)
i∈�n�

.
We have:

(uT )k =
∑

i∈�n�

dw,vi
cik

=
∑

i∈�n�

dw,vi

∑

j∈�p�

mj (vi) we

(
ej

)

dw,vi

× mj (vk)

#m

(
ej

)

=
∑

j∈�p�

∑

i∈�n�

mj (vi) we

(
ej

) × mj (vk)

#m

(
ej

)

=
∑

j∈�p�

we

(
ej

)
mj (vk)

∑

i∈�n�

mj (vi)

#m

(
ej

)

=
∑

j∈�p�

we

(
ej

)
mj (vk)

= dw,vk
= uk .

Hence, u is a non-negative eigenvector of T associated to the eigenvalue 1.
For a connected hb-graph, when we iterate over the stochastic matrix T which is aperi-

odic and irreducible, we are then ensured of convergence to a stationary state: this stationary
state is the probability vector associated to the eigenvalue 1. It is unique and is equal to αu

such that
∑

k∈�n�

αuk = 1.

We have α = 1
∑

k∈�n�

dw,vk

and hence the result.

Claim The sequence
(
P
E,t+ 1

2

)

t∈N , with P
E,t+ 1

2
=

(
ε
t+ 1

2

(
ej

))

j∈�p�
, in a connected hb-

graph converges to the state vector πE such that:
⎛

⎜
⎝

we

(
ej

) × #m

(
ej

)

∑

k∈�n�

dw,vk

⎞

⎟
⎠

j∈�p�

.

Proof As P
E,t+ 1

2
= PV,tD

−1
w,V HWE and that lim

t→+∞PV,t = πV , the sequence
(
P
E,t+ 1

2

)

t∈N
converges towards a state vector πE such that: πE = πV D−1

w,V HWE.
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We have:

πE =
⎛

⎜
⎝

∑

i∈�n�

dw,vi∑

k∈�n�

dw,vk

× mj (vi) × we

(
ej

)

dw,vi

⎞

⎟
⎠

j∈�p�

=
⎛

⎜
⎝

∑

i∈�n�

mj (vi) × we

(
ej

)

∑

k∈�n�

dw,vk

⎞

⎟
⎠

j∈�p�

=
⎛

⎜
⎝

we

(
ej

) × ∑

i∈�n�

mj (vi)

∑

k∈�n�

dw,vk

⎞

⎟
⎠

j∈�p�

=
⎛

⎜
⎝

we

(
ej

) × #m

(
ej

)

∑

k∈�n�

dw,vk

⎞

⎟
⎠

j∈�p�

.

All components are non-negative and we check that the components of this vector sum
to one:

∑

j∈�p�

πE,j =

∑

j∈�p�

we

(
ej

) × ∑

i∈�n�

mj (vi)

∑

k∈�n�

dw,vk

=

∑

i∈�n�

∑

j∈�p�

we

(
ej

) × mj (vi)

∑

k∈�n�

dw,vk

=

∑

i∈�n�

dw,vi

∑

k∈�n�

dw,vk

= 1.

These two claims show that this exchange-based process ranks vertices by their weighted
m-degree and hb-edges by their weighted m-cardinality.

We have gathered the two-phase steps of the exchange-based diffusion process in Algo-
rithm 1. The time complexity of this algorithm is O (T (dHn + rHp)) where dH = max

vi∈V
(di)

is the maximal degree of vertices in the hb-graph and rH = max
ej ∈E

∣∣∣e�j
∣∣∣ is the maximal car-

dinality of the support of a hb-graph. Usually, dH and rH are small compared to n and p.
Algorithm 1 can be refined to determine automatically the number of iterations needed, fix-
ing an accepted error to ensure convergence on the values for the vertices and storing the
previous state.
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4 Evaluation and use cases

This section firstly addresses the validation of the approach taken on lab-generated hb-
graphs. Secondly, this approach is applied to two use cases: one on the processing of the
results of Arxiv querying and another one on Coco dataset images.

4.1 Validation on lab-generated hb-graphs

This diffusion by exchange process has been validated on two experiments: the first one
generates a random hb-graph to validate the approach and the second compares the results
with a classical and a modified random walk on the hb-graph.

Using lab-generated hb-graphs allow to test our diffusion on hb-graphs that have differ-
ent shapes, and where the connectivity is always guaranteed. The lab-hb-graph generator
includes different parameters to ensure both the connectivity, the number of groups—i.e.
sub-hb-graphs—and the way of connection of these groups. As it is shown in Fig. 3, we
generate Nmax vertices. N0 out of the Nmax vertices are regrouped in V0 and will be used for
interconnection between the different groups. The remaining Nmax − N0 vertices are then
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Fig. 3 Random hb-graph generation principle

separated into k subsets
(
Vj

)
j∈�k�

, corresponding to the vertices of the groups. In each of
these k groups Vj , we generate two subsets of vertices: a first set Vj,1 of Nj,1 vertices and
a second set Vj,2 of Nj,2 vertices with Nj,1 � Nj,2, j ∈ �k�. The number of hb-edges to
be built is adjustable and shared between the different groups. The m-cardinality #m (e) of
a hb-edge is chosen randomly below a maximum tunable threshold. The multiplicity given
to a vertex is also a random choice, tunable below a threshold. Vertices in Vj,1 are the ver-
tices considered as important: their presence is required in a certain number of hb-edges per
group; the number of important vertices in a hb-edge is randomly fixed below a maximum
number. The completion of each hb-edge is done by choosing vertices randomly in the Vj,2
set. A vertex can be chosen randomly many times, increasing in this case its multiplicity
within the hb-edge using the same random approach. The random choice made into these
two groups is tuned to follow a power law distribution. It implies that some vertices occur
more often than others. Interconnection between the k components is achieved by choosing
vertices in V0 and inserting them randomly into the hb-edges built.

The exchange-based diffusion is then applied to these generated hb-graphs: we analyze
not only the validity of this diffusion process but also propose a visualisation of the results
that highlights not only vertices but also hb-edges, both on the hb-graph and on its support
hypergraph.

We make the hypothesis that vertices with the highest values of αT correspond to vertices
of the network that are important in the sense of being central for the connectivity. To
validate this hypothesis, we are going to define a relative eccentricity of vertices from a
subset of the vertex set in the hb-graph.

The eccentricity of a vertex in a graph is the length of a maximal shortest path between
this vertex and the other vertices of this graph: extending this definition to hb-graphs is
straightforward. If the graph is disconnected then each vertex has infinite eccentricity.

The relative eccentricity is then defined as the length of a maximal shortest path starting
from a given vertex in a subset S of the vertex set V and ending with any vertices of V \S.
The relative eccentricity is calculated for every vertex of S provided that it is connected to
vertices of V \S; otherwise it is set to −∞. The concept of relative eccentricity is illustrated
in Fig. 4.

The subset of the vertex set V—written AV (sV )—is built by using a threshold value

sV : it gathers vertices of V with αT -value above sV . Consequently, the subset BV (sV )
�=

V \AV (sV ) corresponds to the set of vertices with αT values below the threshold. The
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Fig. 4 Relative eccentricity: finding the length of a maximal shortest path in the hb-graph starting from a
given vertex v0 of S and finishing with any vertex in V \S

relative eccentricity of each vertex of AV (sV ) to vertices of BV (sV ) in the support
hypergraph of the corresponding hb-graph is then evaluated.

Assuming that iterations stop at time T , we let sV vary in incremental steps from 0 to the

value αT,max
�= max

v∈V
(αT (v)). In order to have a relative value instead of the raw value sV ,

we consider:

rV
�= sV

αref

where αref is the reference normalised value used for the initialisation of the α value of the
vertices of the hb-graph H.

The results obtained by this experiment are shown on the two plots of Fig. 5. The first
plot corresponds to the maximal length of the path between vertices of AV (sV ) and vertices
of BV (sV ) that are connected according to the ratio rV : this path length corresponds to half
of the length of the path observed in the extra-vertex graph representation of the hb-graph
support hypergraph as in between two vertices of V there is an extra-vertex that represents
the hb-edge (or the support hyperedge). The second curve plots the percentage of vertices
of V that are in AV (sV ) in function of rV . When rV increases, the number of elements in
AV (sV ) naturally decreases while they get closer to the elements of BV (sV ) , marking the
fact that they are central.

Figures 6 and 7 show that high values of αT (v) correspond to vertices that are highly
connected either by degree or by m-degree.

A similar approach is taken for the hb-edges: assuming that the diffusion process stops
at time T , we use the ε

T − 1
2
function to partition the set of hb-edges into two subsets for

a given threshold sE : AE (sE) of the hb-edges that have ε values above the threshold and
BE (sE) the one gathering the hb-edges that have ε values below sE.

sE varies from 0 to ε
T − 1

2 ,max
�= max

e∈E

(
ε
T − 1

2
(e)

)
by incremental steps while keeping the

eccentricity above 0, first of the two conditions achieved. In the hb-graph representation,
each hb-edge corresponds to an extra-vertex. Each time, we evaluate the length of the max-
imal shortest path linking one vertex of AE (sE) to one vertex of BE (sE) for connected
vertices in the extra-vertex graph representation of the hb-graph support hypergraph: the
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Fig. 5 Maximum path length and percentage of vertices in AV (s) over vertices in V vs ratio rV

length of the path corresponds to half of the one obtained from the graph for the same reason
as before.

We define the ratio:

rE
�= sE

βref

where βref
�= 1

|E| that corresponds to the normalised value that would be used in the dual

hb-graph to initialize the diffusion process. In Fig. 8, we observe for the hb-edges the
same trend than the one observed for vertices: the length of the maximal path between two

Fig. 6 Alpha value of vertices at step 200 vs degree of vertices
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Fig. 7 Alpha value of vertices at step 200 vs m-degree of vertices

hb-edges decreases as the ratio rE increases while the percentage of vertices in AE (sE)

over V decreases.
Figure 9 shows the high correlation between the value of ε (e) and the cardinality of e;

Fig. 10 shows that the correlation between value of ε (e) and the m-cardinality of e is even
stronger.

The number of iterations needed to have a significant convergence depends on the ini-
tial conditions; we tried different initializations, either uniform, or applying some strokes
on a different number of nodes. We observed that the more uniform the information on
the network is, the less number of iterations for convergence is needed. No matter the
configuration, the most important vertices in term of connectivity are always the most

Fig. 8 Maximum path length and percentage of vertices in AE(s) vs ratio
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Fig. 9 Epsilon value of hb-edge at stage 199+ 1
2 and cardinality of hb-edge

highlighted ones. Figures 11 and 12 depict the convergence observed on a uniform initial
distribution as it is described in the former section. In Fig. 11, we can see how the α-values
as observed in Fig. 6 reflect the m-degree of the vertex they are associated with: 200 itera-
tions is more than enough to rank the vertices by m-degree. In Fig. 12, we can observe an
analogous phenomena with the ε-value associated to hb-edges that reflect the m-cardinality
of the hb-edges. Again 200 iterations are sufficient to converge in the studied cases.

The number of iterations needed to converge depends on the structure of the network. In
the transitory phase, the vertices need to exchange with the hb-edges; the process requires
some iterations before converging and its behavior depends on the node connectivity and
the hb-edge composition. It is an open question to investigate on this transitory phase to
have more indications on the way the ε and the α-values vary.

Fig. 10 Epsilon value of hb-edge at stage 199+ 1
2 and (m-)cardinality of hb-edge
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Fig. 11 Alpha value convergence of the vertices vs number of iterations. The plots are colored using a
m-degree-based gradient coloring

We show an example of exchange-based diffusion on a lab-generated hb-graph in
Fig. 13a and on its support hypergraph in Fig. 13b. The vertices are colored depending on
the value of the ratio:

cα (v)
�= αT (v)

αref

using the scale of colors on the right. Vertices with near zero cα (v) values—i.e. low αT (v)

values compared to αref—are dark bluish colored; on the opposite, with high cα (v) values—
i.e. with high αT (v) values compared to αref—are yellowish colored; when cα (v) is close
to 1, the vertices are colored in a close turquoise. The hb-edges—i.e. the extra-nodes represent-
ing images—are colored with the left gradient color scale according to the value of the ratio:

cε (e)
�=

ε
T − 1

2
(e)

εnorm (e)

where εnorm (e)
�= ∑

v∈e�

me (v)

degm (v)
αref. εnorm (e) corresponds to the value the hb-edge e should

have in reference to the fraction of αref given by each vertex and depending on the fraction of
its multiplicity versus its m-degree in the hb-edge. Hb-edges are colored using cε (e) : when
this ratio is close to 0—i.e. when the hb-edges have low ε

T − 1
2
(e) compared to εnorm (e)—

hb-edges are colored in a blueish hue; when this ratio is high—i.e. when the hb-edges have
high ε

T − 1
2
(e) compared to what was expected with εnorm (e)—they are colored in a reddish

hue. It is worth mentioning that diffusing only on the support hypergraph of a hb-graph high-
lights only nodes that are highly connected inside a group, the ones being at the intersection
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Fig. 12 Epsilon value convergence of hb-edges vs number of iterations. The plots are m-cardinality-based
gradient colored

of the different groups have less importance in this case. The diffusion on the hb-graph
captures the centrality of these vertices that are peripheral to the groups. Hence, taking the
multiplicities into account brings valuable information on the network and on the centrality
of some vertices.

To compare our exchange-based diffusion process to a baseline we consider a classical
random walk. In this classical random walk, the walker who is on a vertex v chooses ran-
domly a hb-edge that is incident with a uniform probability law and when the walker is on a
hb-edge e, he chooses a vertex inside the hb-edge randomly with a uniform probability law.
We let the possibility of teleportation to an other vertex from a vertex with a tunable value
γ : 1−γ represents the probability to be teleported. We choose the classical value γ = 0.85.
We count the number of passages of the walker through each vertex and each hb-edge. We
stop the random walk when the hb-graph is fully explored. We iterate N times the random
walk, N varying.

To improve the results of the classical random walk we propose a modified random
walk—described in Algorithm 2—on the hb-graphs with random choice of hb-edges when

the walker is on a vertex v with a distribution of probability

(
we (ei ) mi (v)

degw,m (v)

)

i∈�p�

and a

random choice of the vertex when the walker is on a hb-edge e with a distribution of prob-

ability

(
me (vi)

#m (e)

)

i∈�n�

. We let the possibility of teleportation as it is done in the classical

random walk. Similarly to the classical random walk, we count the number of passages of
the walker through each vertex and each hb-edge. We also stop the random walk when the
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Fig. 13 Exchange-based diffusion in a hb-graph (a) and its support hypergraph (b) after 200 iterations of
Algorithm 1: highlighting important hb-edges. Simulation with 848 vertices (chosen randomly out of 10 000)
gathered in 5 groups of vertices (with 5, 9, 14, 16 and 9 important vertices and 2 important vertices per hb-
edge), 310 hb-edges (with cardinality of support less or equal to 20), 10 vertices in between the 5 groups.
Extra-vertices have square shape and are colored with the hb-edge color scale
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hb-graph is fully explored. We iterate N times the random walk with various values of N .
Assigning a multiplicity of 1 to every vertex and a weight of 1 for every hb-edge—with the
vertex degree and the hb-edge cardinality instead of the multiplicity—retrieves the classical
random walk from the modified random walk.
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Fig. 14 Comparison of the rank obtained by a thousand modified random walks after total discovery of the
vertices in the hb-graph and rank obtained with 200 iterations of the exchange-based diffusion process

Figure 14 shows that there is a good correlation between the rank obtained by a thou-
sand modified random walks and after two hundreds iterations of our diffusion process,
especially for the first two hundred vertices of the network, which is generally the ones tar-
geted. The lack of anti-correlation between the rank obtained by the random walk with the
degree of the vertices and the m-degree of vertices as shown respectively in Figs. 15 and 16

Fig. 15 Comparison of the rank obtained by a thousand modified random walks after total discovery of the
vertices in the hb-graph and m-degree of vertices
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Fig. 16 Comparison of the rank obtained by a thousand modified random walks after total discovery of the
vertices in the hb-graph and degree of vertices

is mainly due to the vertices with low m-degrees / degrees, but this lack decreases with the
modified random walk.

We can remark in Fig. 17 that the correlation is a bit lower with a thousand classical
random walks due to the fact that there are more vertices that are seen as differently ranked
in between the two approaches. In Fig. 18, we can see that the ranks in the classical random
walk relies more on the degree than on the m-degree as shown in Fig. 19, especially for
vertices with small (m-)degrees; but there is still a misclassification for lower (m-)degree
vertices.

We have compared the three methods from a computational time perspective; the results
are shown in Table 1. The diffusion process is clearly faster; the modified random walk,
essentially related to the overhead due to the large number of divisions, requires longer than
the classical random walk. A lot of optimization can be foreseen to make this modified
random walk run faster. The random walks can be easily parallelized; it is also the case
for the diffusion process. The number of iterations in the diffusion process can also be
optimized. These issues will be addressed in future work.

4.2 Two use cases

4.2.1 Application to Arxiv querying

We use the standard Arxiv API3 to perform searches on Arxiv database. When performing
a search, the query is transformed into a vector of words which is the basis for the retrieval
of documents. The most relevant documents are retrieved based on a similarity measure
between the query vector and the word vectors associated to individual documents. Arxiv
relies on Lucene’s built-in Vector Space Model of information retrieval and the Boolean

3https://arxiv.org/help/api/index

https://arxiv.org/help/api/index
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Fig. 17 Comparison of the rank obtained by a thousand classical random walks after total discovery of the
vertices in the hb-graph and rank obtained with 200 iterations of the exchange-based diffusion process

model.4 The Arxiv API returns the metadata associated to documents with highest scores
for the query performed.

This metadata, filled by the authors during their submission of a preprint, contains
different information such as authors, Arxiv categories and abstract.

We process these abstracts using TextBlob, a natural language processing Python library5

and extract the nouns using the tagged text.
Nouns in the abstract of each document are scored with TF-IDF, the Term Frequency

- Invert Document Frequency. Even if it is a classical measure, we just remind here its
definition:

TF-IDF (x, d) = TF(x, d) × IDF (x, d)

with TF(x, d) the relative frequency of x in d and IDF (x, d) the invert document frequency.
Writing nd the total number of terms in document d and nx the number of occurrences

of x :
TF(x, d) = nx

nd

and writing N the total number of documents and nx∈d the number of documents having an
occurrence of x, we have:

IDF (x, d) = log10

(
N

nx∈d

)
.

Scoring each noun in each abstract of the retrieved documents generates a hb-graph HQ

of universe the nouns contained in the abstracts. Each hb-edge contains a multiset of nouns
extracted from a given abstract with a multiplicity function that represents the TF-IDF score
of each noun.

The exchange-based diffusion process is then applied to the hb-graph HQ. We show two
typical examples for the same query: the first 50 results in Fig. 20 and the first 100 results

4https://lucene.apache.org/core/2 9 4/scoring.html
5https://textblob.readthedocs.io/en/dev/

https://lucene.apache.org/core/2_9_4/scoring.html
https://textblob.readthedocs.io/en/dev/
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Fig. 18 Comparison of the rank obtained by a thousand classical random walks after total discovery of the
vertices in the hb-graph and m-degree of vertices

in Fig. 21. The number of iterations needed to reach convergence is less than 10 in these
two cases; with 500 results, around 10 iterations are needed for all hb-edges but one where
30 iterations are needed.

As the hb-edges correspond to documents in Arxiv database, we compare the central
documents obtained in the results of the queries: we observe that the ranking obtained based
on the ε49+ 1

2
differs significantly from the ranking by pertinence given by Arxiv API. In the

Fig. 19 Comparison of the rank obtained by a thousand classical random walks after total discovery of the
vertices in the hb-graph and degree of vertices
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Table 1 Time taken for doing 100, 200, 500 and 1000 iterations of the diffusion algorithm and 100, 200, 500
and 1000 classical and modified random walks on different hb-graphs

exchange-based diffusion, the ranking sorts documents depending on their respective word
weights and their centrality as we have seen in the experimental part on random hb-graphs.

Moreover, we have observed that when the number of results retrieved increases the
top 5, top 10 documents sometimes change drastically depending on the retrieval of new
documents that are more central with respect to the words they contain. If the gap seems
small with a few documents retrieved, it increases as the number of documents increases.
Increasing the number of results reveals the full theoretical hb-graph obtained from the
whole dataset of the query performed, and hence, reveals the subjects central to this dataset.

Fig. 20 Querying Arxiv. The search performed is “content-based multimedia indexing” for which 50 most
relevant articles have been retrieved with 100 iterations. Top 10: 1: multimedium; 2: video; 3: search; 4:
retrieval; 5: image; 6: indexing; 7: paper; 8: index; 9: method; 10: system
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Fig. 21 Querying Arxiv. The search performed is “content-based multimedia indexing” for which 100 most
relevant articles have been retrieved with 100 iterations on the exchange-based diffusion. Top 10: 1: paper; 2:
index; 3: multimedium; 4: image; 5: method; 6: video; 7: retrieval; 8: performance; 9: indexing; 10: system

Fig. 22 Exchange-based diffusion on the sub-hb-graph first component with 175 images of a hb-graph of
199 images of the COCO 2014 training dataset
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Fig. 23 Image examples: references are the COCO training dataset 2014 image references

Hence the diffusion process can highlight importance of documents with respect to central
subjects when processing the results of the query.

4.2.2 Application to an image database

We have applied the exchange-based diffusion to a database of images. We have used a
hb-graph modeling of the objects detected on individual images to build a network of co-
occurrences. Each image has been processed using a Retina neural network to label the
objects it contains, and each object is then counted in its own category. The database used is
the 2014 training set of the COCO dataset6 [18]. The use of a pre-trained Retina net7 allows
to give bounding boxes corresponding to concepts, with a probability associated to it. We
then choose a threshold below which we reject the bounding box: it has been fixed at 0.5, as
it is proposed by the library developer. Hence, we can associate to each image its concepts
and their multiplicity.

Two hb-graphs can be build. First, a hb-graph of images HIm, where the vertex set is
constituted of the different concepts—objects—that the image holds and where a hb-edge
is related to an image, regrouping the different concepts with their respective multiplicity.
The second hb-graph is the hb-graph of concepts HCo : the vertex set corresponds to the
image set and a hb-edge regroups the images holding the concept with a multiplicity that

6http://cocodataset.org/#home.
7https://github.com/fizyr/keras-retinanet

http://cocodataset.org/#home
https://github.com/fizyr/keras-retinanet
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corresponds to the number of times the corresponding concept occurs in the image. These
two hb-graphs are dual one of the other. We now focus on the hb-graph of images.

198 images of the COCO 2014 training dataset have been randomly selected, building
the original image hb-graph. To ensure connectivity, only the first main component of the
original image hb-graph is kept: it is constituted of 175 images. This component is desig-
nated as the hb-graph in the remainder. We then enhance the diffusion on this connected
hb-graph. A typical result is presented in Fig. 22: the concepts are the vertices, the images
represent the extra-vertices corresponding to the hb-edges. The coloration of vertices—i.e.
the nodes of the concepts— and of hb-edges—i.e. the extra-nodes representing images—
is the same than the one used in Fig. 13. Images containing persons are more reddish than
images without persons, as the concept of person is central to the first component. But a lot
of the images highlighted in red with persons contain other concepts, that are seen as impor-
tant. It is the case for the image Reference 237245 in Fig. 23 which shows one person with
one TV, two concepts that are central. Nonetheless, if the second concept is less important

Fig. 24 Most 20% important images as detected by the exchange-based diffusion on the sub-hb-graph first
component with 175 images of a hb-graph of 199 images of the COCO 2014 training dataset
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the importance of the image decreases, as shown for instance in the image Ref. 282045 in
Fig. 23 which contains 2 persons and 2 surfboards—the image is seen as less important as
the concept of surfboard is less important than the one of TV. It is worth mentioning that
images containing a lot of persons are not systematically highlighted in red—for instance,
image Ref. 348954 in Fig. 23 with 7 persons, 1 bicycle, 1 traffic light and 1 backpack is
seen as less important than image Ref 347167 in Fig. 23 with 8 persons, 2 cups and 1 lap-
top. The closer to red the images are, the more central to the sample drawn they are; hence,
these images can potentially be used to make a summary of this sample, by selecting for
instance the top 20% images based on their importance in the exchange-based diffusion,
based on the cε (e)-value calculated based on the diffusion process, as it is shown in Fig. 24.
This strategy for summarizing can be refined with more complex strategies in order to fully
covered the dataset concepts: it is kept as future work.

5 Future work and conclusion

Through this study, hb-graphs by enabling multiplicities of elements that are hb-edge based
have proven to be efficient in retrieving the important part of a co-occurrence network.
The two-phase step diffusion proposed enhances the possibility of retrieving information
not only for vertices but also for hb-edges. The two use-cases show the potential of such
approaches.

Different applications can be thought in particular in the search of tagged multimedia
documents for refining the results and scoring of documents retrieved. Using tagged doc-
uments ranking by this means could help in creating visualisation summary. Our approach
is seen as a strong basis to refine the approach of [41]; it can also be viewed as a mean to
make query expansion and disambiguation by using additional highly scored words in the
network and as a way of making some recommendation based on the scoring of a document
based on its main words.

Acknowledgments This work is part of the PhD of Xavier OUVRARD, done at UniGe, supervised by
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