
Received January 27, 2020, accepted February 10, 2020, date of publication February 21, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975753

Time and Individual Duration
in Genetic Programming
FRANCISCO FERNÁNDEZ DE VEGA1, (Senior Member, IEEE),
GUSTAVO OLAGUE 2, (Senior Member, IEEE), DANIEL LANZA3,
FRANCISCO CHÁVEZ DE LA O 1, WOLFGANG BANZHAF4,
ERIK GOODMAN 4, JOSE MENENDEZ-CLAVIJO2,
AND AXEL MARTINEZ2
1Grupo de Evolución Artificial, Universidad de Extremadura, 06800 Mérida, Spain
2EvoVisión Laboratory, CICESE Research Center, Ensenada 22860, Mexico
3Information Technology Department, CERN, 1211 Geneva, Switzerland
4BEACON Center, Michigan State University, East Lansing, MI 48824, USA

Corresponding author: Gustavo Olague (olague@cicese.mx)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness (Deep-Bio-Uex) under Project
TIN2017-85727-C4-4-P, in part by the Regional Government of Extremadura, Department of Commerce and Economy, co-funded by the
European Regional Development Fund (a Way to Build Europe) under Grant G15068IB16035, and in part by the Center for Scientific
Research and Higher Education at Ensenada (CICESE) through the Programación Cerebral Aplicada al Estudio del Pensamiento y la
Visión under Project 634-128.

ABSTRACT This paper presents a new way of measuring complexity in variable-size-chromosome-based
evolutionary algorithms. Dealing with complexity is particularly useful when considering bloat in Genetic
Programming. Instead of analyzing size growth, we focus on the time required for individuals’ fitness
evaluations, which correlates with size. This way, we consider time and space as two sides of a single coin
when devising a more natural method for fighting bloat. We thus view the problem from a perspective that
departs from traditional methods applied in Genetic Programming. We have analyzed first the behavior
of individuals across generations, taking into account their fitness evaluation times, thus providing clues
about the general practice of the evolutionary process when modern parallel and distributed computers are
used to run the algorithm. This new perspective allows us to understand that new methods for bloat control
can be derived. Moreover, we develop from this framework a first proposal to show the usefulness of the
idea: to group individuals in classes according to computing time required for evaluation, automatically
accomplished by parallel and distributed systems without any change in the underlying algorithm, when
they are only allowed to breed within their classes. Experimental data confirms the strength of the approach:
using computing time as a measure of individuals’ complexity allows control of the natural size growth of
genetic programming individuals while preserving the quality of solutions in both the parallel and sequential
versions of the algorithm.

INDEX TERMS Bloat, computing time, genetic programming.

I. INTRODUCTION
Genetic Programming (GP) became popular from the
mid-nineties onwards, after Koza published his first book on
the topic [1]. This machine learning technique has widely
demonstrated capabilities for addressing hard, real-world
problems, and in the case of tree-based GP, a challenge
remains: the bloat phenomenon, see [2]–[4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno Garcia .

A. PROBLEM STATEMENT
According to [5], fitness improvement correlates with the
inherent bloating behavior present in any evolutionary
approach using variable-size chromosomes. Although many
authors have addressed this problem from different perspec-
tives, no perfect solution exists, and there is still room for
improvement.

This paper aims to provide new perspectives for fighting
bloat, which may, in the future, allow the development of a
series of new bloat control methods based on function (chro-
mosome) evaluation time. Although there is a correlation

38692 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5773-9517
https://orcid.org/0000-0002-9565-743X
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-3195-3168

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

between an individual’s size and its evaluation time, the latter
also depends on the underlying hardware infrastructure that is
used to carry out the evaluation. In this paper, we explore the
connection with parallel and distributed model architectures.
Although island models have been analyzed before in this
context ([6], [7]), these previous approaches relied more on
the spatial structure of the models, while in this work we
are more interested in the standard GP algorithm, whether
implemented sequentially or in parallel.

By analyzing the intrinsic behavior of the algorithm,
we show the space-time connection (correlation between
individual size and evaluation time) in the bloat phe-
nomenon [8]. We also show how this new relationship could
benefit EAs with chromosomes of variable size, enabling the
development of new kinds of bloat-control mechanisms that
can naturally benefit from the underlying parallel proces-
sors that are present in modern computer systems, includ-
ing handheld devices, desktop systems, and large computer
systems.

Based on this space-time connection, we have devised new
ways of naturally controlling the bloat problem: we analyze
the bloat phenomenon using time (execution time) instead of
space (memory consumption), although both are measures
of a single entity: the time-space behavior of individuals.
We resort to the space-time continuum as a metaphor pro-
viding a new source of inspiration and thus try to provide
a new way of analyzing and fighting bloat. To the best of
our knowledge, this is the first conceptualization of such
an approach (description and application), and the results
we show demonstrate the usefulness of the idea, both in
sequential and embarrassingly parallel versions of the algo-
rithm, which opens up new possibilities in other parallel and
distributed versions of GP.

B. RESEARCH CONTRIBUTIONS
The main contributions of this work are (1) the idea of prop-
erly establishing a relationship between an individual’s size
and evaluation time, showing the advantages of using eval-
uation time when analyzing individuals’ complexity. Also,
(2) we show that the approach leads to a new kind of
straightforward bloat control mechanism, and (3) we present
the first such implementation based on fitness evaluation
time, tested in both sequential and parallel executions of the
algorithm. Although many possibilities arise from the new
perspective, this first method shows the usefulness of the
approach, paving the way towards a new class of bloat control
mechanisms.

We organize the paper as follows: In Section II we describe
some GP-associated considerations that gave rise to the ideas
developed later. Section III reviews previous approaches for
fighting bloat, and the main features of parallel models that
may be taken into account when analyzing this problem.
Then, Section IV describes how load-balancing techniques
could be of interest in this context. Section V presents our
proposal, while Section VI shows the experiments performed

and the results obtained. Finally, we draw our conclusions in
Section VIII.

II. THE COMPUTATIONAL COMPLEXITY OF GP IN TIME
AND SPACE
Before describing the idea that motivates our work, we need
to define some ideas in a proper context so we can better
convey the key concepts. GP is said to be a machine learn-
ing model that explores the search space of possible pro-
grams that solve a given problem, [1]. Usually, in computer
science, problems are classified according to a complexity
class, which is associated with an algorithm that attempts
to solve the problem. Programmers implement the proposed
algorithm through a language that is the formal realization
of a problem. When we want to reason theoretically about
a problem, we often examine the corresponding language.
In particular, the technique of GP builds computer programs,
algorithms, automatically written in a domain-specific lan-
guage suitable to the studied problem. Therefore, the sys-
tem automatically applies an encoding w of an input y to
the problem X , and the answer is the solution (program)
to (attempt to) solve that problem. An algorithm is a step-
by-step way to solve a problem. GP creates many different
candidate algorithms for solving a particular problem through
a generate-and-test strategy that builds a formal analog of an
algorithm–a machine working with a given language.

Computational complexity refers to the theory that for-
malizes the difficulty of achieving a solution to a problem.
Whatever the algorithm used, the programmer describes the
solution in terms of how many resources the best algo-
rithm requires to address the problem. Indeed, the running
time may, in general, depend on the instance. In particular,
large instances typically require more time to solve. Thus,
programmers calculate the time required to solve problems
(or the space required, or any other measure of complexity)
as a function of the size of the instance. This is usually taken
to be a function on the size of the input in bits. Complexity
theory is interested in how algorithms scale with an increase
in the input size. The evolutionary computation community
has adopted this way of seeing computational complexity in
genetic programming: explicitly, the community bases the
study of bloat and the proposals to control it on regulating
the size of the individuals, [3], [9]–[11]. In other words,
programmers express the time taken as a function of size,
and the idea is to create mechanisms that manage the size of
individuals to reduce bloat.

As we have explained, the reasoning for measuring bloat
through the size of individuals has historical and mathe-
matical foundations. We offer here a fresh perspective to
study bloat through running time in the machine. Time is
an abstract concept that allows humans to organize temporal
events mentally. This view offers new ways of looking at
bloat. For our purposes, time is associated with the resources,
functions, and terminals that are necessary to complete the
task/program. Before describing the details, we review first

VOLUME 8, 2020 38693

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

the bloat-associated literature, to better understand the nov-
elty of the approach.

III. THE BLOAT PHENOMENON
Even in his seminal publication [1], Koza already provided
some hints on how to fight this undesirable phenomenon
that frequently makes the algorithm run out of memory or
consume somuch computing time that the discovery of useful
solutions is hampered. Koza proposed that the employment of
size-related penalty values be combined with standard fitness
functions, and that a maximum depth limit be established
so that trees cannot continue growing without restrictions.
Programmers established depth and size limits as de-facto
techniques and combined them with any other new proposal.

The bloat problem has been addressed frequently in the
GP literature since then. Although we do not provide an
exhaustive review of the topic (some reviews of the litera-
ture are available for interested readers, such as [10], [12]),
we refer to several studies analyzing the reasons for bloat-
ing, like [2], hitchhiking exposed in [13], defense against
crossover by [14], removal bias explained in [9], fitness as the
primary source for bloat introduced in [5], depth correlation
theory by [15], crossover bias detailed in [16], an so on.

Among the first techniques proposed, as described above,
when referring to [1], penalties associated with fitness
functions were the first countermeasures. Soon researchers
devised more sophisticated approaches, such as establishing
dynamic depth or size limits for individuals [12], but also
variable population sizes were indirectly applied to globally
control the total number of nodes to be managed ([17], [18]).
Also, multiobjective approaches, where two objectives are
simultaneously considered, such as (i) fitness value and
(ii) individual’s size, have been applied to control bloat, [19].

Other techniques are available that take into account indi-
vidual sizes and shapes ([20], [21]). However, we want
to focus on an alternative method called the waiting room
approach, introduced by [22]. The idea is for individuals
to add a pre-birth phase to all newly created individuals.
Children must wait for some time proportional to their size
before they are allowed to enter the population and compete.
Although the authors conceded that the idea was associated
with the relationship between individual sizes and evalua-
tion times, they maintained the emphasis on the size-control
mechanism and hence did not elaborate on the time concept,
nor did they take into account the possibilities associated
with parallel and distributed infrastructures available, given
their influence on evaluation time when individuals migrate
to available processors. Thus, they relied on the total number
of nodes individuals feature, similarly to all other methods,
although using a somewhat different approach.

We must also mention some work that took initial inspira-
tion from operator equalization presented in [23], aimed at
controlling the distribution of program sizes at each genera-
tion, defining a specific shape for the distribution. Some of the
best results were achieved by using a uniform or even distri-
bution [24], and also by applying speciation, fitness sharing

or elitism, see [4]. However, again, difficulties arise related
to effectively applying the method–for example, in how to
control the distribution shape without changing the search
problem? Also, how should the method efficiently account
for individuals’ sizes and shapes?

As described before, many size-related approaches to bloat
control in GP have already been proposed and applied.
Here we explore a deeper analysis of computing times that
sheds light on the problem, in contrast to the standard
approach of directly controlling individuals’ sizes. In partic-
ular, we explore the relationship between size and evaluation
time, not only in the standard (sequential) approach, but also
when using parallel and distributed systems. The aim is not
only to save computing time but also to address the bloat
phenomenon more naturally.

A. PARALLEL MODELS AND THE BLOAT PHENOMENON
Some authors have already considered the intrinsic features of
parallel models that they use when hard problems are faced.
Notably, the island model, one of the best known parallel
models, has already been studied from the perspective of the
bloat phenomenon, as we review below.

When GP deals with real-world problems, researchers
have quickly noticed that parallel and distributed systems
are frequently the only feasible approach for finding solu-
tions in a reasonable time. Several systems rely on spatial
structures [25], such as the island [26] and cellular mod-
els [27], while others resort to the embarrassingly parallel
one. The advantages of every model are well known, and
two sources of improvement have been described: on the one
hand, the speed gained from the parallel architecture running
the algorithm, and on the other hand, the spatial distribution
of individuals [25]. In other words, breeders are not well
mixed, which helps to promote diversity [28], thus allowing
researchers to find better solutions in fewer evaluations.

This observation is applicable in general to EAs [29] but
also to GP [25]. Moreover, the employment of variable-size
chromosomes in the latter introduces some differences that
have already been analyzed: in particular, when the model is
connectedwith the bloat phenomenon, an interesting relation-
ship between spatial structure and the bloat phenomenon has
been found.

In a series of papers, a method based on the island model
offers some possibilities for fighting bloat ([6], [30], [31]),
and this methodology has led to a new proposal by [7]
considering the spatial distribution of islands in GP. The
connection between the dynamics of some parallel models
for GP and the bloat phenomenon, as explored there, proved
to be mainly due to spatial structure, which relies on islands
of individuals. Nevertheless, there is still a second source
of possible improvement in parallel EAs, as we described
above: the number of computing resources employed to run
the algorithm, which has not been studied yet from its influ-
ence on the algorithm’s bloating behavior. Even when we
select the simplest embarrassingly parallel model for running
a GP experiment, a load balancing technique must decide

38694 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

how to distribute individuals among the available computing
resources, and this may also influence the bloat phenomenon,
as we show below.

IV. LOAD-BALANCING AND PARALLEL GP
Among the above-mentioned parallel models, the only one
that does not change an algorithm’s behavior is the embar-
rassingly parallel model. All of the algorithm’s steps are
performed as in the sequential version, and the only change
is introduced in the most expensive part of the algorithm: the
fitness evaluation step. Thus, instead of each individual being
sequentially evaluated in the population, they are distributed
among the available processors, which compute fitness values
in parallel.

Although a simple approach, this is probably the most
widely employed model, usually allowing researchers to use
large population sizes. Given that a large number of indi-
viduals interact across the available processors, which are
typically smaller in number than the population size, some
load-balancing mechanism must be applied. This mechanism
is in charge of sending individuals to idle processors, and
might also provide new hidden properties: sometimes, a more
in-depth analysis of the new version of the algorithm allows
us to discover some properties unnoticed before. We are
here interested in both the parallel model itself and the
load-balancing technique that can be used and considered as
the basis for a new proposal that we describe and analyze
below.

A. LOAD-BALANCING TECHNIQUES
Scheduling and load-balancing are very active areas of
research in parallel and distributed computing. They aim to
distribute tasks among multiple computing resources accu-
rately while reducing makespan. Scheduling algorithms, also
called load-balancing methods, aim to determine how to dis-
tribute workloads most effectively. It can be done statically,
so that assignments never change for given tasks, or dynam-
ically, so the load-balancing method can migrate tasks when
processors become idle while others are busy. Frequently,
information about task size is not available at execution time,
so decisions to be taken by the load-balancing algorithm are
not easy. As we explain next, this may be the case in genetic
programming, in which individual sizes and complexities of
programs evolved are variable. Interested readers can find
a taxonomy of load-balancing methods in [32], while [33]
presents a comparison of different strategies.

Load-balancing has also been a topic of interest for
researchers in parallel EAs. Moreover, researchers have
frequently employed EAs as a tool for finding better
load-balancing methods and scheduling policies in paral-
lel and distributed systems (see, for instance, [34]–[37]).
Although GAs are more prevalent in the area, other mem-
bers of the family, such as evolution strategies, have also
been applied [38]; similarly, static methods predominate,
but dynamic load-balancing has also been studied from the
EA standpoint [39]. Here we are not interested in how to

improve a given load-balancing mechanism for application
to general problem-solving in parallel and distributed sys-
tems. Still, we are interested in the role that load-balancing
techniques play within parallel-EAs, and more specifically,
in parallel-GP when addressing the bloat problem.

Researchers have considered load balancing techniques
as an implicit component of parallel versions of genetic
programming. Since the nineties, static load-balancing
mechanisms–the ones we consider here–have been applied
within parallel versions of GP, when facing hard, real-world
problems. For instance, in [40], the authors describe a parallel
version of GP that considers the complexity of individu-
als as the basis for establishing the load-balancing policy.
Given the function set employed there, made up of arithmetic
operations, their method orders the population according to
individual sizes, and then enters a loop that looks for idle
processors, which receive an individual from the list until the
whole list is completed. Although those authors were aware
of the importance of load-balancing techniques, they did not
call out the relationship that may exist with the evolution of
individuals’ size, which is what we aim to exploit here.

Few papers since then have studied the importance of
load-balancing techniques in GP.Wemay refer to [41], where
authors tested several methods. Nonetheless, the authors did
not present a specific study on their work’s relationship with
the bloat phenomenon. In any case, we describe some of the
main features that are involved in load-balancing approaches
for GP.

B. THE STRUCTURAL COMPLEXITY OF GP INDIVIDUALS
When any load-balancing technique is to be employed, a pre-
diction of computing time for the task must be applied,
so that the method can properly decide when to launch the
task. In GP, an essential feature of GP individuals is their
structural complexity [42]. This value is typically computed
with the number of nodes, as in the case of evaluating either
computing effort [43] or lexicographic complexity [44]. Both
are approximate estimates of the real value required–in other
words, the evaluation time of the individuals’ fitness function.

Nevertheless, we can adopt a different point of view, as we
do in the approach we present below: given that we estimate
the measurement of the real complexity of an individual
through the individual evaluation, we can partially charac-
terize individuals using that computing time, so that we can
employ it in future decisions. Although that value is not avail-
able when the load-balancing mechanism must decide when
to launch the evaluation of a new individual; nevertheless, it is
available after the individual’s evaluation. This aspect could
be useful, if not for that individual, given that it was already
sent to be evaluated, then at least for its children, as a value
to use somehow in approximating their evaluation times.

Our approach thus takes into account an individual’s com-
puting time, as a value to decide how to distribute chil-
dren among available computing resources, and ultimately,
to reduce computing time while simultaneously reducing the
bloat phenomenon. We thus need to keep a record of the

VOLUME 8, 2020 38695

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

time that each program (individual) requires during testing
and use that information to create clusters of programs with
similar durations that are useful for load-balancing of indi-
viduals. We use the computer’s clock to give a value to the
runtime of a program; this, of course, is correlated with the
size of the computer program and the number of instruction
cycles required to execute it. We create all clusters without
regard to the fitness function. We do not measure the size
of the individuals directly, nor use any information about the
complexity of breeding programs other than time.We explain
below all these aspects and show that we can address the bloat
problem through this simple strategy without increasing the
computational complexity of the algorithm.

V. METHODOLOGY
This section covers the description of the new approach
we follow when fighting bloat: First, we describe the bloat
control mechanism; Second, we explain the implementation
of the mechanism, which runs using an available tool, [45].
Finally, we describe the methodology that has been used to
perform the experiments and obtain the results.

A. THE ALGORITHM’S KEY CHANGE
This method does not use a traditional tree size or depth
measure to estimate the computational complexity of an indi-
vidual. Instead, it considers execution time as a measure of an
individual’s complexity. Although the system may never use
some nodes of a tree, or it may traverse some nodes several
times when loops are allowed within the program trees, there
is still a correlation between program size and running time
that can be exploited to prevent bloat in GP, and this is the
crucial idea developed below–the connection between time
and space as both sides of a single concept.

This idea can be easily applied at the times when indi-
viduals are evaluated: we have to take elapsed time during
an individual’s evaluation as the complexity value required.
Moreover, it is reasonable to think that this method better
describes an individual’s complexity since it depends not only
on the number of operations performed–the number of nodes
traversed–but also on the nodes’ complexities. Therefore,
we measure time explicitly by capturing the starting and
finishing time of the evaluation and calculating the difference.
This idea is particularly useful when multicore or manycore
computer architectures are to be employed: ideally, all of
the individuals in the population could be evaluated simul-
taneously, and therefore, their evaluation times obtained also
simultaneously.

Even though the idea of using evaluation time looks inter-
esting, measuring this time precisely can be tricky. Ideally,
evaluation time should represent the actual amount of time
the task of evaluating the individual has been running on
the processor–the amount of time that is also known as
‘‘wall clock time’’. Depending on the parallel architecture,
the elapsed evaluation time could be influenced by any I/O
operation, OS-related task or other processes not related to
the evaluation–an undesired effect. This step is of particular

FIGURE 1. First step: The system sends individuals to different threads.

FIGURE 2. Second step: The fitness of individuals with fastest execution
time is available first.

FIGURE 3. Third step: Fastest individuals produce children while slower
ones are coming back from the evaluation.

importance in a multi-threaded process where threads can be
influenced by each other. Nevertheless, we have considered
that such circumstances, on average, equally influence all
evaluations. If so, and taking into account that we use evalua-
tion time only for comparison among individuals, we simplify
the measurements by directly using the elapsed evaluation
time as the representation of the individual’s complexity.

Once the individuals’ evaluation times have been obtained,
and with the hypothesis that individuals of similar sizes tend
to produce offspring of similar sizes, our proposed method
groups individuals by computing time, always understanding
it as an indirect–and more natural to compute–measure of an
individual’s size. We must again consider that in a parallel
system with as many processors as individuals, individuals
of similar sizes finish their evaluations nearly simultaneously
and are ready to reproduce. Therefore, an automatic grouping
mechanism naturally arises from these parallel architectures,
see figures 1-4. If the number of processors in the system is
small, then the load balancing mechanism, which is always in
charge of distributing tasks among processors, could decide to
group certain individuals together into single tasks, and may
thus group them according to the ending time of individuals’
evaluations.

After grouping, we perform selection and breeding phases
within each group, so only individuals of similar size-time are

38696 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 4. Fourth step: Slower individuals produce children.

allowed to crossover. We run grouping after all individuals
have been evaluated, creating groups of the same cardinality
by evenly dividing the whole population.

Our hypothesis states that individuals of similar size pro-
duce offspring of similar size. This point might not be the
case if the crossover operation does not divide the individual
into two similar-size parts. Indeed, crossover often produces
small and large individuals whose sizes do not follow our
hypothesis. Nevertheless, if we consider a random division
of individuals, we expect a central tendency which results in
a size between those both parents. Some readers may see this
aspect as a weak point of our offspring-size prediction, which
could be improved in a future version. However, generally
speaking, we expect that offspring have program sizes that
range similarly in comparisonwith their runtimes, as we show
in the experiments.

B. IMPLEMENTATION
We took inspiration from the above-described mechanism by
which parallel computer systems run population-based algo-
rithms. Therefore, when designing a specific bloat control
mechanism for GP that uses the new time-based perspective,
the parallel version of the algorithms, in particular, multi-
thread-based models, has been initially chosen, which are
available today in some of the most popular EA tools. Thus,
one thread executes all operations performed within each
group. Hence, the number of threads created corresponds to
the number of groups. Each thread collects its corresponding
individuals and performs the selection and breeding steps.
In this way, each group isolates all returning operations fol-
lowing a straightforward process based on evaluation time.

After the breeding phase, the mechanism takes advantage
of the independence among groups of individuals contained
in different threads, and it evaluates all corresponding indi-
viduals. Each group/thread contains the same number of
individuals, individuals with similar execution times. As a
result, the evolutionary process is considerably speeded up
by parallelizing of the evaluation phase. Afterward, once
all individuals of the population finish the evaluation stage,
obtaining their computing times, they are sent to the corre-
sponding thread using their computing time (size surrogate)
value, so that the next breeding operations can continue.

There are many ways of implementing such a method, par-
ticularly when considering the parallel execution of the algo-
rithm and the load balancing mechanism. However, the key
idea is the change of perspective, from individuals’ size to its
computing time, although, indeed, the best way of proving the
usefulness of the idea is to develop a first method based on
it. Therefore we present a first implementation and then test
whether it achieves the proposed goal: to prevent the bloat
phenomenon by applying an alternative to the size-based
complexity estimationmeasure.We believe that this approach
naturally adapts to parallel environments, and it provides for
future and improved developments, although the essential
idea can also be demonstrated in a sequential version of the
algorithm, as we study below.

1) SOFTWARE TOOL AND FURTHER DETAILS
Next, we describe a way to make the bloat method easily
usable; it has been implemented based on a popular existing
tool, [45]. We built such a system in modules to facilitate the
replacement of any part involved in the evolutionary process.
In our case, we replace the module that carries out the breed-
ing phase with the new time-based approach. Our bloat con-
trol mechanism slightly modifies the breeding mechanism.
We implement two new operations to apply the bloat control
mechanism.
• GroupBreeder orchestrates the breeding phase and starts
the corresponding threads.
– As the first step, the system groups individuals

according to evaluation times. During their evalu-
ations, we record elapsed time, so each individual
already contains it as a new feature. Before group-
ing them, we sort all individuals of the population
by evaluation time.

– Then, the same number of individuals goes to each
group, taking care of ranking before making the
groups. In case individuals cannot be equally split
into groups, the initial groups are filled with addi-
tional individuals.

– Next, each group instantiates one thread, to which
it assigns all individuals in the group.

– The program starts threads and continues until all
threads have finished.

• GroupBreederThread represents the threads that per-
form the selection, breeding, and evaluation of
individuals.
– Next, the program performs a call to themodule that

runs selection and breeding, specifying the group
to which these operations need to be applied. Here,
the only change to the original implementation is
to apply these operations only to individuals that
correspond to the specified group–the group that
corresponds to the thread.

– Once selection and breeding phases have finished,
evaluation of new individuals generated by this
thread takes place.

VOLUME 8, 2020 38697

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

Note that we have not adjusted the evaluation step. There-
fore, the timings of the computations gone through by all
individuals are in memory.

C. EXPERIMENTS
A set of experiments was run to observe how the bloat control
mechanism affects size growth and fitness across generations
of individuals. This section describes the experiments and
results obtained.

All experiments described below run on an Intel(R)
Xeon(R) CPU (E5530) that offers 8 cores at 2.4 GHz and
8 GB of memory. We use default configuration parameters as
setup in ECJ for each of the pre-done GP benchmark problem
domains. Generations set to 50 in almost every problem,
and 30 runs of each of the experiments were launched, for
statistical purposes. As described above, benchmark prob-
lems from the GP literature were used with the necessary
configurations already available in the ECJ toolkit: parity,
ant, lawnmower, multiplexer, and regression. Regarding the
proposed group-basedmechanism, for whichwemust specify
the number of groups to which individuals are distributed in
every generation, we have run several experiments: 1 group,
which corresponds with the standard GP algorithm, and
also 2, 4, 8, 16, 32, 64, and 128 groups.

VI. RESULTS
In this section, we discuss and show the results extracted
from the experiments. For each of the studied problems,
we plot average fitness and size. The proposed method uses
parallel execution in all results presented here. However,
we also show the results of a sequential approach in this
section. Finally, plots are shown to depict the computational
effort used during the evolutionary process against the fitness
obtained along with generations for all groups.

A. ANT
The artificial ant problem is a more sophisticated yet classical
GP problem, in which the evolved individuals have to control
an artificial ant so that it can eat all the food located in
a given environment. For the ant problem, we observe the
average fitness of individuals in Figure 5. Each line represents
executions for runs with different numbers of groups. As can
be seen, fitness is slightly degraded when the number of
groups increases. In any case, the observed trend is more
deeply examined below through a statistical test, trying to see
if differences are statistically significant.

While looking at the average size of individuals in
Figure 6, we observe how all experiments employing more
than one group provide better results than the standard
one-group approach. At generation 50, 4 groups produced the
best average fitnesses, with much smaller sizes than with one
group.

B. LAWNMOWER
The lawnmower is a classical and basic GP problem. The
goal is to find a program for a lawn mower that directs

FIGURE 5. Best-fitness evolution along generations (averaged over
30 runs) for the ant problem (maximizing fitness).

FIGURE 6. Size-evolution along generations (averaged over 30 runs) for
the ant problem.

the mower over the whole lawn, so it is similar to the ant
problem. For the lawnmower problem, we depict the average
fitness in Figure 7. Here, the number of groups affects fitness
gradually. In any case, differences in fitness quality are small.

Nevertheless, we observe the opposite in Figure 8, where
we study size. Size is dramatically reduced in this case,
reaching less than half of the size of a typical run (one group).
Considering the associated fitnesses, it seems a good trade-
off.

C. MULTIPLEXER
The multiplexer problem is another extensively used GP
problem. Basically, it trains a program to reproduce the
behavior of an electronic multiplexer. Usually, a 3-8 multi-
plexer is used (3 address entries, from A0 to A2, and 8 data
entries, from D0 to D7), but virtually any size of multiplexer
can be used. In the case of the multiplexer problem, we follow
the parameters given in the example in ECJ, and we plot

38698 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 7. Best-fitness evolution along generations (averaged over
30 runs) for the lawnmower problem (maximizing fitness).

FIGURE 8. Size-evolution along generations (averaged over 30 runs) for
the lawnmower problem.

FIGURE 9. Best-fitness evolution along generations (averaged over
30 runs) for the multiplexer problem (maximizing fitness).

the average fitness in Figure 9. Here, it is challenging to
observe clear tendencies, although the 4-group runs obtained

FIGURE 10. Size-evolution along generations (averaged over 30 runs) for
the multiplexer problem.

FIGURE 11. Best-fitness evolution along generations (averaged over
30 runs) for the parity problem (maximizing fitness).

FIGURE 12. Size-evolution along generations (averaged over 30 runs) for
the parity problem.

good fitness while on the other hand, fitness quality for the
128-group runs was poorer. Again the 4-group runs line is

VOLUME 8, 2020 38699

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 13. Best-fitness evolution along generations (averaged over
30 runs) for the regression problem (maximizing fitness).

FIGURE 14. Size-evolution along generations (averaged over 30 runs) for
the regression problem.

FIGURE 15. Best-fitness evolution along generations (averaged over
30 runs) for the regression problem (sequential execution) (maximizing
fitness).

the winner in fitness with a reduced size in comparison with
one-group runs.

FIGURE 16. Size-evolution along generations (averaged over 30 runs) for
the regression problem (sequential execution).

FIGURE 17. Best-fitness evolution along generations (averaged over
30 runs) for the parity problem (sequential execution) (maximizing
fitness).

FIGURE 18. Size-evolution along generations (averaged over 30 runs) for
the parity problem (sequential execution).

In the case of the size represented in Figure 10, we can see
a dramatic improvement in size for 2-group and 4-group runs.

38700 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 19. These plots show the average size of 30 jobs run for 50 generations of the parity problem against the corresponding times for the case
of 4 groups. We can observe that for a given time the individuals in each group have different sizes. Note how the groups (blue and yellow) align
along the vertical axis and even the sparse green group presents elements aligned with the same trend.

VOLUME 8, 2020 38701

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 20. These plots show the average size of 30 jobs run for 50 generations of the parity problem against the corresponding time for the case
of 128 groups. We observe that for a given time the same pattern of different individual sizes arises in the experiments. For visualization
purposes, the 128 groups are divided into 8 intervals with a step size of 16, so we plot only 9 groups.

38702 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 21. These plots show the average size of 30 jobs run for 50 generations on the ant, multiplexer, regression, and lawnmower
problems. We observe that for a given time, similar patterns to those seen in the Parity problem for different individual sizes arise in
the four experiments.

TABLE 1. Ant experiment. Best-fitness statistical results.

However, size remains similar for 8-, 16-, 32-, and 64-group
runs, while for 128 groups the size is again slightly decreased.

D. PARITY
Parity is one of the classical GP problems. The goal is to
find a program that produces the value of the Boolean even
parity function given n independent Boolean inputs. Usually,
6 Boolean inputs are used (Parity-6), and the goal is to match
the good parity bit value for each of the 26 = 64 possible
entries. The problem can be made harder by increasing the

TABLE 2. Ant experiment. Size-evolution statistical results.

TABLE 3. Lawnmower experiment. Best-fitness statistical results.

number of inputs. In the parity problem, fitness wasmonoton-
ically affected by the number of groups, as can be observed
in Figure 11. Again, taking into account the scale, the effect
was quite small.

VOLUME 8, 2020 38703

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

TABLE 4. Lawnmower experiment. Size-evolution statistical results.

TABLE 5. Multiplexer experiment. Best-fitness statistical results.

TABLE 6. Multiplexer experiment. Size-evolution statistical results.

TABLE 7. Parity experiment. Best-fitness statistical results.

In this problem, we obtain a dramatic reduction up to a
third of the size as compared with a regular run (1 group), see
Figure 12. The slightly affected fitness may be acceptable,
taking into account the considerable reduction in size.

E. REGRESSION
Symbolic regression is one of the best known problems in GP.
It is commonly used as a tuning problem for new algorithms,
but is also widely used with real-life distributions, where
other regression methods may not work. It is conceptually
a simple problem, and therefore makes a good introductory
example. In the regression problem, fitness is slightly affected
when using 2, 4, and 8 groups.When using 16 ormore groups,
fitness deteriorates, as can be seen in Figure 13.

Regarding size, as observed in Figure 14, a very notable
reduction in size comes as a result of a higher number of
groups. Clearly and monotonically affected by the number
of groups, size moves gradually from 80 for a regular run
(1 group), to a size of 6 with 128 groups. This may provide
attractive tradeoffs, particularly as regards overfitting.

F. SEQUENTIAL EXECUTION
We extracted all results presented so far from runs in which
we applied parallel execution. As described before, parallel
models naturally allow individuals to be grouped according
to running time, when a number of them are simultaneously
launched and evaluated in different processors. However,
the proposed bloat control method can also be carried out

38704 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

TABLE 8. Parity experiment. Size-evolution statistical results.

TABLE 9. Regression experiment. Best-fitness statistical results.

TABLE 10. Regression experiment. Size-evolution statistical results.

without parallelization, executing it sequentially, with min-
imal changes–allowing individuals to be grouped according
to running time–applied to the main algorithm. We must
bear in mind that what we do in the sequential version is to
emulate the behavior observed in the parallel model. Thus,
no population structures or subpopulations are considered
here, although some resemblance with structured models
occurs, and probably many other possibilities may be applied
to benefit from the idea studied above for parallel systems.
Nevertheless, this most straightforward implementation ana-
lyzed here allows us to see how the idea works in sequential
models.

Next, we present results from sequentially executed runs
for some of the previous problems–in particular, for regres-
sion and parity. In the case of the regression problem,
similar to what is seen in the results from parallel execu-
tion (Figures 13 and 14), the fitness (depicted in Figure 15)
is not strongly affected, while the individual size (shown
in Figure 16) is notably reduced. This phenomenon is pro-
duced solely by the fact of grouping individuals by the run-
ning time surrogate for size before carrying out selection and
crossover stages.

In the case of the parity problem, we observe similar
behaviors. The results from parallel execution were previ-
ously plotted in Figures 11 and 12. For this problem executed

sequentially, the fitness (depicted in Figure 17) is signifi-
cantly affected when the number of groups grows, but size
is significantly reduced (as shown in Figure18).

G. CORRELATION BETWEEN AVERAGE SIZE AND TIME
In this subsection we want to show the behavior achieved
while comparing average size against time for the selectedGP
application problem domains. Figure 19 shows the behavior
of our proposed scheme when assembling the solutions in
four groups on the Parity problem. We observe that solu-
tions on average make well-defined sets with some overlap.
In particular, for a given execution time, we notice high
variability in program size. Nevertheless, groups with long
execution times feature larger individual sizes in comparison
with groups with shorter execution times. Therefore, this
correlation behavior corresponds to the hypothesis shown
in Figures 1 to 4. We plot the results of the Parity problem
using 128 groups. Figure 20 illustrates the effect of 9 groups
taken out of 128 groups. The coefficient of correlation is high
in general for all groups. Figure 21 shows similar patterns for
all other test problems.

H. A STATISTICAL ANALYSIS OF THE RESULTS
We have seen above that differences found among exper-
iments seem to be quite striking, particularly when size

VOLUME 8, 2020 38705

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

evolution is analyzed. Nevertheless, statistical analysis allows
us to be more confident regarding the technique introduced in
this paper.

The fair assessment of heuristic algorithms is a big con-
cern in computational intelligence, and statistical analysis has
proven to be one of the main approaches to carry out such
study [46]–[51]. Recently, nonparametric statistical analysis
brings researchers’ attention to a method enabling the perfor-
mance of a rigorous comparison among algorithms, consid-
ering independence, normality, and homoscedasticity. Such
procedures perform both pairwise and multiple comparisons
for multiple-problem analysis. In our case, we apply pair-
wise statistical procedures to perform individual comparisons
between two algorithms (standard GP and time-GP). When
the results of the designed algorithms for the same problem
achieved the conditions expressed before, the most common
test is the ANOVA. In case that the distributions are not nor-
mal, we must use a nonparametric test like Kruskal-Wallis.
If the distributions are normal but do not achieve the property
of homoscedasticity, the analysis required is the Welch test.
The statistical tests serve the purpose of enabling comparison
of the sample distributions, attending to the required condi-
tions, to apply a suitable assessment a posteriori to contrast
the results.

Tables 1-10 present a summary of the statistical tests
performed to assess the comparisons between the methods
tested above. All statistical tests were computed usingMatlab.
We have first studied data normality (Lilliefors, Kolmogorov-
Smirnov) and homoscedasticity (Levene test); then, accord-
ing to the results, we have applied the appropriate statistical
test (Kruskal-Wallis, Welch, Anova) to determine if the dif-
ferences are significant, using a p-value < 0.05. Similarly,
Figure 22 shows sample graphs obtained from the statistical
studies detailed in the tables. This result illustrates why the
test rejects Ho (typically when size is analyzed–the results
are statistically different) while in some cases it is accepted
(fitness analysis for the ant and multiplexer problems–the
results are not significantly different).

We can notice that when considering size-evolution differ-
ences, Tables 2, 4, 6, 8, and 10, the statistical tests show that
results are different (null hypothesis Ho is rejected), hence
we can conclude that the technique introduced in this paper
reached the pursued goal. The proposed technique allows
individuals to keep the size under control. Moreover, in three
out of five experiments we notice that fitness differences are
not statistically significant (ant, lawnmower, and multiplexer
problems, see Tables 1, 3, and 5 respectively), which is our
main goal (size-controlled and with fitnesses similar qual-
ity to those of regular GP). In the case that statistical tests
show fitness evolution differences (parity and regression, see
Tables 7 and 9 respectively), we notice that size differ-
ences are much larger than fitness differences. Also, in some
specific cases, such as using 2 groups for the regression
problem, fitness quality even improves. In any case, a proper
comparison of computing effort and fitness attained for these

FIGURE 22. Graphical statistical analysis.

experiments allow us to more clearly observe the behavior of
the experiments under the new approach.

I. EFFORT VS. FITNESS
Although in Evolutionary Algorithms, the standard fitness-
generation graphs usually allow understanding of the behav-
ior of a given algorithm, the situation changes when we

38706 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 23. Effort vs. fitness along generations for parity problem.

FIGURE 24. Effort vs. fitness along generations for regression problem.

compare experiments using different population sizes,
or variable-size chromosomes. Here, fitness-generation com-
parison is not an option, given that computing effort required
to complete a generation depends on individuals and popu-
lation sizes. Instead, dispersion graphs showing computing
effort and fitness quality must be employed.

This situation is particularly the case for GP, where indi-
vidual size differences greatly influence computing time, and
therefore, performance is a crucial factor. In many cases,
generalizability and overfitting are also strongly influenced
by individual size differences. By plotting computing effort,
the effort being the number of tree nodes evaluated up to a
given generation, against the fitness attained for that specific
generation, we grasp a more general idea about the efficiency
of the evolutionary process, [43]. We show below some of
these comparisons, selecting those experiments for which
fitness differences, following a statistical analysis, have been
found.

Figures 23 and 24 show that for both the parity and regres-
sion problems, the selection of a proper number of groups
in the experiments provides better results than the standard

FIGURE 25. Effort vs. fitness along generations for lawnmower problem.

FIGURE 26. Size-evolution along generations (averaged over 30 runs) for
the parity problem (sequential execution).

GP model. In the case of 2, 4, or 8 groups, the best results
are achieved for the parity problem, while in the regression
experiments, all groups achieve better results than the stan-
dard GP.

We also show in Figure 25 the effort-fitness comparison
obtained for the lawnmower problem. Again the statistical
tests provided the evidence that confirms the interest of our
approach. As we can see, the standard GP approach, one
group, provides the worst results again.

Summarizing, we have shown that after thorough statistical
analysis, the proposed time-and-individual duration method
points to new research avenues where GP could be studied to
address the problem of size growth from a computing time
perspective. Moreover, under the new approach, this paper
introduces a first method for controlling individual sizes. Its
main idea was to group individuals according to evaluation
time, and it naturally allows keeping individuals’ sizes under
control, while fitness quality remains high. The experiments
and statistical data shown here allow us to see the interest of
the approach in both sequential and parallel models.

Although we have focused here on the time-size relation-
ship as well as on the specific method implemented under
this perspective, we believe that new approaches may be

VOLUME 8, 2020 38707

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 27. These plots show the average size of 30 jobs run for 30 generations of the object recognition problem against the corresponding
time for the case of 4 groups. We can observe that for a given time the individuals at each group have different size. Note how the groups align
along the vertical axis and present some sparsed elements aligned with the same trend.

38708 VOLUME 8, 2020

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

FIGURE 28. These plots show the average size of 30 jobs run for 30 generations of the object recognition problem against the corresponding
time for the case of 16 groups. We observe again that for a given time the same pattern of different individual size arise in the experiments. For
visualization purpose the 16 groups are divided in 8 intervals with a step of 2 so we plot only 9 groups.

developed in the future considering time-space relationships
in variable-size chromosome-based evolutionary techniques.

Moreover, we think that specific improvements in the method
presented here for GP pave the way to attain new results when

VOLUME 8, 2020 38709

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

we apply these methods in parallel environments and use a
more sophisticated load-balancing technique.

VII. REAL WORLD CASE: OBJECT RECOGNITION
This section presents the results of applying the idea of group-
ing individuals according to the computing time required for
evaluation in the case of an object recognition test solved with
a kind of genetic programming. The goal is to show that the
correlation between execution-time and individual-size exists
in real-world problems, given that this aspect is paramount to
the idea and the proposed technique. The test is part of the
CIFAR-10 dataset, a collection of images commonly used to
train machine learning and computer vision algorithms, from
which we select two classes (airplanes and dogs) to test a
bioinspired algorithm, see Figure 26. The algorithm is known
as the artificial visual cortex (AVC) part of the brain pro-
gramming (BP) paradigm [52]. BP is a kind of deep-learning
approach where neuroscience knowledge is merged with
genetic programming to synthesize artificial models of the
brain [53]–[57]. In the experiments, we use one thousand
images per class, and each solution has multiple trees embed-
ded within a hierarchical structure. Hence, each evaluation
requires more computational resources, i.e., between 4 and
12 trees.We adapt the BP algorithm according to the proposal
presented in this article. Due to multiple trees representation,
the consensus to characterize individual size was to add all
nodes of each tree within the AVC structure.

We offer graphs of average size vs. time similar to
section VI-G. We are thus adopting the idea of evalua-
tion per group based-on time execution, and the results of
Figures 27 and 28 show 30 jobs for 30 generations of the
object recognition problem considering 4 and 16 groups,
respectively. Each run takes about 24 to 48 hours on a PC run-
ning Linux Ubuntu 18.04 LTS (Bionic Beaver) using Matlab
2017 with an Intel Xeon(R) Silver 4114 CPU@2.20GHz x
20 and 32 GiB. We report 30 experiments per group distribu-
tion. In the case of 4 groups with a total of 128 individuals,
each group contains 32 AVC programs on average. As in the
parity problem, we observe that for a given time, the indi-
viduals at each group have different sizes. Again solutions
on average make well-defined sets with some overlap. In the
case of 16 groups, we plot the effect of 8 groups observing
that the correlation behavior corresponds to the hypothesis
shown in Figures 1 to 4. The coefficient of correlation is even
higher for this experiment in comparison with the previous
tests.

VIII. CONCLUSION
This paper addresses the problem of measuring complex-
ity in variable-size chromosomes based evolutionary algo-
rithms, presents the relationship between chromosome-size
and computing time, and opens opportunities that may arise
when we use the latter.

Therefore, we analyzed the problem of size growth in GP
under a new perspective. Instead of using an individual’s size
as the measure for designing a new bloat control method,

we describe how a different perspective–a new one based on
computing time–can shed light on the bloating phenomenon
and provide clues for a new set of countermeasures. Although
size and time are both sides of a single coin, associated
with computational complexity, to the best of our knowledge,
this is the first approach that considers computing time as
the measure of individual complexity in the context of GP
bloating phenomenon.

Through a series of experiments on several well-knownGP
benchmarks, we show that indeed, the idea works, and the
specific method helps to prevent bloat. We provided some
clues on how to naturally apply the proposal within GP.
The idea is also elaborated to show that the method is
applicable both in serial and parallel computing models and
that other possible–and may be better–methods may in the
future be developed based on individuals’ fitness evaluation
times.

To demonstrate the usefulness of the approach, we present
a first method based on an individual’s computing time–
automatically obtained when fitness is computed–as a
trait employed for characterizing and grouping individuals
together in a natural way so that they can only breed within
their groups. The reason for this idea is to keep computing
time–and thus, indirectly, an individual’s size growth–under
control. Although indeed, the relationship between size and
time is not direct, the method tries for the first time to use
computing time to prevent bloat.

We believe that the new perspective for addressing the
bloat phenomenon may open doors for research that allows
the development of methods to avoid wasting time in size
measurement tasks. Moreover, these new methods also allow
better use of parallel and distributed infrastructures, where
the bloat phenomenon profoundly influences load-balancing
techniques when GP–or other variable-sized-chromosome
approaches–is applied.

REFERENCES
[1] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.
[Online]. Available: https://mitpress.mit.edu/books/genetic-programming

[2] W. Banzhaf and W. B. Langdon, ‘‘Some considerations on the reason for
bloat,’’ Genetic Program. Evolvable Mach., vol. 3, no. 1, pp. 81–91, 2002,
doi: 10.1023/A:1014548204452.

[3] M.-A. Gardner, C. Gagné, and M. Parizeau, ‘‘Controlling code growth by
dynamically shaping the genotype size distribution,’’ Genetic Program.
Evolvable Mach., vol. 16, no. 4, pp. 455–498, Feb. 2015, doi: 10.1007/
s10710-015-9242-8.

[4] L. Trujillo, L. Muñoz, E. Galván-López, and S. Silva, ‘‘Neat genetic pro-
gramming: Controlling bloat naturally,’’ Inf. Sci., vol. 333, pp. 21–43,
Mar. 2016, doi: 10.1016/j.ins.2015.11.010.

[5] W. B. Langdon and R. Poli, ‘‘Fitness causes bloat,’’ in Soft Computing in
Engineering Design and Manufacturing. London, U.K.: Springer, 1998,
pp. 13–22, doi: 10.1007/978-1-4471-0427-8_2.

[6] F. F. de Vega, G. G. Gil, J. A. G. Pulido, and J. L. Guisado, ‘‘Control of
bloat in genetic programming by means of the island model,’’ in Par-
allel Problem Solving from Nature-PPSN VIII (Lecture Notes in Com-
puter Science), vol. 3242. Berlin, Germany: Springer, 2004, pp. 263–271,
doi: 10.1007/978-3-540-30217-9_27.

[7] P. A. Whigham and G. Dick, ‘‘Implicitly controlling bloat in genetic
programming,’’ IEEE Trans. Evol. Comput., vol. 14, no. 2, pp. 173–190,
Apr. 2010, doi: 10.1109/TEVC.2009.2027314.

38710 VOLUME 8, 2020

http://dx.doi.org/10.1023/A:1014548204452
http://dx.doi.org/10.1007/s10710-015-9242-8
http://dx.doi.org/10.1007/s10710-015-9242-8
http://dx.doi.org/10.1016/j.ins.2015.11.010
http://dx.doi.org/10.1007/978-1-4471-0427-8_2
http://dx.doi.org/10.1007/978-3-540-30217-9_27
http://dx.doi.org/10.1109/TEVC.2009.2027314

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

[8] F. Fernández de Vega, G. Olague, F. O. Chávez de la, D. Lanza,
W. Banzhaf, and E. Goodman, ‘‘It is time for new perspectives on
how to fight bloat in GP,’’ in Genetic Programming Theory and
Practice XVII. Cham, Switzerland: Springer, 2019, p. 14. [Online].
Available: https://www.springer.com/gp/book/9783030399573, doi:
10.1007/978-3-030-39958-0.

[9] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, ‘‘The evolution of size
and shape,’’ in Advances in Genetic Programming. Cambridge, MA, USA:
MIT Press, 1999, ch. 8, pp. 163–190. [Online]. Available: https://mitpress.
mit.edu/books/advances-genetic-programming-volume-3

[10] S. Silva, S. Dignum, and L. Vanneschi, ‘‘Operator equalisation for bloat
free genetic programming and a survey of bloat control methods,’’Genetic
Program. Evolvable Mach., vol. 13, no. 2, pp. 197–238, Nov. 2011,
doi: 10.1007/s10710-011-9150-5.

[11] B. Doerr, T. Kötzing, J. A. G. Lagodzinski, and J. Lengler, ‘‘Bounding
bloat in genetic programming,’’ in Proc. Genetic Evol. Comput. Conf.
(GECCO), 2017, pp. 921–928, doi: 10.1145/3071178.3071271.

[12] S. Silva and E. Costa, ‘‘Dynamic limits for bloat control in genetic pro-
gramming and a review of past and current bloat theories,’’ Genetic
Program. Evolvable Mach., vol. 10, no. 2, pp. 141–179, Jan. 2009,
doi: 10.1007/s10710-008-9075-9.

[13] W. A. Tackett, ‘‘Recombination, selection, and the genetic construction
of computer programs,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ.
Southern California, Los Angeles, CA, USA, 1994. [Online]. Available:
https://dl.acm.org/doi/book/10.5555/222025

[14] L. Altenberg, ‘‘The evolution of evolvability in genetic program-
ming,’’ in Advances in Genetic Programming. Cambridge, MA, USA:
MIT Press, 1994, ch. 3, pp. 47–74. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.55.4199

[15] M. J. Streeter, ‘‘The root causes of code growth in genetic program-
ming,’’ in Proc. Eur. Conf. Genetic Program., in Lecture Notes in Com-
puter Science, vol. 2610. Berlin, Germany: Springer, 2003, pp. 443–454,
doi: 10.1007/3-540-36599-0_42.

[16] S. Dignum and R. Poli, ‘‘Generalisation of the limiting distribution of
program sizes in tree-based genetic programming and analysis of its effects
on bloat,’’ in Proc. 9th Annu. Conf. Genetic Evol. Comput. (GECCO),
2007, pp. 1588–1595, doi: 10.1145/1276958.1277277.

[17] F. Fernandez, L. Vanneschi, and M. Tomassini, ‘‘The effect of plagues in
genetic programming: A study of variable-size populations,’’ in Proc. Eur.
Conf. Genetic Program., in Lecture Notes in Computer Science, vol. 2610.
Berlin, Germany: Springer, 2003, pp. 317–326, doi: 10.1007/3-540-36599-
0_29.

[18] N.Wagner and Z. Michalewicz, ‘‘Genetic programmingwith efficient pop-
ulation control for financial time series prediction,’’ in Genetic and Evolu-
tionary Computation Conference Late Breaking Papers, vol. 1. San Mateo,
CA, USA: Morgan Kaufmann, 2001, pp. 458–462. [Online]. Available:
ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/biblio/gp-html/
wagner_2001_gpepcftsp.html

[19] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, ‘‘Multiobjective
genetic programming: Reducing bloat using SPEA2,’’ in Proc. Congr.
Evol. Comput., vol. 1, May 2001, pp. 536–543. [Online]. Available:
https://ieeexplore.ieee.org/document/934438

[20] R. Poli, ‘‘A simple but theoretically-motivated method to control bloat in
genetic programming,’’ in Proc. Eur. Conf. Genetic Program., in Lecture
Notes in Computer Science, vol. 2610. Berlin, Germany: Springer, 2003,
pp. 204–217, doi: 10.1007/3-540-36599-0_19.

[21] E. Alfaro-Cid, J. J. Merelo, F. F. de Vega, A. I. Esparcia-Alcázar, and
K. Sharman, ‘‘Bloat control operators and diversity in genetic program-
ming: A comparative study,’’ Evol. Comput., vol. 18, no. 2, pp. 305–332,
Jun. 2010. [Online]. Available: https://www.mitpressjournals.org/doi/
10.1162/evco.2010.18.2.18206

[22] S. Luke and L. Panait, ‘‘A comparison of bloat control methods for genetic
programming,’’ Evol. Comput., vol. 14, no. 3, pp. 309–344, Sep. 2006,
doi: 10.1162/evco.2006.14.3.309.

[23] S. Dignum and R. Poli, ‘‘Operator equalisation and bloat free gp,’’ in
Proc. Eur. Conf. Genetic Program., in Lecture Notes in Computer Science,
vol. 4971. Springer, 2008, pp. 110–121, doi: 10.1007/978-3-540-78671-
9_10.

[24] S. Silva, ‘‘Reassembling operator equalisation: A secret revealed,’’ ACM
SIGEVOlution, vol. 5, no. 3, pp. 10–22, Sep. 2011, doi: 10.1145/2043118.
2043120.

[25] M. Tomassini, Spatially Structured Evolutionary Algorithms. Berlin,
Germany: Springer-Verlag, 2005. [Online]. Available: https://
www.springer.com/gp/book/9783540241935

[26] F. Fernández, M. Tomassini, and L. Vanneschi, ‘‘An empirical study
of multipopulation genetic programming,’’ Genetic Program. Evolvable
Mach., vol. 4, no. 1, pp. 21–51, 2003, doi: 10.1023/A:1021873026259.

[27] G. Folino, C. Pizzuti, and G. Spezzano, ‘‘A cellular genetic program-
ming approach to classification,’’ in Proc. Conf. Genetic Evol. Comput.
San Mateo, CA, USA:Morgan Kaufmann, 1999, pp. 1015–1020. [Online].
Available: https://dl.acm.org/doi/pdf/10.5555/2934046.2934058

[28] M. Tomassini, L. Vanneschi, F. Fernández, and G. Galeano, ‘‘A study of
diversity in multipopulation genetic programming,’’ in Proc. Int. Conf.
Artif. Evol., in Lecture Notes in Computer Science, vol. 2936. Springer,
2004, pp. 243–255, doi: 10.1007/978-3-540-24621-3_20.

[29] E. Cantú Paz, Efficient and Accurate Parallel Genetic Algorithms. Boston,
MA, USA: Springer, 2001. [Online]. Available: https://www.springer.com/
gp/book/9780792372219, doi: 10.1007/978-1-4615-4369-5.

[30] G. Galeano, F. Femdndez, M. Tomassini, and L. Vanneschi, ‘‘Studying
the influence of synchronous and asynchronous parallel GP on programs
length evolution,’’ in Proc. Congr. Evol. Comput. (CEC), vol. 2, May 2002,
pp. 1727–1732, doi: 10.1109/CEC.2002.1004503.

[31] F. Fernandez, G. Galeano, J. A. Gomez, and J. M. Sanchez, ‘‘Efficient use
of computational resources in genetic programming: Controlling the bloat
phenomenon by means of the island model,’’ in Proc. IEEE 28th Annu.
Conf. Ind. Electron. Society. (IECON), vol. 3, Nov. 2002, pp. 2520–2524,
doi: 10.1109/IECON.2002.1185370.

[32] A. Osman and H. Ammar, ‘‘Dynamic load balancing strategies for
parallel computers,’’ in Proc. Int. Symp. Parallel Distrib. Comput.,
vol. 11, 2002, pp. 110–120. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.19.375

[33] M. J. Zaki,W. Li, and S. Parthasarathy, ‘‘Customized dynamic load balanc-
ing for a network of workstations,’’ J. Parallel Distrib. Comput., vol. 43,
no. 2, pp. 156–162, Jun. 1997, doi: 10.1006/jpdc.1997.1339.

[34] S. Nesmachnow, H. Cancela, and E. Alba, ‘‘Heterogeneous computing
scheduling with evolutionary algorithms,’’ Soft Comput., vol. 15, no. 4,
pp. 685–701, Mar. 2010, doi: 10.1007/s00500-010-0594-y.

[35] K. Mesghouni, S. Hammadi, and P. Borne, ‘‘Evolutionary algorithms
for job-shop scheduling,’’ Int. J. Appl. Math. Comput. Sci., vol. 14,
no. 1, pp. 91–103, 2004. [Online]. Available: https://www.researchgate.
net/publication/228926955

[36] T. Estrada, O. Fuentes, and M. Taufer, ‘‘A distributed evolutionary
method to design scheduling policies for volunteer computing,’’ ACM
SIGMETRICS Perform. Eval. Rev., vol. 36, no. 3, pp. 40–49, 2008,
doi: 10.1145/1366230.1366282.

[37] J. K. Cochran, S.-M. Horng, and J. W. Fowler, ‘‘A multi-population
genetic algorithm to solve multi-objective scheduling problems for par-
allel machines,’’ Comput. Oper. Res., vol. 30, no. 7, pp. 1087–1102,
2003, doi: 10.1016/S0305-0548(02)00059-X.

[38] G. Greenwood, A. Gupta, and V. Mahadik, ‘‘Multiprocessor scheduling
of high concurrency algorithms,’’ in Proc. 7th Annu. Florida Artif. Intell.
Res. Symp., Session Genetic Algorithms Artif. Intell., 1994, pp. 265–269.
[Online]. Available: https://www.researchgate.net/publication/2426383

[39] A. Y. Zomaya and Y.-H. Teh, ‘‘Observations on using genetic algorithms
for dynamic load-balancing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 9, pp. 899–911, Sep. 2001, doi: 10.1109/71.954620.

[40] M. Oussaidène, B. Chopard, O. V. Pictet, and M. Tomassini, ‘‘Parallel
genetic programming and its application to trading model induction,’’ Par-
allel Comput., vol. 23, no. 8, pp. 1183–1198, 1997, doi: 10.1016/S0167-
8191(97)00045-8.

[41] F. F. de Vega, J. G. A. Sánchez, and C. Cotta, ‘‘A preliminary analysis
and simulation of load balancing techniques applied to parallel genetic
programming,’’ in Proc. Int. Work-Conf. Artif. Neural Netw., in Lecture
Notes in Computer Science, vol. 6692. Springer, 2011, pp. 308–315,
doi: 10.1007/978-3-642-21498-1_39.

[42] L. Vanneschi, M. Castelli, and S. Silva, ‘‘Measuring bloat, overfitting
and functional complexity in genetic programming,’’ in Proc. 12th Annu.
Conf. Genetic Evol. Comput. (GECCO), 2010, pp. 877–884, doi: 10.
1145/1830483.1830643.

[43] F. F. de Vega, ‘‘Distributed genetic programming models with
application to logic synthesis on FPGAS,’’ Ph.D. dissertation,
Departamento de Tecnología Computadores y Comunicaciones, Univ.
Extremadura, Badajoz, Spain, 2001. [Online]. Available: http://gpbib.
pmacs.upenn.edu/gp-html/fernandez_thesis.html

[44] S. Luke and L. Panait, ‘‘Lexicographic parsimony pressure,’’ in Proc.
Conf. Genetic Evol. Comput., 2002, pp. 829–836. [Online]. Available:
https://dl.acm.org/doi/10.5555/2955491.2955636

VOLUME 8, 2020 38711

http://dx.doi.org/10.1007/978-3-030-39958-0
http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1145/3071178.3071271
http://dx.doi.org/10.1007/s10710-008-9075-9
http://dx.doi.org/10.1007/3-540-36599-0_42
http://dx.doi.org/10.1145/1276958.1277277
http://dx.doi.org/10.1007/3-540-36599-0_29
http://dx.doi.org/10.1007/3-540-36599-0_29
http://dx.doi.org/10.1007/3-540-36599-0_19
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://dx.doi.org/10.1007/978-3-540-78671-9_10
http://dx.doi.org/10.1007/978-3-540-78671-9_10
http://dx.doi.org/10.1145/2043118.2043120
http://dx.doi.org/10.1145/2043118.2043120
http://dx.doi.org/10.1023/A:1021873026259
http://dx.doi.org/10.1007/978-3-540-24621-3_20
http://dx.doi.org/10.1007/978-1-4615-4369-5
http://dx.doi.org/10.1109/CEC.2002.1004503
http://dx.doi.org/10.1109/IECON.2002.1185370
http://dx.doi.org/10.1006/jpdc.1997.1339
http://dx.doi.org/10.1007/s00500-010-0594-y
http://dx.doi.org/10.1145/1366230.1366282
http://dx.doi.org/10.1016/S0305-0548(02)00059-X
http://dx.doi.org/10.1109/71.954620
http://dx.doi.org/10.1016/S0167-8191(97)00045-8
http://dx.doi.org/10.1016/S0167-8191(97)00045-8
http://dx.doi.org/10.1007/978-3-642-21498-1_39
http://dx.doi.org/10.1145/1830483.1830643
http://dx.doi.org/10.1145/1830483.1830643

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

[45] D. R. White, ‘‘Software review: The ECJ toolkit,’’ Genetic Program.
Evolvable Mach., vol. 13, no. 1, pp. 65–67, Aug. 2011, doi: 10.1007/
s10710-011-9148-z.

[46] M. Coffin and M. J. Saltzman, ‘‘Statistical analysis of computational tests
of algorithms and heuristics,’’ INFORMS J. Comput., vol. 12, no. 1,
pp. 24–44, Feb. 2000, doi: 10.1287/ijoc.12.1.24.11899.

[47] Z. Lei and L. Ren-hou, ‘‘Designing of classifiers based on immune princi-
ples and fuzzy rules,’’ Inf. Sci., vol. 178, no. 7, pp. 1836–1847, Apr. 2008,
doi: 10.1016/j.ins.2007.11.019.

[48] S. García, A. Fernández, J. Luengo, and F. Herrera, ‘‘A study of statis-
tical techniques and performance measures for genetics-based machine
learning: Accuracy and interpretability,’’ Soft Comput., vol. 13, no. 10,
pp. 959–977, Dec. 2008, doi: 10.1007/s00500-008-0392-y.

[49] J. Luengo, S. García, and F. Herrera, ‘‘A study on the use of statistical
tests for experimentation with neural networks: Analysis of parametric test
conditions and non-parametric tests,’’ Expert Syst. Appl., vol. 36, no. 4,
pp. 7798–7808, May 2009, doi: 10.1016/j.eswa.2008.11.041.

[50] S. García, A. Fernández, J. Luengo, and F. Herrera, ‘‘Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analy-
sis of power,’’ Inf. Sci., vol. 180, no. 10, pp. 2044–2064, May 2010,
doi: 10.1016/j.ins.2009.12.010.

[51] J. Derrac, S. García, D. Molina, and F. Herrera, ‘‘A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,’’ Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011, doi: 10.1016/j.swevo.2011.02.002.

[52] G. Olague, E. Clemente, D. E. Hernandez, A. Barrera, M. Chan-Ley,
and S. Bakshi, ‘‘Artificial visual cortex and random search for
object categorization,’’ IEEE Access, vol. 7, pp. 54054–54072, 2019,
doi: 10.1109/ACCESS.2019.2912792.

[53] G. Olague, D. E. Hernández, P. Llamas, E. Clemente, and J. L. Briseño,
‘‘Brain programming as a new strategy to create visual routines for
object tracking,’’ Multimedia Tools Appl., vol. 78, no. 5, pp. 5881–5918,
Sep. 2018, doi: 10.1007/s11042-018-6634-9.

[54] G. Olague, D. E. Hernandez, E. Clemente, and M. Chan-Ley, ‘‘Evolving
head tracking routines with brain programming,’’ IEEE Access, vol. 6,
pp. 26254–26270, 2018, doi: 10.1109/ACCESS.2018.2831633.

[55] D. E. Hernández, G. Olague, B. Hernández, and E. Clemente, ‘‘CUDA-
based parallelization of a bio-inspired model for fast object classifica-
tion,’’ Neural Comput. Appl., vol. 30, no. 10, pp. 3007–3018, Feb. 2017,
doi: 10.1007/s00521-017-2873-3.

[56] D. E. Hernández, E. Clemente, G. Olague, and J. L. Briseño, ‘‘Evolu-
tionary multi-objective visual cortex for object classification in nat-
ural images,’’ J. Comput. Sci., vol. 17, pp. 216–233, Nov. 2016,
doi: 10.1016/j.jocs.2015.10.011.

[57] E. Clemente, F. Chavez, F. Fernandez de Vega, and G. Olague, ‘‘Self-
adjusting focus of attention in combination with a genetic fuzzy system for
improving a laser environment control device system,’’Appl. Soft Comput.,
vol. 32, pp. 250–265, Jul. 2015, doi: 10.1016/j.asoc.2015.03.011.

FRANCISCO FERNÁNDEZ DE VEGA (Senior
Member, IEEE) received the Ph.D. degree,
in 2001. He is currently a Professor of computer
architecture with the University of Extremadura.
He is interested in parallel and distributed evolu-
tionary algorithms, with applications to computa-
tional creativity. He has received several awards,
including the 2013 ACM Gecco Evolutionary Art,
Design, and Creativity Competition. He received
the Best Ph.D. Engineering Award from the Uni-

versity of Extremadura. He is also the Vice-Chair of the Task Force on
Creative Intelligence and the IEEE Computational Intelligence Society and
the Director of the GEA Research Group and the Escuelas Municipales
de Jóvenes Científicos (Municipal Schools for Young Scientists) founded,
in 2015, largest STEM initiative in Spain. His evolutionary produced art-
works have been displayed around the world: Vancouver, Cancún, Amster-
dam, Madrid, and Paris.

GUSTAVO OLAGUE (Senior Member, IEEE) was
born in Chihuahua, Mexico, in 1969. He received
the B.S. and M.S. degrees in industrial and elec-
tronics engineering from the Instituto Tecnológico
de Chihuahua (ITCH), in 1992 and 1995, respec-
tively, and the Ph.D. degree in computer vision,
graphics, and robotics from the Institut Polytech-
nique de Grenoble (INPG) and Institut National
de Recherche en Informatique et en Automatique
(INRIA), France, in 1998. He is currently a Pro-

fessor with the Department of Computer Science, Centro de Investigación
Científica y de Educación Superior de Ensenada (CICESE), Mexico, and
the Director of the EvoVisión Research Team. He is also an Adjunct
Professor of engineering with the Universidad Autonóma de Chihuahua
(UACH). He has authored over 100 conference proceedings papers and
journal articles. His main research interests are evolutionary computing and
computer vision. He is the author of Evolutionary Computer Vision: The
First Footprints (Springer) in the Natural Computing Series. He has received
numerous distinctions, among them the Talbert Abrams Award presented by
the American Society for Photogrammetry and Remote Sensing (ASPRS)
for authorship and recording of current and historical engineering and sci-
entific developments in photogrammetry, the Best Paper Awards at major
conferences, such as GECCO, the European Workshop on Evolutionary
Computation in Image Analysis, Signal Processing, and Pattern Recogni-
tion (EvoIASP), and European Workshop on Evolutionary Hardware Opti-
mization (EvoHOT), and twice the Bronze Medal at the Humies (GECCO
Award for Human-Competitive results produced by genetic and evolutionary
computation). He co-edited special issues in Pattern Recognition Letters,
Evolutionary Computation (MIT Press), Applied Optics. He has served as the
Co-Chair for the Real-World Applications track at the leading international
evolutionary computing conference, the GECCO (ACM SIGEVO Genetic
and Evolutionary Computation Conference).

DANIEL LANZA received the B.S. degree in
telematics engineering from the University of
Extremadura, Spain, in 2015, and the M.S. degree
in visual analytics and big data from the Univer-
sidad Internacional de la Rioja, Spain, in 2016.
He made research stays at CICESE, CERN, and
Michigan State University. He is currently a Soft-
ware Engineer at Google working in YouTube.
He loves to work in the problem of joining
the following two research areas: big data and
evolutionary computation.

FRANCISCO CHÁVEZ DE LA O received the
Ph.D. degree in computer science from the Univer-
sity of Extremadura, in 2012. Since 2001, he has
been with the Department of Engineering of Com-
puter Science and Telematics Systems, Univer-
sity of Extremadura. He is currently an Assistant
Professor and belongs to the Artificial Evolu-
tion Research Group. It has over 50 National and
International publications. He has worked as a
Researcher in several research projects granted

by the Spanish Government, he has been a Principal Investigator in
EPHEMCH and DEEPBIO. He has also worked as a Researcher in several
research projects awarded by the Autonomous Community of Extremadura.
He recently leads the project granted by the Autonomous Community of
Extremadura, where he performs the tasks of the Principal Investigator.
Finally, he has worked on several projects with companies in the sector in the
field of technology transfer with companies. He has three patents. His lines of
research focus on systems based on fuzzy rules and diffuse genetic systems,
image processing through deep learning, and massive data processing.

38712 VOLUME 8, 2020

http://dx.doi.org/10.1007/s10710-011-9148-z
http://dx.doi.org/10.1007/s10710-011-9148-z
http://dx.doi.org/10.1287/ijoc.12.1.24.11899
http://dx.doi.org/10.1016/j.ins.2007.11.019
http://dx.doi.org/10.1007/s00500-008-0392-y
http://dx.doi.org/10.1016/j.eswa.2008.11.041
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1109/ACCESS.2019.2912792
http://dx.doi.org/10.1007/s11042-018-6634-9
http://dx.doi.org/10.1109/ACCESS.2018.2831633
http://dx.doi.org/10.1007/s00521-017-2873-3
http://dx.doi.org/10.1016/j.jocs.2015.10.011
http://dx.doi.org/10.1016/j.asoc.2015.03.011

F. Fernández de Vega et al.: Time and Individual Duration in Genetic Programming

WOLFGANG BANZHAF is currently the
John R. Koza Chair of genetic programming and
a Professor with the Department of Computer
Science and Engineering, Michigan State Uni-
versity. His research interests are in the field
of bio-inspired computing, notably evolutionary
computation, and complex adaptive systems. He is
also interested in the studies of self-organization
and the field of artificial life. He recently become
more involved with network research as it applies
to natural and man-made systems.

ERIK GOODMAN is currently a Professor of elec-
trical and computer engineering, and an Adjunct
Professor of mechanical engineering with Michi-
gan State University. He is also the Executive
Director of the BEACON Center for the Study of
Evolution in Action, an NSF Science and Technol-
ogy Center founded, in August 2010. BEACON
conducts multidisciplinary research on evolution
in the lab and field, in digital organisms in the
computer, and in evolutionary computation used to

solve problems in engineering and computer science. His personal research
centers on evolutionary computation, particularly heterogeneous and parallel
genetic algorithms and genetic programming. He is also a Co-Founder of
Red Cedar Technology, Inc., where he wrote the SHERPA design optimiza-
tion software now sold by Siemens PLM Software. He is also studying
optimization of solid fuel rocket grains, and involved in information and
communications technology outreach in schools in Africa.

JOSE MENENDEZ-CLAVIJO was born in Cien-
fuegos, Cuba, in 1988. He received the B.S.
degree in informatics engineering from the Uni-
versity of Cienfuegos ‘‘Carlos Rafael Rodríguez,’’
in 2012. He is currently pursuing the M.S. degree
in computer science with the EvoVisión Labora-
tory, CICESE Research Center. He is also working
at the EvoVisión Laboratory, CICESE Research
Center. His research interests are computer vision,
genetic programming, evolutionary algorithms,
and brain programming.

AXEL MARTINEZ was born in Distrito Fed-
eral, Mexico, in 1989. He received the B.S.
degree in mechatronics engineering from Uni-
versidad Anáhuac México Norte, in 2017. He is
currently pursuing the M.S. degree in computer
science with the EvoVisión Laboratory, CICESE
Research Center. He is also working at the
EvoVisión Laboratory, CICESE Research Center.
His research interests are computer vision, genetic
programming, evolutionary algorithms, and 3-D

Reconstruction. He also enjoys surfing and cooking.

VOLUME 8, 2020 38713

