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Abstract
We analyze constraints from perturbative unitarity and crossing on the lead-
ing contributions of higher-dimension operators to the four-graviton amplitude
in four spacetime dimensions, including constraints that follow from distinct
helicity configurations. We focus on the leading-order effect due to exchange
by massive degrees of freedom which makes the amplitudes of interest infrared
finite. In particular, we place a bound on the coefficient of the R3 operator that
corrects the graviton three-point amplitude in terms of the R4 coefficient. To
test the constraints we obtain nontrivial effective field-theory data by comput-
ing and taking the large-mass expansion of the one-loop minimally-coupled
four-graviton amplitude with massive particles up to spin 2 circulating in the
loop. Remarkably, we observe that the leading EFT coefficients obtained from
both string and one-loop field-theory amplitudes lie in small islands. The shape
and location of the islands can be derived from the dispersive representation for
the Wilson coefficients using crossing and assuming that the lowest-spin spec-
tral densities are the largest. Our analysis suggests that the Wilson coefficients
of weakly-coupled gravitational physical theories are much more constrained
than indicated by bounds arising from dispersive considerations of 2 → 2 scat-
tering. The one-loop four-graviton amplitudes used to obtain the EFT data are
computed using modern amplitude methods, including generalized unitarity,
supersymmetric decompositions and the double copy.
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1. Introduction

Remarkably, systematic bounds can be placed on possible corrections to Einstein gravity [1–7].
Such corrections naturally appear due to the presence of heavy particles in the theory. To lead-
ing order in Newton’s constant G, such particles can be exchanged at tree-level, as in string
theory, or at one-loop, as in the case of matter minimally coupled to gravity. By expanding such
amplitudes at low energies and matching to a low-energy effective field theory one finds an infi-
nite series of higher-derivative corrections to Einstein gravity. The coefficients in front of these
higher-derivative operators, or Wilson coefficients, satisfy various bounds due to unitarity and
causality of the underlying amplitude [1, 2]. In this paper, we focus on the leading corrections
to Einstein gravity.3 A central question, which we investigate in this paper, is to understand if
there are principles that can greatly restrict the values of physically allowed Wilson coefficients.

Consistency bounds on the Wilson coefficients received a lot of attention recently in the
context of 2 → 2 scattering, which is also the subject of our paper. The basic tool to derive
such bounds is given by dispersion relations which express low-energy Wilson coefficients
as weighted sums of the discontinuity of the amplitude. Unitarity constrains the form of the
discontinuity of the amplitude which can be further used to derive the bounds. The simplest
examples of this type constrain the sign of Wilson coefficients. More interesting bounds arise
when one accommodates constraints coming from crossing symmetry. Including those leads
to the two-sided bounds on the Wilson coefficients [3–6]. In this way the ultraviolet (UV)
complete theories form bounded regions in the space of couplings. Reference [5] also analyzed
a few examples of physical EFTs in the context of scattering of scalars and noted that they lie
near the boundaries of the allowed region due to the importance of low-spin contributions to
the partial-wave expansions (see section 10.3 and appendix D of reference [5]).

In the context of physical theories, especially gravitational ones, it is then natural to ask the
following question:

Is it possible that the Wilson coefficients of physical theories live in much smaller regions
than the bounds coming from considerations of 2 → 2 scattering suggest?

By physical theories in this paper we mean perturbatively consistent S-matrices that sat-
isfy unitarity, causality, and crossing for any n → m scattering processes. Constructing such
S-matrices is far beyond the scope of bootstrap methods that focus on 2 → 2 scattering, but
such examples are provided to us by string theory and matter minimally coupled to gravity.4 We
can then imagine that consistency of the full S-matrix is reflected back on the 2 → 2 scattering
through more stringent constraints on Wilson coefficients that one would naively have found by
analyzing 2 → 2 scattering. In this paper we present data extracted from field-theory and string-
theory 2 → 2 scattering amplitudes that suggest that the above assertion is indeed true and we
identify a principle behind it. This principle is low-spin dominance (LSD), which, if fundamen-
tally correct, might be traced back to the consistency of the full gravitational S-matrix, beyond
2 → 2 scattering. However, demonstrating this is beyond the scope of the present paper.

3 In particular, higher-loop effects do not affect the discussion in this paper since by assumption gravity is weakly
coupled and we are focusing on the leading-order effect.
4 Perturbatively consistent S-matrices occupy a somewhat intermediate position between fully non-perturbatively con-
sistent quantum gravities (often referred to as landscape) and consistency of 2 → 2 scattering studied by bootstrap
methods.
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The universal nature of gravity together with the strict consistency requirements that gravi-
ton scattering obeys make such an assertion plausible. It is a well-known fact that scattering
of massless spinning particles is very constrained [8]. In fact, massless particles of spin larger
than two do not admit a non-trivial S-matrix [9]. Gravitons, being massless spin-two particles,
are thus expected to have an especially constrained S-matrix, and the assertion made in the
previous paragraph is thus particularly plausible for graviton scattering which is the subject of
the present paper.

Firstly, we use the techniques of reference [5] to derive bounds between low-energy cou-
plings of the same dimensionality in gravitational scattering.5 We focus on the first few cor-
rections to Einstein gravity. We then ask where do the Wilson coefficients obtained from string
theory and from the low-energy limit of the one-loop minimally-coupled amplitudes land in the
space allowed by the general bounds. Remarkably, in all cases studied here we find that both
the string and field-theory coefficients land on a small theory island, which to a good approxi-
mation is a thin line segment in the space of EFT coefficients. (See, for example, figures 9 and
12 in section 5).6 The location of this island can be found by assuming that lowest-spin partial
waves dominate the dispersive representation of the low-energy couplings, which is the LSD
principle. See section 5.2 for the precise mathematical formulation. More generally, we show
how one can combine an assumed hierarchy among the spectral densities of various spins with
crossing symmetry to systematically derive stronger bounds on the Wilson coefficients. We
impose crossing symmetry via the use of null constraints [3, 4].

The idea that LSD is a true property of physical theories can be traced back to causality, or
the statement that the amplitude cannot grow too fast in the Regge limit. Otherwise we could
have simply added a tree-level exchange by a large-spin particle which would contribute to
a given spin partial wave. Due to causality we cannot do this (see e.g. reference [11]). The
situation is particularly dramatic in gravity. In this case the only particle that can be exchanged
at tree-level in graviton scattering without violating causality is the graviton itself. Moreover, its
self-coupling has to be the one of Einstein gravity references [11–14]. Alternatively, particles
of all spins have to be exchanged at tree level to preserve causality, which is the mechanism
realized in string theory. It is important to emphasize that at the level of 2 → 2 scattering LSD
does not follow from causality and we do not prove it in this paper, rather we use it as a principle
to organize the known data, and suggest that it may hold more generally. It would be interesting
to understand if it follows from considerations on the consistency of n → m graviton scattering.

Alternatively, it is also possible that our finding of LSD could be special for the mod-
els considered here and bears little significance for more general gravitational models. This
possibility, which we cannot exclude, would be still very interesting. Indeed, as we demon-
strate, any such violation is an indication for non-stringy, non-weakly-coupled-matter physics.
For example, it would be very interesting to see if one can somehow violate LSD by
making the matter sector strongly coupled, e.g. by considering large-N QCD coupled to
gravity [15].

Curiously, the phenomenon of LSD generates hierarchies between different Wilson coef-
ficients in the absence of any symmetry. We call this phenomenon hierarchy from unitarity
and it is something that could have puzzled an unassuming low-energy physicist. We find that
specific combinations of Wilson coefficients whose dispersive representation does not involve

5 It would be very interesting to generalize our analysis to include bounds that relate couplings of different
dimensionality along the lines of references [3, 4, 7].
6 In reference [10] the string-theory island was interpreted in terms of unitarity constraints coupled with world-sheet
monodromy constraints.
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the lowest-spin partial waves can be much smaller than their counterparts that do have them in
their definitions.

Secondly, we apply the dispersive sum rules [4, 16] to amplitudes with various helicity
configurations of the external gravitons.7 We derive various bounds on the inelastic scattering
(the one in which the final and initial state gravitons have different helicities) in terms of the
elastic one (see e.g. reference [17]). We also place a precise bound on the R3 coefficient in
terms of the R4 coefficient (see (6.13)). Such a bound translates the problem of making the
analysis of reference [11] quantitatively precise to the problem of the bounding the leading R4

contact coefficient in terms of the gap of the theory. This has been recently done in reference
[7] in a similar perturbative setting for D = 10 maximal supergravity; see also reference [18]
for the nonperturbative analysis of the same problem. It would, of course, be very interesting
to generalize these studies to more general cases of graviton scattering.

In order to provide data for checking and understanding the derived constraints, we first
compute the one-loop four-graviton scattering amplitude with the gravitons minimally cou-
pled to massive matter up to spin 2. Amplitudes corresponding to the ones discussed here, but
with massless particles circulating in the loop were obtained a while ago in reference [19] and
corresponding gauge-theory amplitudes with massive particles in the loop were computed in
reference [20]. We use the same type of organization of the amplitude in terms of supersym-
metric multiplets as applied in the earlier calculations, since they naturally group contributions
according to their analytic properties.

To evaluate the amplitudes, we make use of standard tools including the unitarity method
[21] and the Bern–Carrasco–Johansson (BCJ) [22, 23] double copy, which gives gravity inte-
grands in terms of corresponding gauge-theory ones. We build on the D-dimensional version
of the unitarity method of reference [20] in order to fix the rational terms in the amplitudes.
At four points gauge-theory tree-level amplitudes automatically satisfy the duality between
color and kinematics, so the associated double-copy relations also hold automatically on the
unitarity cuts. We use this to express the cuts of the gravity loop integrands directly in terms
of the corresponding gauge-theory ones. By using the double copy our computation parallels
the corresponding gauge-theory one [20] allowing us to import many of the same steps into
the gravitational amplitude calculations.

A complication with massive amplitudes is that there is a class of terms that depend on
the mass but do not have branch cuts in any kinematic variable. This makes their construction
tricky in the context of the unitarity method. Reference [24] introduced an approach to this
problem. Here we instead solve the problem differently by making use of a special property
of the scattering amplitudes under study that exploits their simple dependence on the mass of
the particle circulating in the loop. In our case (i.e. a single mass circulating in the loop) we
instead use knowledge of the UV properties of the amplitudes to fix all remaining functions
in the amplitude not determined by unitarity. This procedure is greatly aided by arranging the
amplitude in terms of integrals that have no mass or spacetime dependence in their coefficients.
To ensure the veracity of our amplitudes we perform a number of nontrivial checks on the mass
dependence, and infrared and UV properties. Related to this, we also note a simple relation
between UV divergences of appropriate spacetime dimension shifts of the amplitudes and the
terms in the large-mass expansion in four dimensions (see equation (2.65)).

We analyze our amplitudes in the large-mass limit and match to a low-energy effective field
theory. In this way we systematically obtain corrections to Einstein gravity due to the presence
of a heavy spinning particle. These corrections are organized in inverse powers of the particle’s

7 Flat space superconvergence considered in reference [14] is a particular example of these more general sum rules.
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mass. As already noted not only are our results for the Wilson coefficients fully consistent with
the general analysis of bounds on gravitational scattering, but are restricted to small islands.

Since we focus on the leading effect due to heavy particles in the weakly coupled setting
neither IR divergences, nor logarithms due to the loops of massless particles make an appear-
ance in our analysis. Taking these into consideration is an important task which we leave for
the future.

Our paper naturally consists of two parts: in the first part we explain in detail the construc-
tion of the one-loop massive amplitudes used to provide theoretical data that we interpret in the
second part in terms of bounds on coefficients of gravitational EFTs. Readers who are inter-
ested in the EFT constraints can skip section 2 on the construction of the one-loop amplitudes.
Particularly important plots that illustrate the theory islands and the concept of LSD in the
partial-wave expansion are given in figures 9–12.

In more detail, the sections are organized as follows: in section 2 we describe our construc-
tion of the one-loop four-graviton amplitude with massive matter up to spin 2 in the loop. In
section 3 we compute graviton scattering in a general low-energy effective theory. By expand-
ing our amplitudes in the low-energy limit, we extract the Wilson coefficients of the effective
field theory. In section 4 we describe the general properties of the gravitational amplitudes
stemming from unitarity and causality. In section 5 we derive two-sided bounds on Wilson
coefficients that follow from a single helicity configuration that describes elastic scattering;
comparing to known data from string theory and our computed one-loop amplitude, we show
that the results fall into small islands. We trace the position of these islands using LSD of par-
tial waves. In section 6 we obtain bounds that arise from considering multiple helicities. We
bound the low-energy expansion coefficients of inelastic amplitudes in terms of elastic ones.
We also derive a bound for the coefficient of the R3 operator in terms of the R4 coefficient.
Finally, we provide our concluding remarks in section 7. We include various appendices. In
appendix A we describe in some detail our definition of minimal coupling of gravity to a mas-
sive spinning particle. In appendix B we collect tree-level graviton four-point amplitudes in
various string theories. In appendix C we present details on the derivation of some low-energy
bounds that are not listed in the main text of the paper. In appendix D we analyze an amplitude
function with an accumulation point in the spectrum that partially violates LSD, but show that
the corresponding low-energy coefficients still land on the small islands. Appendix E collects
the Wigner d-matrices used throughout the paper. In appendix F we present our results for
the one-loop amplitudes. We give the expressions for one-loop integrals in terms of which the
amplitudes are expressed in appendix G. Finally, in appendix H we expand these results to high
orders in the large-mass expansion.

2. Construction of one-loop four-graviton scattering amplitudes

In this section we describe the construction of the one-loop four-graviton amplitudes with
massive matter up to spin 2 in the loop. We collect the results in appendix F. We first briefly
review the methods used to obtain the amplitudes. Then, following the generalized-unitarity
method we build the integrand-level generalized-unitarity cuts. We describe a natural and effi-
cient organization of the unitarity cuts and the amplitudes motivated by supersymmetry. This
organization also meshes well with the double-copy construction which we use to obtain grav-
itational unitarity cuts from gauge-theory ones. Having obtained the unitarity cuts we describe
the necessary integral reduction and cut merging into the amplitudes. This process fixes all but
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a few pieces of the amplitudes, which we obtain by exploiting the known UV properties of the
amplitudes. After calculating the amplitudes, we comment on some interesting UV properties
we observe. Finally, we conclude this section by listing the consistency checks we performed
on our calculation.

2.1. Basic methods

2.1.1. Spinor helicity. We use the spinor-helicity method [25] to describe the external graviton
states of amplitudes (for reviews see reference [26]). The natural quantities in this formalism
are two component Weyl spinors

(λi)α ≡ [u+(ki)]α, (λ̃i)α ≡ [u−(ki)]α, (2.1)

which we write in a ‘bra’ and ‘ket’ notation as

|k+i 〉 = | i 〉 = λi, |k−i 〉 = | i ] = λ̃i, 〈k−i | = 〈 i | = λi, 〈k+i | = [ i | = λ̃i, (2.2)

where kμi refers to the null momentum of the ith external particle, while the ‘±’ superscript
refers to the helicity of the corresponding state. The spinor inner products are defined using
the antisymmetric tensors εαβ and εα̇β̇ ,

〈k−i |k+j 〉 = 〈i j〉 = εαβ(λi)α(λ j)α, 〈k+i |k−j 〉 = [i j] = −εα̇β̇(λ̃i)α̇(λ̃i)α̇. (2.3)

These spinor products are antisymmetric in their arguments and we choose a convention where
they satisfy 〈i j〉[i j] = 2ki · k j.

In order to construct amplitudes with external gravitons, our starting point is the corre-
sponding ones with external gluons. For calculations involving external gluons the helicity
polarization vectors are defined as

ε+μ (ki; qi) =
〈qi|γμ|i ]√

2〈iqi〉
, ε−μ (ki; qi) =

[qi|γμ|i〉√
2[iqi]

, (2.4)

where qi are arbitrary null ‘reference momenta’ which drop out of the final gauge-invariant
amplitudes. Note that we do not use a shorthand notation for the spinors corresponding to
the reference momenta. The polarization tensors for gravitons are simply given in terms of
products of gluon polarization vectors,

ε+μν(k; q) = ε+μ (k; q) ε+ν (k; q), ε−μν(k; q) = ε−μ (k; q) ε−ν (k; q), (2.5)

which automatically satisfy the graviton tracelessness condition, due to the Fierz identity.
When these polarization vectors are contracted into external momenta kμi or loop momenta
�μ we define,

k1 · ε+2 =
〈q2|k� 1|2 ]√

2〈q22〉
≡ 〈q2|1|2 ]√

2〈q22〉
, � · ε+2 =

〈q2|�� |2 ]√
2〈q22〉

≡ 〈q2|�|2 ]√
2〈q22〉

, etc, (2.6)

where we also use the abbreviation ε+2 ≡ ε+(k2; q2).
We note that, in general, for loop calculations some care is needed when using dimensional

regularization. To take advantage of the spinor-helicity formulation in a one-loop calculation
we need to choose an appropriate version of dimensional regularization. Specifically, instead of
taking the external polarization tensors and momenta to be (4 − 2ε)-dimensional as in conven-
tional dimensional regularization [27], we use the so called four-dimensional helicity (FDH)
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scheme [28, 29] where both external and loop state counts are kept in four dimensions and
only the loop momentum is continued to 4 − 2ε dimensions. Because the massive one-loop
amplitudes that we obtain here are neither UV nor infrared divergent, the precise distinction
between the different versions of dimensional regularization drops out from the final results
for the amplitudes. We do, however, need to regularize intermediate steps because individual
loop integrals are UV divergent, with the divergence canceling in final results.

2.1.2. Generalized unitarity. In order to construct the loop integrands we use the generalized-
unitarity method [21]. This method systematically builds complete loop-level integrands using
as input on-shell tree-level amplitudes. A central advantage is that simplifications and features
of the latter are directly imported into the former. Reviews of the generalized-unitarity methods
are found in references [30, 31].

In general, the task of computing an amplitude is to reduce it to a linear combination of
known scalar integrals. Using standard integral-reduction techniques (see e.g. references [32,
33]) any four-point one-loop amplitude can be written as a linear combination of box, triangle,
bubble and tadpole integrals,

M1−loop
4 =

(
ds,tI4(s, t) + csI3(s) + bsI2(s) + perms.

)
+ b0I2(0) + a0I1, (2.7)

where the permutations run over distinct relabelings of the integrals. At the four-point level
there are a total of 11 coefficients. These coefficients depend on polarization vectors, momenta,
masses and the dimensional-regularization parameter ε. We define the basis integrals appearing
in equation (2.7) by

I4(s, t) =
∫

dDL
(2π)D

−i(4π)D/2

(L2 − m2)((L + k1)2 − m2)((L + k1 + k2)2 − m2)((L − k4)2 − m2)
,

I3(s) =
∫

dDL
(2π)D

i(4π)D/2

(L2 − m2)((L + k1)2 − m2)((L + k1 + k2)2 − m2)
,

I2(s) =
∫

dDL
(2π)D

−i(4π)D/2

(L2 − m2)((L + k1 + k2)2 − m2)
,

I1 =

∫
dDL

(2π)D

i(4π)D/2

(L2 − m2)
, (2.8)

where D = 4 − 2ε, s = (k1 + k2)2, t = (k2 + k3)2 and u = (k1 + k3)2. We obtain the remain-
ing integrals in equation (2.7) by permuting the external legs. The unitarity method efficiently
targets the coefficients of the integrals in equation (2.7). The integrals I2(0) and I1 are respec-
tively bubble on external leg and tadpole contributions, and are independent of kinematic
variables. As we discuss below, because they lack dependence on kinematic variables, these
latter integrals require special treatment to determine their coefficients.

Traditionally, unitarity of the scattering matrix is implemented at the integrated level via
dispersion relations (see e.g. reference [34]). However, for our purposes, it is much more
convenient to use an integrand-level version of unitarity [21]. This is based on the concept
of a generalized-unitarity cut that reduces an integrand to a sum of products of tree-level
amplitudes. For example, for the s-channel cut displayed in figure 1(a),

iM1−loop
4

∣∣∣
s−cut

=

∫
d4−2εL

(2π)4−2ε

1
L2

1 − m2

1
L2

2 − m2

∑
states

Mtree
4 (1, 2, L1, L2)

×Mtree
4 (−L1,−L2, 3, 4)

∣∣
s−cut, (2.9)
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Figure 1. The (a) s-, (b) t- and (c) u-channel two-particle cuts of a one-loop four-
point amplitude. The exposed lines are all on shell and the blobs represent tree-level
amplitudes.

where L1 = L and L2 = −L − k1 − k2 represent the two cut legs, and Mtree
4 denote the tree-

level amplitudes. The sum runs over all intermediate physical states that contribute for a given
set of external states. The three generalized-unitarity cuts of the one-loop four-point amplitude
are shown in figure 1. In this figure the exposed lines are all on shell and the blobs represent
on-shell tree-level amplitudes.

To obtain the full one-loop amplitude we must combine the unitarity cuts. One possibility is
to carry this out prior to integration by finding a single integrand with the correct unitarity cuts
in all channels [35]. Some non-trivial examples where this approach was implemented are high-
loop computations in super-Yang–Mills and supergravity (see e.g. references [36]). On the
other hand, in high-multiplicity QCD calculations (see e.g. reference [37]) the cuts are usually
combined after reducing to a basis of integrals. We apply the latter approach here. We do so by
promoting each cut propagator to a Feynman propagator, and each cut to a Feynman integral.
We then use FIRE6 [33] to reduce each Feynman integral to the scalar integrals appearing in
equation (2.7). In each cut channel we only determine coefficients of basis integrals with cuts
in that channel. By systematically evaluating each cut we determine all coefficients except
for those of integrals without kinematic dependence, i.e. I2(0) and I1. In the case of gauge
theory, the corresponding coefficients are determined by imposing the known UV behavior of
the amplitudes [20]. Below, we describe an analogous procedure for the case of gravitational
amplitudes.

2.1.3. Double copy. To efficiently obtain the unitarity cuts of the four-graviton amplitude, we
use the double-copy construction [22, 38] which expresses gravitational scattering amplitudes
directly in terms of gauge-theory ones. Here we use the BCJ form of the double-copy relations
[22, 23], which is more natural when organizing expressions in terms of diagrams.

To apply the BCJ double copy, we start by writing a four-point one-loop gauge-theory
amplitude in the following form:

iA1−loop
4 = g4

∑
i

∫
d4−2εL

(2π)4−2ε

1
Si

nici

Di
. (2.10)

The sum runs over all distinct four-point one-loop graphs with trivalent vertices. We denote
the gauge-theory coupling constant by g. We label each graph by an integer i. The Si are the
symmetry factors of the graphs. The color factor ci of each graph is obtained by dressing each
vertex by a structure constant f̃ abc, since we take all particles to be in the adjoint representation.
Our normalization of the structure constants follows that of reference [22]. The denomina-
tor Di contains the propagators of each graph. Finally, we capture all non-trivial kinematic
dependence by the numerator ni.
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Figure 2. Example of a color or numerator relation for the one-loop four-point ampli-
tudes. Here the diagram represent either color or kinematic numerators. We use these
relations on the generalized-unitarity cuts, as indicated by the dashed lines. The rela-
tions are effectively tree-level ones except that the state and color sums on the cut legs
are carried out.

The color factors obey color-algebra relations of the type

ci − c j − ck = 0, (2.11)

where i, j and k are some graphs. These relations follow from the Jacobi identity obeyed by the
structure constants f̃ abc. For a representation obeying color-kinematics duality, the numerators
satisfy the same Jacobi relations, i.e.

ñi − ñ j − ñk = 0. (2.12)

The tildes on the numerators signify that these numerators do not have to be the same as the
ones appearing in equation (2.10), but as noted in reference [22] these can be kinematic numer-
ators from a different theory. Given such a representation we may obtain the corresponding
gravitational amplitude simply by replacing the color factor with the corresponding kinematic
numerator,

ci → ñi, (2.13)

so that

iM1−loop
4 =

(κ
2

)4∑
i

∫
d4−2εL

(2π)4−2ε

1
Si

niñi

Di
, (2.14)

where κ is the gravitational coupling constant, which is given in terms of Newton’s constant
by,

κ2 = 32πG. (2.15)

The matter content of the resulting gravitational theory is determined by the choice of the
numerators ni and ñi. We use this to control the type of particle circulating in the loop.

While the BCJ double copy is usually formulated at the level of the full integrand, since
we extract the final answer directly from the cuts it is more convenient to use it at the level
of generalized-unitarity cuts. In figure 2 we depict an example of a color relation in terms of
cut graphs. In this way we can ignore duality relations that contain diagrams without support
on the given cut. For duality relations with support on the cut, the particles of each tree-level
amplitude entering the cut remain on the same side of the cut for all three diagrams, as is the
case in figure 2. Effectively this amounts to using the duality relations for the two tree-level
amplitudes on each side of the cut (see e.g. figure 3). The tree-level relations are sufficient to
ensure that for the cut diagram, the double-copy replacement formula (2.13) holds.

9



J. Phys. A: Math. Theor. 54 (2021) 344002 Z Bern et al

Figure 3. The tree-level four-point color or numerator Jacobi identity. This can be used
to set the numerator of one of the diagrams to zero.

We also take advantage of a property of four-point tree-level amplitudes noted in the original
BCJ paper [22], which states that we can effectively set one of the three numerators to zero.
In this way the duality relation implies that the other two numerators must be equal (up to
a possible sign). In order to achieve that, we absorb the propagator of the diagram whose
numerator is set to zero into the numerators of the other two diagrams. Specifically, consider
the four-point all-gluon tree-level amplitude,

iAtree
4 = g2

(nscs

s
+

ntct

t
+

nucu

u

)
. (2.16)

Using the color Jacobi identity depicted in figure 3, cs = ct − cu, we can eliminate cs in
favor of the other two color factors, so that

iAtree
4 = g2

(
n′

tct

t
+

n′
ucu

u

)
, (2.17)

where

n′
t = nt + ns

t
s

, n′
u = nu − ns

u
s
. (2.18)

Demanding that the numerators n′
t and n′

u (and n′
s = 0) satisfy the duality relation of figure 3

then implies that

n′
t = n′

u. (2.19)

The analysis is identical in the presence of matter.

2.2. Setup of the calculation

Our goal is to obtain the four-point one-loop amplitude with external gravitons and with
minimally-coupled massive spinning particles up to spin 2 circulating in the loop. Following
the generalized-unitarity method we first build the integrand-level generalized-unitarity cuts in
equation (2.9). For the one-loop four-point amplitude there are three independent cuts, labeled
by the Mandelstam invariant that can be build out of the external graviton momenta on the
tree-level amplitudes, i.e. s-, t- and u-channel cuts. We consider all spins up to spin 2 for the
massive particles and we denote their mass by m. While these masses can be different for each
particle since only a single particle at a time circulates in the loop there is no need to put an
index labeling the massive particle. We take the massive particles to be real.

We note that there is an ambiguity in the definition of the minimal coupling of a spin 2 par-
ticle to gravity. In this paper, we fix this ambiguity by demanding that we recover pure gravity
in the appropriate massless limit. This choice also preserves tree-level unitarity [39] and
causality [40]. We discuss this ambiguity and the choice we make in this paper in appendix A.
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Figure 4. The (a) s-, (b) t- and (c) u-channel two-particle cuts of a one-loop four-point
amplitude with two negative- and two positive-helicity external gluons or gravitons
(double-minus configuration). The internal lines represent massive spinning particles.
The exposed lines are all on shell and the blobs represent tree-level amplitudes.

For the amplitude in question there exist three independent helicity configurations. Specif-
ically, we calculate

M1−loop
4 (1+, 2−, 3−, 4+), M1−loop

4 (1+, 2+, 3−, 4+), M1−loop
4 (1+, 2+, 3+, 4+).

(2.20)

We refer to these configurations respectively as double-minus, single-minus and all-plus.
All other amplitudes are related to these via relabelings and parity.

We build the generalized-unitarity cuts from four-point tree-level gravity amplitudes. The
double copy implies that these tree-level amplitudes can be directly obtained from the corre-
sponding gauge-theory ones, which can be described by the three diagrams shown in figure 3.
As we discussed in the previous section we can use the color Jacobi identity in the gauge-
theory case to remove one diagram, at the expense of other diagrams obtaining numerators
that are nonlocal in the external kinematic invariants. The net effect is that after multiplying
and dividing by appropriate propagators every contribution to the cut can be assigned to cut box
diagrams. Moreover, on the generalized cuts the four-point tree-level BCJ numerator relations
set the remaining numerators equal to each other, as noted in equation (2.19).

For example, for the four-point gauge-theory amplitude the s-channel cut in figure 4(a) is
of the form,

iA4|s−cut = g4
∫

d4−2εL
(2π)4−2ε

ng,s

(
c1234

D1234
+

c1342

D1342

)∣∣∣∣
s−cut

. (2.21)

The box color factor (see figure 5) is given by

cabcd = f̃ eag1g4 f̃ ebg2g1 f̃ ecg3g2 f̃ edg4g3 , (2.22)

where abcd takes in the values indicated in equation (2.21). As usual, repeated indices are
summed. The denominators are given by products of the usual Feynman propagators,

Dabcd =
(
L2 − m2

) (
(L + ka)2 − m2

) (
(L + ka + kb)2 − m2

)
×
(
(L + ka + kb + kc)2 − m2

)
, (2.23)

where the ka are external momenta. Finally, ng,s is a gauge-theory kinematic factor common to
both box diagrams.

11
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Figure 5. Generic box diagram whose color factor and denominator are given by
equations (2.22) and (2.23) respectively. The external momenta are taken incoming while
the direction of the loop momentum is indicated by the arrow.

The gravitational cuts are similar. For example, the s-channel cut is of the form,

iM4|s−cut =
(κ

2

)4
∫

d4−2εL
(2π)4−2ε

nGR,s

(
1

D1234
+

1
D1342

)∣∣∣∣
s−cut

, (2.24)

where nGR,s is the single s-channel gravitational kinematic numerator. As we noted in
section 2.1, the gravity amplitudes follow from replacing the color factor with a gauge-theory
kinematic numerator. As we describe in more detail below, the particle content circulating in
the loop is determined by the choice of the gauge-theory numerators.

As can be seen from figures 4(a) and (c), for the indicated helicity configuration, the u-
channel cut is obtained by relabeling the momenta and spinors in the s-channel cut: k2 ↔ k3

and 〈2| ↔ 〈3|. For the single-minus and all-plus configurations, all three cuts are given by
appropriate relabelings of a single cut.

2.3. Supersymmetric decompositions

We are interested in the problem of minimally-coupled massive matter circulating in the loop.
A convenient way to organize this calculation is by following the massless case where each
particle can be described as a linear combination of supersymmetric multiplets circulating in
the loop. Our organization is in direct correspondence to this supersymmetric decomposition
[19, 41, 42]. This allows us to recycle the results of the calculation of the lower-spin particles
circulating in the loop into contributions for the higher-spin particles. It also has the advantage
of grouping together terms that contain integrals of the same tensor rank. For the gauge-theory
case such a decomposition has already been used to organize the contributions of massive spin
0, 1/2 and 1 particles circulating in the loops [20, 42]. The double-copy construction will
allow us to import this into minimally-coupled gravitational theories with up to spin-2 massive
particles.

2.3.1. Gauge theory. We start by examining the corresponding amplitudes in gauge the-
ory. For the case of one-loop four-point amplitudes with external gluons and massive matter
circulating in the loop, reference [42] showed that8

AS=0
4 = A{0}

4 ,

AS=1/2
4 = −2A{0}

4 +A{1/2}
4 ,

AS=1
4 = 3A{0}

4 − 4A{1/2}
4 +A{1}

4 ,

(2.25)

8 We combine the ‘gauge boson’ and ‘scalar’ contributions of reference [42] into the massive S = 1 result.

12
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where the notation A{S}
4 denotes the new piece we need to calculate at spin-S. In this way

we express the amplitudes with a given spinning particle circulating in the loop in terms of the
simpler-to-calculate new pieces. Inverting the above equations, we may think of the new pieces
as amplitudes with multiplets circulating in the loop. These massive multiplets have the same
degrees of freedom as the corresponding massless ones. Hence, in terms of on-shell super-
symmetric representation theory they satisfy the BPS condition [43]. For recent calculations
involving massive supersymmetric multiplets in gauge theory see references [44, 45].

Before turning to the corresponding gravitational decomposition it is useful to first look at
the massless limit. For the gauge theory case we have that as m → 0,

AS=0
4 →AS=0, m=0

4 ,

AS=1/2
4 →AS=1/2, m=0

4 ,

AS=1
4 →AS=1, m=0

4 +AS=0, m=0
4 ,

(2.26)

where we see that the S = 1 case is nontrivial, which follows from the mismatch in the number
of degrees of freedom in a massive and massless vector boson.

2.3.2. Background field gauge. A nice way to understand the above supersymmetric decom-
position is in terms of background field gauge [30]. While we do not use background field gauge
to compute the amplitudes, it does offer useful insight into the structure of the amplitude. For
the different particles circulating in the loop we can write the effective action as

ΓS=0[A] = ln det −1/2
[0]

(
D2 + m2

)
,

ΓS=1/2[A] = ln det 1/4
[1/2]

(
D2

I+ m2
I− g

1
2
σμνFμν

)
,

ΓS=1[A] = ln det −1/2
[1]

(
D2

I+ m2
I− gΣμνFμν

)
+ ln det [0]

(
D2 + m2

)
+ ln det −1/2

[0]

(
D2 + m2

)
,

(2.27)

where I is the identity matrix, σμν/2 is the spin-1/2 Lorentz generator and Σμν is the spin-1
Lorentz generator. Ignoring the Fμν terms and focusing on the (D2 + m2) term, each state cor-
responds to a power to which the determinant is raised: −1/2 for a bosonic state and +1/2 for
a fermionic state. For a massive real scalar there is precisely one bosonic state corresponding
the −1/2 power to which the first determinant is raised. For the S = 1/2 fermion the determi-
nant is raised to the 1/4 power to account for the 4 × 4 Dirac determinant, effectively leaving a
single power that corresponds to the two states of a Majorana fermion. Similarly, for the S = 1
vector, the determinant is over a 4 × 4 Lorentz generator space so the exponent of −1/2 in the
first term in ΓS=1[A] corresponds to four bosonic states. This is then reduced to two states by
the ghost determinant corresponding to the second term and increased by one state from the
scalar longitudinal degree of freedom required by a massive vector boson corresponding to the
third term. This extra degree of freedom is incorporated into equation (2.25) as well. To make
the supersymmetric cancellations more manifest we rewrite the Dirac determinant as a product
of determinants so that the similarity to the bosonic case is clear,

det 1/2
[1/2](D� + im) det 1/2

[1/2](D� − im) = det 1/4
[1/2](D�

2 + m2)

= det 1/4
[1/2]

(
D2 + m2 − g

1
2
σμνFμν

)
, (2.28)
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where D� 2 = 1
2{D� , D� }+ 1

2 [D� , D� ]. This corresponds to using the second order formalism for
fermions described in reference [46]. The fact that the mass enters into equation (2.27) in such
a simple manner can also be understood in terms of a Kaluza–Klein reduction of the massless
case from five dimensions, truncated to keeping only the lowest massive state in the loop.

The effective-action determinants (2.27) can be straightforwardly applied to show that the
supersymmetric decomposition organizes contributions in terms of power counting of the
resulting diagrams. The terms with leading power of loop momenta come from the D2 terms in
equation (2.27), because Fμν contains only the external gluon momenta. If we set the Fμν terms
to zero then in all supersymmetric combinations the balance between the bosons and fermions
implies the leading powers of loop momentum cancel. Subleading terms in supersymmetric
combinations come from using one or more factors of Fμν when generating a graph; each Fμν

reduces the maximum power of momentum by one. Terms with a lone Fμν vanish, thanks to
Tr(σμν) = Tr(Σμν) = 0. This reduces the leading power in an m-point one-particle-irreducible
diagram from �m down to �m−2. For A{1}

m , a comparison of the traces of products of two and
threeσμν andΣμν shows that further cancellations reduce the leading behavior all the way down
to �m−4. In gauges other than Feynman background field gauge, these cancellations would be
more more obscure.

2.3.3. Gravity. Now consider the gravitational case. In the m → 0 limit we again have a mis-
match in the number of degrees of freedom for S � 1 between the massive and massless cases,

MS=0
4 →MS=0, m=0

4 ,

MS=1/2
4 →MS=1/2, m=0

4 ,

MS=1
4 →MS=1, m=0

4 +MS=0, m=0
4 ,

MS=3/2
4 →MS=3/2, m=0

4 +MS=1/2, m=0
4 ,

MS=2
4 →MS=2, m=0

4 +MS=1, m=0
4 +MS=0, m=0

4 .

(2.29)

In the massless case with spinning particles circulating in the loop we can again decompose
the amplitudes in terms of ones with supermultiplets circulating in the loop [19],

MS=0, m=0
4 = M{0}, m=0

4 ,

MS=1/2, m=0
4 = −2M{0}, m=0

4 +M{1/2}, m=0
4 ,

MS=1, m=0
4 = 2M{0}, m=0

4 − 4M{1/2}, m=0
4 +M{1}, m=0

4 ,

MS=3/2, m=0
4 = −2M{0}, m=0

4 + 9M{1/2}, m=0
4 − 6M{1}, m=0

4 +M{3/2}, m=0
4 ,

MS=2, m=0
4 = 2M{0}, m=0

4 − 16M{1/2}, m=0
4 + 20M{1}, m=0

4

− 8M{3/2}, m=0
4 +M{2}, m=0

4 .

(2.30)

The {S} pieces in each case are in direct correspondence to the supermultiplets circulating
in the loop, as defined in reference [19].9 For example,

M{1/2}, m=0
4 = MN=1, m=0

4 , (2.31)

9 We use a real scalar while reference [19] used a complex one. Hence there is relative factor of 1/2 for that contribution.
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where N = 1 denotes the chiral multiplet consisting of a Weyl fermion and two real scalars.
Using the relation between the massive and massless amplitudes in equation (2.29) and the

massless supersymmetric decomposition in equation (2.30), we can organize our computation
in a similar way as for gauge theory in equation (2.25). Specifically, we have

MS=0
4 = M{0}

4 ,

MS=1/2
4 = −2M{0}

4 +M{1/2}
4 ,

MS=1
4 = 3M{0}

4 − 4M{1/2}
4 +M{1}

4 ,

MS=3/2
4 = −4M{0}

4 + 10M{1/2}
4 − 6M{1}

4 +M{3/2}
4 ,

MS=2
4 = 5M{0}

4 − 20M{1/2}
4 + 21M{1}

4 − 8M{3/2}
4 +M{2}

4 .

(2.32)

The massive multiplets circulating in the loop are ‘short’, i.e. they have the same degrees
of freedom as the corresponding massless ones. Hence, they obey the BPS condition [43].
While we have not tried directly embedding these amplitudes into supergravity theories, it is an
interesting question to do so. Here we use the relation to supermultiplets for a more modest aim
of reorganizing the contributions, so that as the spin increases the new pieces become simpler.
Examples of supergravity calculations involving massive multiplets are given in reference [47].

We note that in general, care is required when using dimensional regularization in conjunc-
tion with helicity methods and supersymmetric decompositions. To allow for different choices
of regularization scheme, we would need to correct the last line of equation (2.25) to be [42]

AS=1
4 = (3 − 2δRε)A{0}

4 − 4A{1/2}
4 +A{1}

4 , (2.33)

where δR = 0 in the FDH scheme [28] and δR = 1 in either conventional dimensional regular-
ization [27] or the ’t Hooft-Veltman scheme [48]. One may then propagate this correction to
the gravitational amplitudes through the double copy. While the correction is of O(ε), it can
interfere with infrared or UV singularities to give nontrivial contributions. However, for the
massive amplitudes that we are computing here, the distinction between different schemes is
not important because the four-graviton amplitudes with massive matter in the loop are both
UV and infrared finite (see sections 2.6 and 2.8).

We also note that the coefficient of the scalar (M{0}
4 ) counts the degrees of freedom of the

particle in question, modulo a minus sign for the fermions. Recall that all particles are taken to
be real. Also, given the general setup of our amplitudes (equations (2.21) and (2.24)), we get
a similar decomposition for the corresponding numerators ng,α and nGR,α.

Finally, the supersymmetric decomposition is simplified in the case of the single-minus and
all-plus configurations. In these cases, supersymmetric Ward identities [49] show that only
the M{0}

4 piece gives a nonzero contribution for each spin particle in the loop. Using this
observation, equation (2.32) becomes

MS=0
4 (1±, 2+, 3+, 4+) = M{0}

4 (1±, 2+, 3+, 4+),

MS=1/2
4 (1±, 2+, 3+, 4+) = −2M{0}

4 (1±, 2+, 3+, 4+),

MS=1
4 (1±, 2+, 3+, 4+) = 3M{0}

4 (1±, 2+, 3+, 4+),

MS=3/2
4 (1±, 2+, 3+, 4+) = −4M{0}

4 (1±, 2+, 3+, 4+),

MS=2
4 (1±, 2+, 3+, 4+) = 5M{0}

4 (1±, 2+, 3+, 4+).

(2.34)
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Therefore for these two helicity configurations, it is sufficient to calculate the S = 0
amplitude where only a scalar circulates in the loop.

2.4. Kinematic numerators through the double copy

Following the double-copy construction we can directly obtain the gravitational unitarity-cut
numerators from gauge-theory ones. We may express the double copy in terms of spinning
particles or new pieces (equation (2.32)) circulating in the loop. In the latter case, we find an
especially compact representation for the numerators.

Taking the product of gauge-theory kinematic numerators we decompose them into cut
numerators of the gravitational case. In terms of spin we have

nS̃
g,αnS=0

g,α = nS̃
GR,α, for S̃ = 0, 1/2, 1,

nS=1/2
g,α nS=1/2

g,α = nS=1
GR,α + nS=0

GR,α,

nS=1
g,α nS=1/2

g,α = nS=3/2
GR,α + nS=1/2

GR,α ,

nS=1
g,α nS=1

g,α = nS=2
GR,α + nS=1

GR,α + nS=0
GR,α,

(2.35)

where α denotes the cut under consideration. These are in direct correspondence to the
Clebsch–Gordan decomposition. In terms of the new pieces in equation (2.32),

n{S}
g,αn{0}

g,α = n{S}
GR,α, for S = 0, 1/2, 1,

n{1/2}
g,α n{1/2}

g,α = n{1}
GR,α,

n{1}
g,αn{1/2}

g,α = n{3/2}
GR,α ,

n{1}
g,αn{1}

g,α = n{2}
GR,α.

(2.36)

Observe that the gauge-theory numerator nS=0
g,α along with either nS=1/2

g,α or nS=1
g,α are sufficient

to construct all the gravitational numerators up to spin 2. We explicitly verified that both con-
structions yield the same result. References [20, 42] calculated the corresponding amplitudes
AS=0

4 , AS=1/2
4 and AS=1

4 , from which we may extract the desired kinematic numerators. As a

consistency check, we match A{1}
4 , which was calculated in reference [45].

From the above construction we find a remarkably simple form for the kinematic numera-
tors. For the double-minus gauge-theory numerators we have,

n{S}
g,α =

(
[14]〈23〉

)2
(ψα)2−2S, (2.37)

while for the corresponding gravity numerators we have,

n{S}
GR,α =

(
[14]〈23〉

)4
(ψα)4−2S, (2.38)

where

ψs ≡
〈2|�|1] 〈3|�|4]

s[14]〈23〉 , ψt ≡
(m2 + μ2)

t
, ψu ≡ 〈3|�|1] 〈2|�|4]

u[14]〈32〉 . (2.39)
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For the single-minus and all-plus configurations it is sufficient to calculate the numerators
for a scalar circulating in the loop. For the single-minus configuration for gauge theory and
gravity we find

nS=0
g,s =

(m2 + μ2)
s

[12]
〈12〉 〈3|�|4]2, nS=0

GR,s =
(m2 + μ2)2

s2

[12]2

〈12〉2
〈3|�|4]4, (2.40)

while for the all-plus configuration we have

nS=0
g,s = (m2 + μ2)2 [12][34]

〈12〉〈34〉 , nS=0
GR,s = (m2 + μ2)4

(
[12][34]
〈12〉〈34〉

)2

. (2.41)

For these two configurations, we obtain the numerators for the t- and u-channel cuts by
appropriate relabelings.

Following the conventions of reference [20], we break the (4 − 2ε)-dimensional loop
momentum L into a four-dimensional part � and a (−2ε)-dimensional part μ. We write L =
(�, μ). Using this notation we have for example

�2 = m2 + μ2, (2.42)

when the cut condition L2 = m2 is satisfied. We take ε < 0 so that we can break the loop
momentum in this fashion. Further, whenever a four-dimensional vector v ≡ (v, 0) is con-
tracted with the (4 − 2ε)-dimensional loop momentum, the (−2ε)-dimensional part is projected
out,

v · L = v · �. (2.43)

Reference [50] (equations (5.20) and (5.36)) calculated Compton amplitudes for a mas-
sive particle in four dimensions of up to spin 1 in gauge theory and up to spin 2 in grav-
ity. We find similar spin dependence in our double-minus numerators as for these Compton
amplitudes.

2.5. Integral reduction and cut merging

In this subsection we use standard integration-by-parts (IBP) methods to reduce the
generalized-unitarity cuts we calculated in the previous section in terms of a basis of mas-
ter integrals. This allows us to fix all integral coefficients in equation (2.7) other than those of
the tadpole and the bubble on external leg. We discuss these remaining pieces in section 2.6.
We show details for the double-minus configuration with a scalar in the loop; the remaining
helicity configurations and particle-in-the-loop contributions are similar. In order to keep the
expressions concise, we do not include the helicity labels.

The general strategy for constructing the full amplitudes is to evaluate the cuts one by one in
terms of the master integrals appearing in equation (2.7). If a given integral has a generalized
cut in the channel being evaluated then that channel fully determines its coefficient. By stepping
through the three channels in figure 1 we obtain the coefficients of all master integrals except
I2(0) and I1. The box integrals each have cuts in two channels so consistency requires that they
give the same coefficient.

We start with the s-channel cut of the S = 0 double-minus helicity configuration defined in
equation (2.20). The discussion for the u-channel cut follows in the same way, since it is given
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by a relabeling of the s-channel one. We have

iMS=0
4

∣∣∣∣∣
s−cut

=
(κ

2

)4
(〈23〉[14])4

×
∫

d4−2εL
(2π)4−2ε

(
〈2|�|1 ] 〈3|�|4 ]

s[14]〈23〉

)4 ( 1
D1234

+
1

D1342

)∣∣∣∣∣
s−cut

. (2.44)

We define

vμ1 = 〈2|γμ|1 ] , vμ2 = 〈3|γμ|4 ] , (2.45)

which live in the four-dimensional subspace so that the vi effectively project out the (4 − 2ε)-
dimensional components. This implies that vi · � = vi · L, as follows from the prescription [20]
that ε < 0. Next, we lift the cut condition and regard our expression as part of the full integrand
that we would have obtained by Feynman rules,

iMS=0, s−channel
4 =

(κ
2

)4
(〈23〉[14])4

×
∫

d4−2εL
(2π)4−2ε

(
〈2|L|1 ] 〈3|L|4 ]

s[14]〈23〉

)4 ( 1
D1234

+
1

D1342

)
, (2.46)

keeping in mind that it is only valid for contributions that have an s-channel cut. We apply
IBP identities [51] in 4 − 2ε dimensions to reduce the above integrals to the master integrals in
equation (2.7), using the software FIRE6 [33]. Upon reducing to master integrals we remove
the ones that have no s-channel cut.

Next, we turn to the t-channel cut. We have

iMS=0
4

∣∣∣∣∣
t−cut

=
(κ

2

)4
(〈23〉[14])4

×
∫

d4�

(2π)4

d−2εμ

(2π)−2ε

(
(m2 + μ2)

t

)4 ( 1
D1234

+
1

D1423

)∣∣∣∣∣
t−cut

, (2.47)

where we subdivide the integration into four- and (−2ε)-dimensional parts∫
d4−2εL

(2π)4−2ε
=

∫
d4�

(2π)4

d−2εμ

(2π)−2ε
. (2.48)

As for the s channel, we lift the cut conditions and regard our expression as part of the full
integrand,

iMS=0, t−channel
4 =

(κ
2

)4
(〈23〉[14])4

×
∫

d4�

(2π)4

d−2εμ

(2π)−2ε

(
(m2 + μ2)

t

)4 ( 1
D1234

+
1

D1423

)
.

(2.49)

As we discuss in appendix G.2, the integrals with the (−2ε)-dimensional components of
loop-momentumμ in the numerators can be expressed directly in terms of the master integrals
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Figure 6. The tadpole and bubble-on-external-leg integrals.

defined in equation (2.8). After reducing our expression we eliminate master integrals that
vanish on the t-channel cut.

As noted above, an important consistency condition arises from the fact that the box inte-
grals have cuts in two channels, so we can determine their coefficients from either channel. We
explicitly verified that the coefficients we obtain for the box integrals from looking at the dif-
ferent channels are the same. In this way we are able to extract all coefficients of equation (2.7)
other than a0 and b0, since the corresponding integrals have no cuts in any channel; we obtain
these remaining two integral coefficients in section 2.6.

2.6. Ultraviolet behavior and rational pieces

Analyzing the different generalized-unitarity cuts we obtain all the coefficients in
equation (2.7) other than a0 and b0. Tadpoles and bubbles on external legs (see figure 6) van-
ish on any cut, therefore their coefficients are not accessible through generalized unitarity. In
this subsection we use the known UV properties of the amplitude to obtain these coefficients.
Similarly to section 2.5, we discuss the double-minus configuration as a specific example. The
other configurations follow in the same manner.

First, we observe that simply neglecting these two integrals leads to an inconsistent answer.
Expanding to leading order in ε we get

MS=0
4

∣∣
a0→0, b0→0

= (〈23〉[14])4 m2Q̃(s, t, m)
ε

+O(ε0), (2.50)

where Q̃(s, t, m) is some rational function. We note that we expect no UV divergence to appear
in the four-graviton amplitude since the only counterterm that we could write to absorb it is
the Gauss–Bonnet term, which is evanescent in four dimensions [52]. Also, the UV divergence
not coming out local hints that we neglected to include some integrals.

We use the vanishing of the UV divergence to obtain the remaining coefficients a0 and b0.
Note that since a0 and b0 are rational functions of ε, it seems that we do not have enough
information to fully fix them. We surpass this difficulty by realizing that our problem admits
a second integral basis where the integral coefficients do not depend on ε and m. This basis
is overcomplete in that it contains (4 − 2ε)- and higher-dimensional integrals, while the one
introduced in equation (2.7) only includes (4 − 2ε)-dimensional integrals. We discuss this basis
in detail and provide an algorithmic way of switching between the two bases in appendix G.2.

We start by bringing the quantity we get from cut merging to the basis containing higher-
dimensional integrals. In doing so, we remove any integrals that vanish on all cuts. We refer
to this piece expressed in this basis as the ‘on-shell-constructable’ piece. Then, we need to
figure out which integrals without unitarity cuts we need to include in our expression, since in
principle one could add infinitely many higher-dimensional integrals.

We consider the pieces that would arise in a Feynman-rules calculation. For the amplitude
at hand we would find integrals up to quartically divergent. After we IBP reduce them and
express them in the basis that contains the higher-dimensional integrals, we would in principle
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find all scalar integrals up to quartically divergent appearing. Hence we need to consider:

I1, I2(k2), I6−2ε
1 , I6−2ε

2 (k2), I8−2ε
2 (k2), (2.51)

where we imagine the limiting case k2 → 0. For our definition of higher-dimensional integrals
see equation (G1). These are all the integrals that have no unitarity cuts and are up to quartically
divergent. The reason why we consider the above limiting case is because the coefficients of
these integrals might have a 1/k2 pole.

Then, the unknown piece in our amplitude up to normalization takes the form

lim
k2→0

(
β1I1 + β2I2(k2) + β3I6−2ε

1 + β4I6−2ε
2 (k2) + β5I8−2ε

2 (k2)
)

= γ1I1 + γ2I2(0) + γ3I6−2ε
1 , (2.52)

where we use

I6−2ε
2 (k2) = I1 +

k2

6
I2(0) +O(k4), I8−2ε

2 (k2) = I6−2ε
1 +

k2

6
I1 +O(k4),

(2.53)

following appendix B of reference [20]. The unknown coefficients γ i are rational functions of
the kinematics that do not contain ε or m dependence. In writing this expression we assume
that the coefficients of the integrals are at worse divergent as 1/k2 and that the expression is
finite in the k2 → 0 limit when a massive particle is circulating in the loop.10

Upon these considerations, our amplitude takes the form

MS=0
4 =MS=0

4

∣∣∣∣
on−shell−constr.

+
1

(4π)2−ε

(κ
2

)2
Mtree

4

×
(
γ1I1 + γ2I2(0) + γ3I6−2ε

1

)
, (2.54)

where the γi are coefficients are determined from the requirement that UV divergences cancel,
the integrals I1 and I2 are given in equations (G2) and (G4), and

Mtree
4 ≡ Mtree

4 (1+, 2−, 3−, 4+) =
(κ

2

)2 (〈23〉[14])4

stu
. (2.55)

The Mandelstam variables are defined below equation (2.8). Note that the little-group scal-
ing for the unknown terms is fixed to be (〈23〉[14])4. Since the γ i are rational functions of the
kinematics, we are free to multiply and divide by (stu) to introduce Mtree

4 .
Next, demanding that the amplitude has no UV divergence and that all three γ i are inde-

pendent of the mass m uniquely fixes γ1 and γ3 to nonzero values while setting γ2 = 0. The
results for the amplitudes collected in appendix F the values of the γi are all chosen to make
the amplitudes UV finite.

As a simple consistency check, we repeat this analysis adding integrals that have no uni-
tarity cuts and are divergent worse than quartically (namely (8 − 2ε)- and higher-dimensional
tadpoles). We verify that the answer is the same, i.e. the coefficients of these new integrals are
set to zero.

10 We drop ill-defined ‘cosmological constant’ tadpole diagrams with a 1/
(∑4

i=1ki

)2
propagator.
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We now briefly comment on the m → 0 limit. In this limit, both I1 and I2(0) vanish, and
the amplitude has no UV divergence, as can be seen from equation (2.50). Hence our ampli-
tude has the correct UV behavior in this limit as well. Moreover, all integrals that have no
unitarity cuts become scaleless and hence zero in dimensional regularization. Therefore, there
are no unfixed coefficients and our construction based on the unitarity cuts captures the full
amplitude.

Finally, we want to clarify why we chose the overcomplete basis with higher-dimensional
integrals. The coefficients a0 and b0 are in principle arbitrary rational functions of ε and m, and
of the kinematic variables s and t. The existence of a basis where the integral coefficients do
not contain ε or m significantly restricts the functional dependence of a0 and b0 on ε and m. The
existence of such a basis is a nontrivial fact that may be understood via analyzing the calculation
in a covariant gauge, as we explain in appendix G.2. In this way the two integral bases are not
completely equivalent, since the latter one is exploiting more of the specific properties of the
problem at hand.

2.7. Further ultraviolet properties

2.7.1. Quadratic and quartic divergence. Next, we want to analyze the quadratic and quartic
divergence of our amplitude. In dimensional regularization, the signature of these divergences
are poles around ε = 1 and ε = 2 in the final answer. Since we compute our amplitude to all
order in ε we may probe these poles. We tackle this question in the basis that contains only
(4 − 2ε)-dimensional integrals. In the basis that includes higher-dimensional integrals, many
of the integrals are quadratically or quartically divergent, which obscures the analysis. We
discuss the double-minus configuration for a spin-0 particle in the loop; the other cases are
similar. As we demonstrate, our amplitude has no quadratic or quartic divergences.

We start with the quadratic divergence. In the chosen basis the only quadratically divergent
integral is the tadpole. However, the coefficient of the tadpole is linear in (ε− 1), hence there
is no contribution to the quadratic divergence from it. It then suffices to expand all coefficients
around ε = 1 and only keep the divergent piece. We get

MS=0
4 = − 1

(4π)2−ε

(κ
2

)2
Mtree

4
su

(ε− 1)t6
(3s2u2 + 10m2stu + 6m4t2)

× (ι2(s) + ι2(u)) +O
(
(ε− 1)0

)
, (2.56)

where we introduced

ι2(s) = s
(
2m2I3(s) − I2(s)

)
. (2.57)

Note that In ≡ I4−2ε
n = I2−2(ε−1)

n . It appears that our amplitude has a quadratic divergence
which is non local due to the 1/t6 factor. However, using equation (G11) with D = 2 − 2(ε− 1)
we get

I4−2(ε−1)
3 (s) =

1
2(ε− 1)

(
−2m2I2−2(ε−1)

3 (s) + I2−2(ε−1)
2 (s)

)
, (2.58)

which gives

ι2(s) = −2s(ε− 1)I4−2(ε−1)
3 (s). (2.59)

Since I4−2(ε−1)
3 (s) is finite as ε→ 1, we see that there is no quadratic divergence.
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The analysis of the quartic divergence follows in a similar manner. In this basis there are no
quartically-divergent integrals. We expand our result around ε = 2 to get

MS=0
4 =

1
(4π)2−ε

(κ
2

)2
Mtree

4
su

(ε− 2)t5
(5su + 6m2t) (ι4(s) + ι4(u))

+O
(
(ε− 2)0

)
, (2.60)

where

ι4(s) = 2sI1 + s(s − 6m2)I2(s) + 4m4sI3(s). (2.61)

Using equation (G11) two consecutive times we get

ι4(s) = −4s(ε− 2)I4−2(ε−2)
3 (s), (2.62)

which shows that there is no quartic divergence.
In our problem we demonstrated that the coefficients of the integrals which have no uni-

tarity cuts in equation (2.54) contain no m dependence. This property was crucial in order to
fix them using the vanishing of the (logarithmic) UV divergence. In a more general situation
we expect this property to no longer be true. In such a scenario, analyzing the higher UV
divergences offers an alternative method for obtaining these coefficients. For example, if we
demand the vanishing of the quadratic and quartic divergences along with the logarithmic one
for our problem, we may fix the coefficients γ i to the values we found above, without needing
to impose that they do not contain m dependence.

2.7.2. Ultraviolet divergences in higher dimensions. We can also inspect the UV properties in
higher dimensions. This is straightforward because we obtain expressions for the amplitudes
valid to all orders in ε. In the calculations we keep the external kinematics and helicities fixed in
four dimensions. In addition, we use the FDH scheme [28] which keeps the number of physical
states circulating in the loop fixed at their four-dimensional values. However, we can still ana-
lytically continue the loop momentum to any dimension and study the divergence properties.
We can use this as a rather nontrivial check on our expressions and also to point out a simple
relation between appropriately defined divergences in higher dimensions and coefficients of
terms in the large-mass expansion. We discuss the double-minus configuration with a scalar in
the loop for concreteness, however our results hold for all cases considered in this paper.

Since our expressions are valid to all orders in the dimensional-regularization parameter
ε, we may shift the spacetime dimension of the loop momentum by 2σ via ε→ ε − σ. For
example for σ = 1 the spacetime dimension is shifted to D = 6 − 2ε. In the shifted dimension
we define the coefficients of the UV divergences as

MS=0
4

∣∣
ε→ε−σ

=
1

(4π)σ
1

(σ − 1)!
1
ε

σ−1∑
n=0

(
m2

)n
δUV
σ, n(s, t) +O

(
ε0
)

, (2.63)

where we choose the normalization in a particular way to account for the angular loop-
integration in different dimensions. Note that there is no UV divergence for σ = 0, correspond-
ing to D = 4 − 2ε, due to the lack of a corresponding counterterm matrix element. For σ = 1
the counterterm is an R3-type operator. In this case, up to a numerical factor the coefficient of
the divergence matches the tree amplitude generated from an R3 insertion, which we describe
in section 3. For convenience we restrict ourselves to even dimensions (for ε→ 0) because
in these cases the dimension-shifting formulas (equation (G11)) bring the higher-dimensional
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integrals back to four dimensions. For 2 � σ � 6 we have explicitly confirmed that the diver-
gences are local and therefore correspond to appropriate derivatives of R4-type operators, as
expected. We note that because individual integrals have nonlocal coefficients the fact that
the divergences are local provides a rather nontrivial check on our expressions. Furthermore,
starting at D = 8 − 2ε all the integrals are divergent, so their coefficients feed into this check.

Finally, we point out a relation between the UV divergences in equation (2.63) and terms in
the large-mass expansion in four dimensions. Specifically, defining

MS=0
4 =

∞∑
n=1

δIR
n (s, t)
m2n

, (2.64)

we have explicitly checked through σ = 4 or equivalently D = 12 − 2ε that

δUV
σ,0 = δIR

σ . (2.65)

Similarly, we find that δUV
σ,n is proportional to δUV

σ−n,0 = δIR
σ−n with a common proportionality

constant for all multiplets. For this correspondence to hold it is important to keep both the
external and internal states at their four dimensional value; only the loop momentum is ana-
lytically continued to higher spacetime dimensions. It is quite remarkable that such simple
relations exist between the coefficients of the divergences in higher dimensions and the terms
in the large-mass expansion of the amplitudes in four dimensions.

2.8. Consistency checks

We have carried out a variety of checks on our amplitudes. Basic self-consistency checks are
that UV and infrared or mass singularities be of the right form.

UV singularities must be local. In general this is nontrivial and happens only after the UV
singularities are combined. In our case, the coefficient of the divergences vanishes. We also
verified that the 1/(ε− 1) pole cancels, consistent with the fact that the Ricci-scalar countert-
erm vanishes by the equation of motion. Similarly for the 1/(ε− 2) pole, the expression is
not only local but it vanishes. Further, we verified that the divergences obtained by analyti-
cally continuing the loop momentum to higher dimensions while keeping the state counts and
external kinematics to their four-dimensional values are also local.

Another nontrivial check comes from looking at the m → 0 limit. Since the internal lines
are massive, there is no IR divergence for our amplitude. However, we may regard the mass of
the internal lines as an infrared regulator for the corresponding massless amplitude and study
the IR divergence as m → 0. In gravity the infrared singularities are quite simple since there
are only soft singularities and no collinear or mass singularities [53]. The soft singularities
arise only from gravitons circulating in the loop. This implies that as m → 0 all contributions
must be infrared finite except for the M{2}

4 piece (corresponding to N = 8 supergravity in the
massless limit), since this is the only piece that has a graviton circulating in the loop in this
limit.

To carry out this check we start with the on-shell-constructable piece. We start from the (4 −
2ε)-dimensional integral basis, where only the boxes and the triangles have IR singularities.
The triangles only contain simple logarithms (see equation (G6)) while the boxes contain both
logarithms and dilogarithms (see equation (G7)). To simplify the check we use equation (G11)
to trade the boxes for triangles and (6 − 2ε)-dimensional boxes. Importantly, the latter have
no IR singularities. In this form the infrared singularities are all pushed into triangle integrals,
hence it suffices to verify that their coefficients vanish as m → 0, which we confirm for all
but the M{2}

4 piece. Next we look at the contributions with no unitarity cuts. These pieces are
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zero if we take m → 0 before we expand in ε. On the other hand, divergent terms appear if
we first expand in ε and then take m → 0. However, given that the UV divergence vanishes
in four-dimensions these infrared divergent log(m) pieces also cancel among themselves. For
the M{2}

4 piece there is indeed an infrared singularity that develops as m → 0. In this case, we
recover the known infrared divergence of pure Einstein gravity [53].

As another check, we have explicitly verified that as m → 0 our massive results match the
massless ones given in reference [19], up to an overall sign in M{1/2}

4 , as noted in reference
[54]. One simple way to implement this check is to start with the expressions for the amplitudes
in the (4 − 2ε)-dimensional integral basis, set m → 0 in the integral coefficients, and replace
the massive integrals with massless ones.

Finally, we note that contributions from individual integrals do not decay at large mass
as required by decoupling, while the amplitudes have the required property. This involves
nontrivial cancellation between the pieces, providing yet another check.

3. Amplitudes in the low-energy effective field theory

In this section we study four-graviton scattering in a general parity-even low-energy EFT.
Such EFTs start from the Einstein–Hilbert action and extend to systematically include higher-
dimension operators. We include a massless scalar field to our analysis, corresponding to the
dilaton found in string theory.

We match this EFT to the one-loop amplitudes determined in section 2 and collected in
appendix F. In this context, the EFT is valid for energies significantly smaller than the mass of
the spinning particle in the loop. In this way we determine the modification to the low-energy
theory of gravity due to the presence of a heavy particle. We take this as a nontrivial model of
UV physics feeding into low-energy physics.

For the lowest-dimension operators, we calculate the four-point tree-level amplitudes in this
EFT and compare them to the expansion of our one-loop amplitudes in the large-mass limit
in order to obtain their Wilson coefficients. More generally, since we later put bounds on the
coefficients appearing in the amplitudes themselves, there is no need to relate these back to a
Lagrangian. For comparison to the bounds derived in subsequent sections we also present the
one-loop scattering amplitudes expanded in the large-mass limit. In appendix H we present the
expansions to much higher orders, which should be useful for further studies of the bounds.

Finally, we obtain the Regge limits of our one-loop amplitudes. These are useful later in
analyzing low-energy coefficients via dispersion relations.

3.1. Setup of the effective field theory

The first few terms of the EFT describing low-energy gravitational scattering are

SEFT =

∫
d4x

√
−g

[
− 2

κ2
R +

1
2
∂μφ∂

μφ+
2βφ

κ2
φC +

8
κ3

βR3

3!
R3

+
2βR4

κ4
C2 +

2β̃R4

κ4
C̃2 + · · ·

]
, (3.1)

where R is the Ricci scalar, κ is given in terms of Newton’s constant G via κ2 = 32πG, and
the metric is gμν = ημν + κhμν in terms of the graviton field hμν . To describe the most general
parity-even theory that captures low-energy four-graviton scattering, we include the massless
scalar field φ. The factors of 1

κ are chosen to normalize the kinetic term canonically and to
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remove the factors of κ that would appear in the three-point tree-level amplitudes built out of
a single insertion of φ C or R3 and the four-graviton tree-level amplitudes built out of a single
insertion of C2 or C̃2. The βφ, βR3 , βR4 and β̃R4 are Wilson coefficients that depend on the
details of the UV physics. The composite operators are defined by

R3 ≡ RμνκλRκλαγRαγ
μν ,

C ≡ RμνκλRμνκλ ,

C̃ ≡ 1
2

Rμναβε γδ
αβ Rγδμν ,

(3.2)

where Rλμνκ is the Riemann tensor. One can systematically add higher-dimension operators;
we choose not to do so here since our later analysis is at the amplitude level, so the mapping
back to Lagrangian coefficients is not necessary.

In writing the effective action (3.1) we apply the equations of motion and integrate by parts
to reduce the number of terms to a minimum independent set. In particular, in constructing
the higher-dimensional operators we replace instances of the Ricci scalar and tensor, R and
Rμν , with appropriate contractions of the matter stress–energy tensor. We drop such terms
since they give rise to higher-point matter interactions, which do not affect our analysis. For
example, we do not include R2-type terms because the squares of R and Rμν do not contribute
due to the equations of motion, while the contraction of two Riemann tensors C can be traded
for the Gauss–Bonnet contribution, which is equal to a total derivative in four dimensions [52].
Furthermore, we do not include operators that our calculation is not sensitive to. Specifically,
we do not consider the other possible contraction of three Riemann tensors, since it does not
contribute to four-graviton scattering [55, 56]. We restrict ourselves to parity-even interactions
and neglect the parity-odd operators φ C̃ and CC̃ [57, 58]. The possible parity-even contrac-
tions of four Riemann tensors were obtained in reference [59]. Recent studies that use similar
Lagrangians are found in references [58, 60–62].

3.2. Scattering amplitudes in the effective field theory

To describe the amplitudes it is useful to extract overall dependence on the spinors, leaving
only functions of s, u with simple crossing properties. Specifically, for the independent helicity
configurations we define,

M4(1+, 2−, 3−, 4+) = (〈23〉[14])4 f (s, u),

M4(1+, 2+, 3−, 4+) =
(
[12][14]〈13〉

)4
g(s, u),

M4(1+, 2+, 3+, 4+) =

(
[12][34]
〈12〉〈34〉

)2

h(s, u),

(3.3)

corresponding to the double-minus, single-minus and all-plus helicity configurations. As usual
we do not include the overall i that normally would appear in Feynman diagrams. All other
amplitudes are given by permutations and complex conjugation,

M4(1h1 , 2h2, 3h3 , 4h4) = M∗
4(1−h1 , 2−h2, 3−h3 , 4−h4), (3.4)
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where we define the complex conjugation to not act on the iε prescription.11 In parity-
preserving theories complex conjugation acts only on the spinors swapping the positive and
negative helicity spinors,

M4(1h1 , 2h2, 3h3 , 4h4) =M4(1−h1 , 2−h2, 3−h3 , 4−h4)
∣∣
λi↔λ̃i

, (3.5)

so that the f , g and h functions are unaltered.
In general relativity the leading-order results for the amplitudes above take the form

f GR(s, u) =
(κ

2

)2 1
stu

+ · · · , (3.6)

gGR(s, u) =
1

(4π)2

(κ
2

)4 1
s2t2u2

s2 + t2 + u2

360
+ · · · , (3.7)

hGR(s, u) = − 1
(4π)2

(κ
2

)4 s2 + t2 + u2

120
+ · · · (3.8)

Below we do not consider loop effects in general relativity itself (due to gravitons circulating
in the loops) but focus on the properties of the higher-derivative operators in the gravita-
tional EFT generated by integrating out massive degrees of freedom. For the same reason IR
divergences are not an issue for our analysis since the corrections of interest are manifestly
IR finite.

Permutation symmetry of the amplitudes plays a crucial role in our analysis and manifests
itself in the following crossing relations

f (s, u) = f (u, s), (3.9)

g(s, u) = g(u, s) = g(s, t), (3.10)

h(s, u) = h(u, s) = h(s, t), (3.11)

where s + t + u = 0.
With our normalizations the three-point amplitude arising from the Einstein term is12

MGR
3 (1+, 2+, 3−) =

κ

2

(
[12]3

[23][31]

)2

. (3.12)

The three-points amplitudes with an insertion of the φ C or the R3 operator are [56]

Mφ C
3 (1+, 2+, 3φ) = βφ[12]4, MR3

3 (1+, 2+, 3+) = βR3 ([12][23][31])2, (3.13)

where βφ and βR3 are the Wilson coefficient for these operators appearing in equation (3.1).
At four points φ C contributes to the double-minus and all-plus configurations,

Mφ C
4 (1+, 2+, 3+, 4+) = −3(βφ)2stu

(
[12][34]
〈12〉〈34〉

)2

,

Mφ C
4 (1+, 2−, 3−, 4+) = −(βφ)2

(
〈23〉[14]

)4

t
.

(3.14)

11 More precisely, given complex conjugation γ : z �→ z∗, we define f ∗(z) as f ∗ ≡ γ ◦ f ◦ γ : z �→ ( f (z∗))∗. For
identical scalar particles (3.4) becomes the familiar Hermitian analyticity.
12 We implicitly use complex momenta so that the three-point amplitude does not vanish from kinematic constraints.
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On the other hand, there are two independent helicity configurations, the all-plus and the
single-minus configurations, that contain a single insertion of R3. We obtain these amplitudes
following reference [56]. We find

MR3

4 (1+, 2+, 3−, 4+) = βR3

(κ
2

) 1
stu

(
[12][14]〈13〉

)4
, (3.15)

and

MR3

4 (1+, 2+, 3+, 4+) = 10βR3

(κ
2

)
stu

(
[12][34]
〈12〉〈34〉

)2

, (3.16)

which is slightly rearranged compared to reference [56]. We build a double-minus contribution
out of two insertions of R3 [2],

MR3

4 (1+, 2−, 3−, 4+) = (βR3 )2 su
t

(
〈23〉[14]

)4
. (3.17)

For the R4-type operators the amplitudes are [62]

MR4

4 (1+, 2+, 3+, 4+) = β−
R4

(s2 + t2 + u2)2

2

(
[12] [34]
〈12〉 〈34〉

)2

,

MR4

4 (1+, 2−, 3−, 4+) = β+
R4

(
〈23〉[14]

)4
,

(3.18)

where by MR4

4 we refer to the amplitudes build out of both C2 and C̃2, with

β±
R4 ≡ βR4 ± β̃R4 . (3.19)

Using these four-point amplitudes we may extract the coefficients βR3 , βR4 and β̃R4 by
matching to our one-loop calculation in the large-mass limit. Since we did not include the
massless scalar field in the construction of our one-loop amplitudes, we have βφ = 0 in this
case.

Next, we bring our one-loop amplitudes in a form suitable to compare to the EFT amplitudes
listed above. We start with the double-minus amplitude. As usual, we organize the contributions
according to the supersymmetric decomposition (2.32),

M{S}
4 (1+, 2−, 3−, 4+) = (〈23〉[14])4 f {S}(s, u). (3.20)
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In the large-mass limit, for the double-minus amplitudes we have,

f {0} = K
(

1
6300m4

+
t

41 580m6
+

81(s2 + u2) + 155su
15 135 120m8

+

(
161(s2 + u2) + 324su

)
t

151 351 200m10
+ · · ·

)
,

f {1/2} = K
(

1
1120m4

+
t

8400m6
+

15(s2 + u2) + 28su
554 400m8

+

(
153(s2 + u2) + 313su

)
t

30 270 240m10
+ · · ·

)
,

f {1} = K
(

1
180m4

+
t

1680m6
+

22(s2 + u2) + 39su
151 200m8

+

(
20(s2 + u2) + 43su

)
t

831 600m10
+ · · ·

)
,

f {3/2} = K
(

1
24m4

+
t

360m6
+

9(s2 + u2) + 14su
10 080m8

+

(
8(s2 + u2) + 21su

)
t

75 600m10
+ · · ·

)
,

f {2} = K
(

1
2m4

+
s2 + su + u2

120m8
+

stu
504m10

+ · · ·
)

,

(3.21)

where

K =
1

(4π)2

(κ
2

)4
. (3.22)

For the all-plus and single-minus configurations it suffices to give the result for the spin-0
contribution since we obtain the remaining amplitudes via equation (2.34). For the single-
minus configuration we have

MS=0
4 (1+, 2+, 3−, 4+) =

(
[12]〈13〉[14]

)4
g(s, u), (3.23)

where

g(s, u) = K
(

1
5040m2stu

+
1

6306 300m8
+

(s2 + su + u2)
441 080 640m12

+ · · ·
)
. (3.24)

Finally, for the all-plus configuration we have,

MS=0
4 (1+, 2+, 3+, 4+) =

(
[12][34]
〈12〉〈34〉

)2

h(s, u), (3.25)

where
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h(s, u) = K
(

stu
504m2

+
(s2 + su + u2)2

3780m4
+

(s2 + su + u2)stu
7920m6

+
75(s6 + u6) + 225(s5u + su5) + 559(s4u2 + s2u4) + 743s3u3

7207 200m8

+
3(s2 + su + u2)2stu

400 400m10
+ · · ·

)
. (3.26)

The fact that the highest power of m appearing in the large-mass expansion is m−2 may
be contrasted to the high powers of the m in the coefficients of the integrals in the (4 − 2ε)-
dimensional integral basis (see equations (F26), (F31) and (F32)). It is a nontrivial consistency
check that our amplitudes vanish in the large-mass limit, as expected from decoupling. Indeed,
the above large-mass behavior hinges on nontrivial cancellations between all pieces of the
amplitude.

Now consider the matching and extraction of the Wilson coefficients βR3 , βR4 and β̃R4

(or, equivalently, βR3 and β±
R4 ). Since the relation between the Wilson coefficients and

the amplitudes is linear, the Wilson coefficients satisfy the supersymmetric decomposition
(equation (2.32)). Hence, we may organize our results in terms of the multiplets circulating
in the loop. One may then assemble the corresponding coefficients for any spinning particle
circulating in the loop using equation (2.32).

Since the all-plus and single-minus amplitudes are nonzero only for the {0} piece, we have

(βR3 ){0} =
1

(4π)2

(κ
2

)3 1
m2

1
5040

,

(β−
R4 ){0} =

1
(4π)2

(κ
2

)4 1
m4

1
7560

,

(βR3 ){S}�=0 = (β−
R4 ){S}�=0 = 0,

(3.27)

where our notation (βX){S} means the value of βX as determined by the data for the new piece
for a given spin S. The double-minus configuration is nonzero for any multiplet circulating in
the loop. We find

(β+
R4 ){0} =

1
(4π)2

(κ
2

)4 1
m4

1
6300

,

(β+
R4 ){1/2} =

1
(4π)2

(κ
2

)4 1
m4

1
1120

,

(β+
R4 ){1} =

1
(4π)2

(κ
2

)4 1
m4

1
180

,

(β+
R4 ){3/2} =

1
(4π)2

(κ
2

)4 1
m4

1
24

,

(β+
R4 ){2} =

1
(4π)2

(κ
2

)4 1
m4

1
2
.

(3.28)

3.3. Regge limits of the amplitudes

For our analysis of the amplitudes with dispersion relations in the next sections, we need the
behavior of the amplitudes for t →∞ and s ∈ R fixed, with |s| < 4m2 and for s →∞ and t ∈ R
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fixed, with |t| < 4m2. We extract these directly from the explicit values of the amplitudes in
appendix H.

We start with the t →∞ limit. For the new-pieces in the supersymmetric decomposition we
have

f {S}(s, u) ∼ log(t)
t2

, S = 0, 1/2, 1,

f {3/2}(s, u) ∼ log2(t)
t2

, f {2}(s, u) ∼ 1
t

,

g{0}(s, u) ∼ 1
t2

, h{0}(s, u) ∼ t2,

(3.29)

where the f , g, and h function are related to the amplitude via equation (3.3). Using
equation (2.32) we assemble the contributions for each particle of a given spin,

f S(s, u) ∼ log(t)
t2

, S = 0, 1/2, 1,

f 3/2(s, u) ∼ log2(t)
t2

, f 2(s, u) ∼ 1
t

,

gS(s, u) ∼ 1
t2

, hS(s, u) ∼ t2, S = 0, 1/2, 1, 3/2, 2.

(3.30)

For the f S functions corresponding to the case of no helicity flips between incoming and
incoming states the spin 2 contribution dominates as expected.

Next, we consider the s →∞ limit. We find

f {S}(s, u) ∼ 1
s

, S = 0, 1/2, 1, 3/2, 2,

g{0}(s, u) ∼ 1
s2

, h{0}(s, u) ∼ s2,

(3.31)

which gives

f S(s, u) ∼ 1
s

, gS(s, u) ∼ 1
s2

, hS(s, u) ∼ s2, S = 0, 1/2, 1, 3/2, 2.

(3.32)

Note that the limits of the functions gS and hS in equations (3.31) and (3.32) follow from
those in equations (3.29) and (3.30), since these functions are crossing symmetric.

4. Properties of gravitational amplitudes

We now turn to the properties of the low-energy effective field theory, arising from taking the
large-mass expansion of the one-loop four-graviton amplitudes calculated in section 2. Here
we do not consider loop effects in general relativity itself (due to gravitons circulating in the
loops) but focus on the properties of the leading-order higher-derivative operators in a weakly-
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coupled gravitational EFT generated by integrating out massive degrees of freedom. For the
same reason IR divergences are not an issue for our analysis since the corrections of interest
are manifestly IR finite. We also note that we do not need to deal with UV divergences, since
the one-loop four graviton amplitude with polarization tensors restricted to four dimensions
considered here is UV finite [52].

To make the analysis more complete we also include the example of tree-level graviton
scattering in string theory (see appendix B). As recently discussed in [63], in this case the
scattering amplitudes have a great degree of universality; e.g. to leading order considered here
they do not depend on the details of the string compactification.

A general question we ask in this paper is the following: where do physical theories land
in the space of couplings that satisfy the bounds from causality, unitarity and crossing? In this
section we review general properties of the gravitational amplitudes relevant for the derivation
of the bounds. In subsequent sections we then proceed with the derivation of various bounds
on the Wilson coefficients, following the recent developments of references [3–6, 64]. Finally,
we check that the results presented in the paper satisfy the expected bounds and analyze the
region in the space of couplings covered by known theories.

4.1. Low-energy expansion

The functions f , g and h defined in equation (3.3) correspond to the independent helicity
configurations. We consider their low-energy expansion13

f (s, u) =
(κ

2

)2 1
stu

+ |βR3 |2
su
t
− |βφ|2

1
t
+

∞∑
i=0

f2i,is
iui

+

∞∑
i=1

[ i
2 ]∑

j=0

f i, j(s
i− ju j + s jui− j),

g(s, u) =
(κ

2

) βR3

stu
+

∞∑
p,q=0

g2p+3q,qσ
p
2σ

q
3,

h(s, u) =
[
10

(κ
2

)
βR3 − 3β2

φ

]
stu +

∞∑
p,q=0,2p+3q�4

h2p+3q,qσ
p
2σ

q
3 ,

(4.1)

where [x] means the integer part of x, and we introduced

σk ≡ (−1)k sk + tk + uk

k
. (4.2)

In equation (4.1) we explicitly write the massless exchange poles and assume that the rest
of the amplitude admits a simple low-energy expansion. This is a structure expected from inte-
grating out massive degrees of freedom and indeed, the amplitudes analyzed in the present
paper are of this type. It does not however capture correctly the structure of the amplitude once
the loops involving massless particles are included. For example, consider the case of the one-
loop correction due to gravitons circulating in the loop; see equation (3.6) and appendix F.4. In

13 Here we allowed for parity-odd and parity-violating effects which render certain coefficients in the low-energy
expansion complex.
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this case, we see that for the all-plus amplitude one-loop Einstein gravity generates a non-zero
h2,0. Similarly, for the single-minus amplitude g(s, u) the one-loop result in Einstein gravity
has poles in each of the Mandelstam variables. Finally, the double-minus amplitude f (s, u),
see equation (F35), contains IR divergences, logarithms, as well as higher-order singularities
in 1/t compared to the formulas above. In the present paper we focus on the effect produced by
integrating out massive degrees of freedom and do not analyze the effects from one-loop mass-
less exchanges. Mathematically, this is simply due to the fact that at leading order that we are
interested in, the two effects lead to additive contributions to the scattering amplitude and can
be analyzed separately. Moreover, the corrections to graviton scattering due to integrating out
massive degrees of freedom satisfy all the basic properties that we discuss later in the section
and as such the low-energy expansion generated in this way satisfies consistency bounds. Physi-
cally, integrating out massive degrees of freedom leads to effects that are localized in the impact
parameter space b � 1/mgap, which are encoded via higher-derivative operators in a gravita-
tional EFT, whereas the one-loop effect due to graviton exchange contributes at any impact
parameter, which also manifests itself through the fact that such corrections do not admit the
representation (4.1). It would be very interesting to develop a systematic and unified approach
to treat both effects in the context of gravitational scattering, but this is beyond the scope of
the present paper and we leave it for future work.

In writing equation (4.1) we take into account the crossing relations (3.9). Note that
σ3 = −stu for u = −s − t. In the expansion (4.1) f i, j are real. For parity-preserving theories
hk, j and gk, j are real as well. In the formulas above βR3 encodes the unique non-minimal cor-
rection to the three-point amplitude of gravitons as defined in equation (3.13). Similarly βφ

encodes the non-minimal coupling of a scalar to two gravitons. In parity-preserving theories
these are real.

For completeness we take into account the possibility of non-minimal coupling to a massless
scalar in the amplitude above with the three-point amplitude given in equation (3.13). Curiously
the non-minimal correction to the three-point graviton amplitude and the non-minimal coupling
to a massless scalar mix in the first term in the low-energy expansion of h(s, u) (4.1). This point
was discussed in detail in reference [56].

We list the explicit results for these functions obtained for the amplitudes considered in the
present paper as an expansion in large mass in equations (3.21), (3.24) and (3.26), as well as
in appendix H. The exact form of the amplitudes is found in appendix F.

4.2. Unitarity constraints

Here we consider the constraints that arise from unitarity. Since the gravitational EFTs of inter-
est are weakly coupled, we limit ourselves to perturbative unitarity as discussed for example in
references [5, 50]. It would be of course be very interesting to implement unitarity nonperturba-
tively along the lines of references [65, 66]. In four dimensions this would also require under-
standing the constraints of unitarity at the level of IR-finite observables; see e.g. references
[67, 68] for a recent discussion. Luckily, for our purpose of investigating the leading-order
corrections to the gravitational EFT these subtle but important issues are irrelevant. Here we
primarily follow the discussion of reference [5] but modify it to account for differing helicity
configurations.

To discuss the constraints coming from unitarity we note that the general incoming two-
graviton state is a superposition of amplitudes with different helicities. In total there are four
choices for the incoming and four choices for the outgoing states. We therefore consider the
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following matrix of possible amplitudes

⎛
⎜⎜⎝
M(+,−,−,+) M(+,−,−,−) M(−,−,−,+) M(−,−,−,−)

M(+,−,+,+) M(+,−,+,−) M(−,−,+,+) M(−,−,+,−)

M(+,+,−,+) M(+,+,−,−) M(−,+,−,+) M(−,+,−,−)

M(+,+,+,+) M(+,+,+,−) M(−,+,+,+) M(−,+,+,−)

⎞
⎟⎟⎠ , (4.3)

where we labeled the helicities of the gravitons using an all-incoming convention.
Consider now scattering in the physical t-channel 14 → 23. To describe this situation we

consider the center-of-mass frame and choose helicity spinors as follows [5, 50]

λ1 = t1/4

(
1
0

)
, λ4 = t1/4

(
0
1

)
,

λ2 = it1/4

⎛
⎜⎝cos

θ

2

sin
θ

2

⎞
⎟⎠ , λ3 = it1/4

⎛
⎜⎝ sin

θ

2
− cos

θ

2

⎞
⎟⎠ .

(4.4)

Since we consider particles 1 and 4 to be incoming we take λ̃1,4 = λ∗
1,4. Particles 2 and 3

are outgoing, therefore λ̃2,3 = −λ∗
2,3. With this choice we get t = 〈14〉[14], s = 〈12〉[12] =

−t sin2 θ
2 , so that cos θ = 1 + 2s

t . Evaluating the matrix (4.3) for this kinematics we obtain

M(s, t) ≡

⎛
⎜⎜⎝

t4 f (s, u) s2t2u2g∗(s, u) s2t2u2g∗(s, u) h∗(s, u)
s2t2u2g(s, u) u4 f (s, t) s4 f (t, u) s2t2u2g∗(s, u)
s2t2u2g(s, u) s4 f (t, u) u4 f (s, t) s2t2u2g∗(s, u)

h(s, u) s2t2u2g(s, u) s2t2u2g(s, u) t4 f (s, u)

⎞
⎟⎟⎠ .

(4.5)

Unitarity restricts the form of the discontinuity of various amplitudes. We introduce the
t-channel discontinuity as

Disct M(s, t) ≡ M(s, t + iε) −M(s, t − iε)
2i

. (4.6)

Through the optical theorem or unitarity, the discontinuity (4.6) is related to the square of
the 2 → n amplitude where we insert a complete set of intermediate states. It is convenient to
decompose intermediate states into the irreducible representation of the Poincare group, which
are therefore labeled by the total energy

√
t, spin J and potentially other quantum numbers i.

The simplest example is when we have an exchange by a single particle of mass
√

t and spin
J. In this case (4.6) produces the square of the corresponding three-point couplings multiplied
by a kinematical polynomial.14 A slightly more general situation is when we have an exchange
by multiple particles of the same mass and spin. In this case the discontinuity produces (4.6)
a sum over the products of the corresponding three-point couplings. Finally, we can also have
a multi-particle state as an intermediate state of total energy

√
t and spin J. It is convenient to

14 In the case of external scalars these are familiar Legendre polynomials. For spinning particles the analogous
polynomials in D = 4 are Wigner d-functions, which are written explicitly below.
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think about it again as a single-particle state with the continuous label for the species (which
corresponds to the distribution of the total energy among the constituent particles). The result is
always the same: we can write equation (4.6) as a sum of kinematical polynomials multiplied
by various spectral densities ρJ(t) which encode the sum over the products of couplings to
the intermediate states of energy

√
t and J in a given theory. What we just said is simply a

restatement of the standard partial-wave expansion in a language which is perhaps slightly
more intuitive. For a more complete and detailed derivation see references [65, 66]. In this
way we can write the discontinuity in terms of the spectral density. For example,

Disct M(+,−,−,+)(s, t) =
∞∑

J=0

1 + (−1)J

2
ρ++

J (t)dJ
0,0(x). (4.7)

Applying this to all helicity configurations in the matrix of amplitudes (4.5) we get

Disct M(s, t) =
∞∑

J=0

1 + (−1)J

2

⎛
⎜⎜⎜⎝

ρ++
J (t)dJ

0,0(x) 0 0
[
ρ̃++

J (t)
]∗

dJ
0,0(x)

0 0 0 0

0 0 0 0

ρ̃++
J (t)dJ

0,0(x) 0 0 ρ++
J (t)dJ

0,0(x)

⎞
⎟⎟⎟⎠

+

∞∑
J=4

⎛
⎜⎜⎜⎝

0 0 0 0

0 ρ+−
J (t)dJ

4,4(x) ρ+−
J (t)(−1)J dJ

4,−4(x) 0

0 ρ+−
J (t)(−1)J dJ

4,−4(x) ρ+−
J (t)dJ

4,4(x) 0

0 0 0 0

⎞
⎟⎟⎟⎠

+

∞∑
J=4

1 + (−1)J

2

⎛
⎜⎜⎜⎝

0 [ρ̃+−
J (t)]∗dJ

4,0(x) [ρ̃+−
J (t)]∗dJ

4,0(x) 0

ρ̃+−
J (t)dJ

4,0(x) 0 0 [ρ̃+−
J (t)]∗dJ

4,0(x)

ρ̃+−
J (t)dJ

4,0(x) 0 0 [ρ̃+−
J (t)]∗dJ

4,0(x)

0 ρ̃+−
J (t)dJ

4,0(x) ρ̃+−
J (t)dJ

4,0(x) 0

⎞
⎟⎟⎟⎠ ,

(4.8)

where we introduced x ≡ cos θ = 1 + 2s
t and we used Wigner d-matrices dJ

λ,λ′ (x) which we list
explicitly in appendix E. The formula above can be derived by explicitly analyzing the effect
of an exchange by a particle, or equivalently an irreducible representation, of given mass

√
t

and spin J. The relevant three-point amplitudes are fixed up to a number and their products are
encoded in the various spectral densities ρJ(m2). The indices ++ and +− denote the helicities
of the corresponding incoming gravitons.

To discuss dispersion relations we also need to understand the properties of the u-channel
discontinuity which is defined as

Discu M(s, t) ≡ M(s,−s − t − iε) −M(s,−s − t + iε)
2i

. (4.9)
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By the same argument it takes the following form

Discu M(s, t) =
∞∑

J=0

1 + (−1)J

2

⎛
⎜⎜⎜⎝

0 0 0
[
ρ̃++

J (t)
]∗

dJ
0,0(x)

0 ρ++
J (t)dJ

0,0(x) 0 0

0 0 ρ++
J (t)dJ

0,0(x) 0

ρ̃++
J (t)dJ

0,0(x) 0 0 0

⎞
⎟⎟⎟⎠

+

∞∑
J=4

⎛
⎜⎜⎜⎝

ρ+−
J (t)dJ

4,4(x) 0 0 0

0 0 ρ+−
J (t)(−1)J dJ

4,−4(x) 0

0 ρ+−
J (t)(−1)J dJ

4,−4(x) 0 0

0 0 0 ρ+−
J (t)dJ

4,4(x)

⎞
⎟⎟⎟⎠

+

∞∑
J=4

1 + (−1)J

2

⎛
⎜⎜⎜⎝

0 [ρ̃+−
J (t)]∗dJ

4,0(x) [ρ̃+−
J (t)]∗dJ

4,0(x) 0

ρ̃+−
J (t)dJ

4,0(x) 0 0 [ρ̃+−
J (t)]∗dJ

4,0(x)

ρ̃+−
J (t)dJ

4,0(x) 0 0 [ρ̃+−
J (t)]∗dJ

4,0(x)

0 ρ̃+−
J (t)dJ

4,0(x) ρ̃+−
J (t)dJ

4,0(x) 0

⎞
⎟⎟⎟⎠ ,

(4.10)

where the only effect of crossing is the different form of the diagonal matrix elements.
The spectral densities that enter the unitarity relation are given in terms of the product of

the couplings to the corresponding intermediate states. The diagonal terms being given by the
absolute value square of the couplings are nonnegative

ρ++
J (t) � 0, ρ+−

J (t) � 0 . (4.11)

The off-diagonal terms satisfy simple Cauchy–Schwartz inequalities15

|ρ̃+−
J (t)|2 � ρ++

J (t)ρ+−
J (t), |ρ̃++

J (t)| � ρ++
J (t). (4.12)

Below we discuss bounds on the possible form of the low-energy coefficients stemming
from unitarity and growth of the amplitude at infinity. In particular, it is convenient for us to
consider combinations of amplitudes that have nonnegative semi-definite discontinuities both
in the t- and u-channel. We consider the following convenient choices that are sufficient for
our purposes

Mh(s, t) ≡
(

t4 f (s, u) + u4 f (s, t) − s4 f (t, u) h∗(s, u)
h(s, u) t4 f (s, u) + u4 f (s, t) − s4 f (t, u)

)
, (4.13)

Mg(s, t) ≡
(

t4 f (s, u) + u4 f (s, t) 2s2t2u2g∗(s, u)
2s2t2u2g(s, u) t4 f (s, u) + u4 f (s, t)

)
. (4.14)

These matrices are t–u crossing symmetric

Mh,g(s, t) = Mh,g(s, u) . (4.15)

Using the form of the discontinuity dictated by unitarity above together with the
Cauchy–Schwartz inequalities (4.12) one can check that

∂n
s Disct Mh,g|s=0 = ∂n

s Discu Mh,g|s=0 � 0, n � 0, (4.16)

15 In terms of couplings to the intermediate state of energy
√

t and spin J these inequalities simply state that∣∣∑
iλ++iλ

∗
+−i

∣∣2 � (
∑

i|λ++i|2)(
∑

i|λ+−i|2) and |
∑

iλ
2
++i| �

∑
i|λ++i|2 respectively.
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where the notation ‘� 0’ means that the matrix is positive semi-definite.16 We obtain these
inequalities from the following properties of the Wigner d-matrices together with (4.12)

∂n
s dJ

0,0(x)|s=0 � 0, (4.17)

∂n
s

(
dJ

4,4(x) − (−1)JdJ
4,−4(x)

)
|s=0 � 0, (4.18)

∂n
s

(
ρ++

J (t)dJ
0,0(x) + ρ+−

J (t)dJ
4,4(x) − 2|ρ̃+−

J (t)|dJ
4,0(x)

)
|s=0 � 0, (4.19)

where s = 0 corresponds to x = 1 (see definition of x below equation (4.8)). The first property
(4.17) is a well-known property of Legendre polynomials. We have not attempted to prove
(4.18) and (4.19) that rely on the properties of the relevant dJ

λ,λ′ (x), however we checked them
explicitly up to J = 30. We also checked using formulas from appendix E the conditions above
for any J and n = 0, 1, 2; these are the cases that we consider below in more detail. For forward
scattering a closely related discussion can be found in reference [17].

The matrices above admit simple eigenvectors in the parity-preserving case, where we have
g(s, u) = g∗(s, u) and h(s, u) = h∗(s, u). In this case the matrices above have eigenvalues

Mh,±(s, t) = u4 f (s, t) + t4 f (s, u) − s4 f (t, u) ± h(s, u),

Mg,±(s, t) = u4 f (s, t) + t4 f (s, u) ± 2s2t2u2g(s, u) .
(4.20)

Unitarity (4.16) then becomes the statement about nonnegativity of the discontinuity of
equation (4.20). In this case we can apply dispersion relations directly to the functions (4.20).

4.3. Causality

Causality and unitarity put constraints on the high-energy behavior of the amplitude. The cor-
responding bounds are well known in the case of gapped QFTs [69], but are on a less-rigorous
footing in gravitational theories.

At tree level the gravitational amplitudes are expected to satisfy

lim
|t|→∞

|Mtree(s, t)| � t2, s < 0 . (4.21)

This result is very intuitive but hard to establish rigorously. It naturally emerges from various
considerations [11, 70, 71].

The situation is less clear nonperturbatively, however the simple qualitative picture of high-
energy scattering in gravity together with unitarity and causality again imply that a similar
bound exists. The bound is usually assumed to be

lim
|t|→∞

|Mfull(s, t)| < t2, s < 0 . (4.22)

This can be used to write dispersion relations in D � 5 where the amplitudes are IR finite
and make sense nonperturbatively. In D = 4 the situation is less clear due to the IR divergences,
but presumably a similar bound exists for the IR safe observables. It is also possible to satisfy
(4.22) at tree level but this requires an infinite number of particles of arbitrary high spin to be
exchanged. A famous example of this type is given by the tree-level string amplitudes.

In this paper, we are interested in particular in the properties of the one-loop scattering
amplitudes in D = 4. These do not have to satisfy (4.21) or (4.22), therefore we do not use

16 A Hermitian n × n matrix M is called positive semi-definite if z∗Mz � 0 for all z ∈ Cn.
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them. Indeed, let us imagine that the bound (4.21) is saturated at tree-level. This corresponds
to exchange of a particle of spin 2. When we go to one-loop we can exchange a pair of spin-2
particles and the resulting amplitude will grow like t3. Therefore it is natural that the following
bound holds at one loop

lim
|t|→∞

|M1−loop(s, t)| � t3, s < 0 . (4.23)

The explicit amplitudes computed in the paper indeed satisfy equation (4.23). Below, in
writing dispersion relations we assume the Regge bound to be as given in equation (4.23) and
choose the number of subtractions accordingly. Note that since equation (4.23) is weaker than
equation (4.21), bounds derived in this way apply both to the tree and one-loop amplitudes.
They also apply to full nonperturbative amplitudes in D � 5.

It is a special feature of gravitational amplitudes that an infinite number of particles has to
be exchanged at tree-level in order for the amplitudes to satisfy (4.21). This follows from the
fact that such exchanges at tree-level correspond to non-minimal couplings, which are known
to lead to violations of equation (4.21) [11, 13, 14]. The only exception to this rule is general
relativity, which corresponds to the minimal self-coupling of the graviton.

The tree-level Regge growth bound (4.21) is the reason why it is so hard to construct
tree-level gravitational amplitudes different from the ones of general relativity. This famous
achievement of string theory leads to causal and unitarity amplitudes with infinitely many
poles that corresponds to exchanges of infinitely many particles of arbitrarily large spin. In
fact, every such modification must contain strings [72].17

4.4. Dispersive sum rules

Given the gravitational amplitudes that satisfy unitarity and the Regge bounds we can consider
various dispersion relations. One class of dispersion relations that we find useful recasts the
vanishing of the (subtracted) amplitude in the Regge limit in terms of its discontinuity.

Such relations are known as superconvergence relations [14], or dispersive sum rules [16].
We follow the latter terminology and consider the following integrals

B+
k (s) =

∮
∞

dt
2πi

M(s, t)
1
t

1
(t(s + t))k

= 0, k � 2, (4.24)

where the condition k � 2 originates from the Regge bound (4.23) and guarantees that the arc
at infinity produces a vanishing contribution.

By deforming the contour we get the following formula

B+
k (s) :

∮
t0

dt
2πi

M(s, t)
1
t

1
(t(s + t))k

=

∫ ∞

m2
gap

dt
π

1
(t(s + t))k

(
1
t

Disct M(s, t) +
1

s + t
Discu M(s, t)

)
, (4.25)

where the integrals are depicted in figure 7.
We evaluate the lhs of equation (4.25) using the low-energy expansion, and we use the rhs

to establish some nontrivial properties that the coefficients of the low-energy expansion should
satisfy. More precisely, we consider the expansion of (4.25) around s = 0.

17 Curiously, as explained in some detail in appendix D, if we allow for accumulation points in the spectrum we can
consider much simpler amplitude functions. These functions, however, contain an infinite number of particles of a
given mass.
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Figure 7. The vanishing of the arc integral at infinity on the left panel, cf (4.24), can be
restated as an equality of the integrals on the right panel (see (4.25).)

A few comments are in order. Firstly, note that the minimal tree-level graviton-exchange
term in f (s, u) ∼ 1

stu does not contribute to the sum rules of interest here, B+
k�2(s). In particular,

we are able to expand the sum rules in powers of s. Assuming a more stringent Regge bound,
B+

1 (s) can be studied [7] and used to bound various coefficients in terms of G. We do not
consider this sum rule in the present paper. Secondly, the non-minimal couplingβR3 contributes
to B+

2 and we utilize this fact in section 6.2 in order to bound βR3 in terms of other EFT data.

4.5. The theory islands

What is the space of gravitational EFTs that admit a consistent UV completion? Answering
this question nonperturbatively is a formidable task, but we can consider the simpler question
of understanding perturbatively in G possible consistent UV completions of gravity. It is in this
spirit that in this paper we focus on the leading-order-in-G correction to general relativity.

Imagine that we label all possible perturbatively consistent theories of gravity by an index
i so that the four-graviton scattering amplitudes in a given theory are given by the matrix Mi

(see equation (4.3)).18 It is clear then that by taking a superposition of such amplitudes with
non-negative coefficients we again get an amplitude that satisfies all the constraints discussed
in the sections above

Mtheory =
∑

i

ciMi, ci � 0 . (4.26)

By expanding such amplitudes at low energies, as in section 4.1, we get a set of higher-
derivative corrections. The low-energy Wilson coefficients then form a convex cone which
we can think of as the theory space,19 which is generated by vectors Mi.20

It has been recently established that causality, crossing and unitarity constrain Wilson
coefficients both from above and from below [3–6]. In the space of couplings formed by

18 For simplicity we keep the index discrete, but of course it can be continuous, e.g. denoting the mass of the particle
exchanged in the loop. It does not affect the discussion.
19 A convex cone is a subset of vector space closed under linear combinations with positive coefficients.
20 Nonperturbatively in G, equation (4.26) is not necessarily consistent since is can violate nonperturbative unitarity
|SJ | � 1. Since we are interested in the leading-order correction in the regime when gravity is weakly coupled, this
issue is irrelevant.
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weakly-coupled theories it is thus natural to talk about the theory island, namely the region
spanned by known perturbative UV completions of gravity. By definition we have

Theory island ⊆ EFThedron, (4.27)

where by the EFThedron we call the set of amplitudes satisfying the constraints reviewed in
this section (in particular we only impose perturbative unitarity). It is interesting to ask to what
extent we can populate the space of allowed couplings by known perturbative UV comple-
tions. Recall that by a perturbative UV completion we call an S-matrix that satisfies unitarity,
causality and crossing perturbatively in Newton’s constant G and for any process m → n.

There are two classes of perturbative UV completions we consider here: tree-level corrected
theories and one-loop corrected theories. In tree-level corrected theories the leading-order cor-
rection to general relativity enters at tree-level, in other words the higher-derivative corrections
in the Lagrangian are suppressed by a new scale, e.g. string scale, which can be much lower
than the Planck scale. Perturbative string theories are famous examples of this type. It is a
well-known fact that gravitational amplitudes in string theory have a great degree of universal-
ity, as discussed recently in reference [63]. In appendix B we review the cases of superstring,
heterotic and bosonic strings at tree level.21 Alternatively, we can consider theories where the
higher-derivative operators come with an extra power of G. The one-loop amplitudes computed
in the present paper are precisely of this type. By choosing the mass spectrum and spins of the
particles propagating in the loop we can get various amplitudes.

Combining these two examples we consider the following set of amplitudes in the present
paper

Mhere
theory = c(ss)M(ss)

tree + c(hs)M(hs)
tree + c(bs)M(bs)

tree +
∑

S=0, 1
2 ,1, 3

2 ,2

cSM1−loop
S . (4.28)

Obviously, we do not claim that this space is complete. Let us emphasize that in the analysis
below we allow taking arbitrary superpositions of string amplitudes with various tensions as
well as one-loop amplitudes with arbitrary choices of the masses and spins, S � 2, of particles
circulating in the loop.

On the string side, for example we can consider the ε deformation of the superstring ampli-
tude discussed in the conclusions of reference [5]. It is not clear however that these deforma-
tions can be promoted to fully consistent perturbative S-matrices. Moreover, we checked that
adding this correction does not affect the theory island considered in the present paper in a
noticeable way.

On the field-theory side we can consider gapped strongly-coupled theories of matter cou-
pled to gravity. One interesting example is large-N QCD coupled to gravity [15]. In this case
we expect the tree-level corrections due to non-minimally coupled glueballs and one-loop cor-
rections due to minimally-coupled glueballs to both enter at the same order G2. Finally, we do
not discuss here amplitudes in models with extra dimensions [73–75]. Of course, it would be
very interesting to extend our analysis to include these examples as well.

In writing the contribution of matter we can imagine integrating out a multiple number of
particles of given spin with various masses. For the constraints discussed below one can check
that the effect of this freedom can be absorbed into rescaling of the coefficients cS. In particular,
the bounds that we describe below hold for any choice of masses and number of species for
particles that we integrate out.

21 Strictly speaking the bosonic string is not part of the theory space due to the presence of the tachyon in the spectrum,
but it is useful to keep it to check various formulas.
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In the following sections we use these amplitudes to populate the theory island. Surprisingly,
we find that

Theory island � EFThedron, (4.29)

in a sense that should become clear below. In other words, the set of known weakly-coupled
theories occupy a much smaller space in the space of couplings than is allowed by the general
constraints coming from the analysis of 2 → 2 scattering. This is, of course, in accord with
the ongoing landscape vs swampland debate but is also different from that. Indeed, the theory
island as defined here does not guarantee the existence of the nonperturbative completion of
gravity. We only study the consistency of the leading-order corrections to the Einstein–Hilbert
theory perturbatively in G and already in this setting we seem to find a much smaller space of
possibilities than follows from general constraints.

5. Deriving bounds: elastic amplitude

In this section we analyze bounds on the low-energy expansion of the elastic amplitude f (s, u)
using the techniques of references [3–5].22 We focus on couplings of the same dimensional-
ity and derive two-sided bounds on them by explicitly identifying the facets of the relevant
polytopes and then taking their crossing-symmetric section.

As observed in reference [5], identifying the relevant boundaries are particularly simple in
case of the one-channel dispersion relations when the polytopes in question are cyclic.23 In case
of the two-channel dispersion relations the cyclicity property is lost. However, as reference [5]
observed, a set of new boundaries that appear in this case involve low-spin partial waves and
can be explicitly identified upon inspection. This is indeed what we observed in the examples
below. To the best of our knowledge there is no proof that the list of boundaries obtained in
this way is complete (and therefore that the bounds are optimal), and we do not attempt such
a proof in the present work.

We will not attempt to relate couplings of different dimensionality to each other either. This
problem was recently analyzed in reference [3, 4, 6] and the expected dimensional-analysis
scaling of various couplings with order O(1) coefficients was rigorously established. It would
be very interesting to apply these techniques to the gravitational amplitudes discussed here but
we defer this to the future.

5.1. Strategy

We first briefly describe the basic strategy to derive bounds [5]. We consider the vector of low-
energy couplings of the same dimensionality �F which via dispersion relations is given by the
sum of s- and u-channel partial waves

�F =
∑

J

(
cJ,s�VJ,s + cJ,u�VJ,u

)
, cJ,s, cJ,u � 0 . (5.1)

In this formula cJ,s and cJ,u encode spectral densities discussed in section 4.2 and �VJ,s, �VJ,u

are known functions related to partial waves—see e.g. (5.8) for the precise formula. However
for the present discussion we can simply think of �VJ,s and �VJ,u as some abstract, given vectors

22 See also reference [76] for a closely related discussion.
23 We refer the reader to reference [5] for the definition of this term.
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and cJ,s, cJ,u being non-negative numbers. We would like to characterize the space (5.1), which
is a polytope. A convenient way to do it is by identifying its facets

�F · �Wi � 0, (5.2)

where �Wi is a normal to a given facet. From equation (5.1) we see that all the facets are of the
form24

(Wi)I0 = εI0I1...Id VI1
a1
. . .VId

ad
, (5.3)

where we assumed that the vectors �Va are (d + 1)-dimensional and we contracted them using
the (d + 1)-dimensional ε-tensor.25 The index a labels both spin and channel. Therefore, we
can characterize the space (5.1) by a set of determinants 〈F, a1, . . . ., ad〉 � 0. The task is then
to find all (a1, . . . ., ad), such that equation (5.2) holds. In general, this is a formidable task since
the space of vectors in equation (5.1) is infinite dimensional.

As explained in reference [5], remarkably, the set of vectors �VJ,s defines a cyclic poly-
tope, which for us simply means that the set of its boundaries can be written down
explicitly very easily. They essentially take the form of determinants built out of pairs of
consecutive vectors in the sum over spins. For example, for d = 4 the relevant determi-
nants take the form (i, i + 1, j, j + 1) with j > i, where i and j label various spins in the
sum (5.1).

The cyclicity property is lost when considering the sum of the s- and u-channel as in
equation (5.1). By inspecting the resulting polytope reference [5] observed that it is ‘almost
cyclic’ in the sense that the only boundaries which are not of the type (i, i + 1, j, j + 1) in the
example considered above involve low-spin partial waves in equation (5.1) and can be found
by direct inspection. This is what we also find and this is the strategy of finding bounds that we
follow in this paper. In particular, we do not prove that the set of bounds found in this way is
complete (even though we suspect it to be the case). It would be very interesting to rigorously
demonstrate this.

After the allowed region (5.2) is identified we impose crossing symmetry, which is the
subspace defined by linear relations between various components of the coupling vector �F. By
taking the crossing-symmetric slice of the allowed space of couplings we get two-sided bounds
on the low-energy Wilson coefficients.

5.2. Non crossing-symmetric dispersive representation of low-energy couplings

Consider again the double-minus amplitude

M4(1−, 2−, 3+, 4+) = (〈12〉[34])4 f (t, u) . (5.4)

24 Strictly speaking, this statement is only true for finite-dimensional sums in equation (5.1). For infinite-dimensional
sums we can also have limiting points. For us the limiting point is J = ∞. We find, however, that its existence does not
play a role in the analysis in the following sections. The reason for it is that in practice we search for the boundaries
(5.2) by first truncating the sum over spins up to some Jmax and then extrapolating to Jmax = ∞.
25 Here d has nothing to do with the dimensionality of spacetime. Instead, it is the dimensionality of the relevant subset
of the low-energy couplings that we would like to bound.
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Following reference [5], we introduce the expansion26

f (t, u) = f (t,−s − t) =
(κ

2

)2 1
stu

+ |βR3 |2
tu
s
− |βφ|2

1
s
+

∑
k� j�0

ak, js
k− jt j . (5.5)

From equation (5.5) we see that for fixed k all ak, j have the same dimensionality. Crossing
symmetry f (t, u) = f (u, t) leads to linear relations among ak, j which will play an important
role below.

Of course, in equation (4.1) we are expanding the same function, so the f i, j introduced there
and the ak, j in equation (5.5) are all related to each other in a trivial fashion. We get for the first
few coefficients

a0,0 = f0,0, a1,0 = − f1,0, a1,1 = 0. (5.6)

The vanishing of a1,1 is a consequence of t–u crossing symmetry of f (t, u) which is not
manifest in equation (5.5).

The function of interest f (t, u) admits a simple dispersive representation

f (t,−s − t) =
∮

ds′

2πi
f (t,−s′ − t)

s − s′
=

(κ
2

)2 1
stu

+ |βR3 |2 tu
s
− |βφ|2

1
s

−
∫ ∞

m2
gap

dm2

π

( ∞∑
J=0

1 + (−1)J

2

ρ++
J (m2)dJ

0,0(1 + 2t
m2 )

m8

1
s − m2

+
∞∑

J=4

ρ+−
J (m2)dJ

4,4

(
1 + 2t

m2

)
(t + m2)4

1
−s − t − m2

)
. (5.7)

In deriving (5.7) we used the Regge bound (4.23) to drop the arcs at infinity. When applied
to equation (5.4) it implies that | f (t,−s − t)| � 1/|s| at large s and fixed t. Indeed, this is the
case for all the one-loop amplitudes that we consider.

An important feature of equation (5.7) is that crossing symmetry f (t, u) = f (u, t) is not
manifest (hence the title of this section). Therefore imposing it leads to interesting constraints.
In fact, as we will see below it leads to two-sided bounds on the couplings.

By expanding equation (5.7) at small s and t we get the dispersive representations for the
couplings ak, j. They take the following form

ak, j =

∫ ∞

m2
gap

dm2

π

1
(m2)k+1

( ∞∑
J=0

1 + (−1)J

2
ρ++

J (m2)
m8

P j
++(J 2) +

∞∑
J=4

ρ+−
J (m2)

m8
Pk, j
+−(J 2)

)
,

(5.8)

where we introduced the spin Casimir J 2 = J(J + 1). We call equation (5.8) the dispersive
representation of low-energy couplings. We again emphasize that crossing symmetry leads to
linear relations among ak, j which are not manifest in equation (5.8).

26 Note that we performed an s ↔ t transformation compared to equation (4.1).
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In the formula above we introduced polynomials P j
++(J 2) and Pk, j

+−(J 2) which have the
following properties27

P0
++(J 2) = 1, Pk,0

+−(J 2) = (−1)k,

P1
++(J 2) = J 2, Pk,1

+−(J 2) = (−1)k+1(J 2 − 20 − k),

lim
J→∞

P j
++(J 2) =

1
Γ( j + 1)2

J2 j + . . . ,

lim
J→∞

Pk, j
+−(J 2) =

(−1)k+ j

Γ( j + 1)2
J2 j + . . .

(5.9)

Based on the formulas above we see that couplings ak, j written in equation (5.8) roughly
probe the k’th moment of the spectral density with respect to m2 and (2 j)’th moment with
respect to spin. In particular, we expect that higher- j coefficients to be more sensitive to higher-
spin spectral densities and higher-k couplings to have the large m2

m2
gap

region more suppressed.

This is indeed what we will find in the explicit examples below.
Crossing symmetry leads to the set of sum rules which were dubbed null constraints in ref-

erence [4]. Effectively, they express the low-spin partial-wave data in terms of the higher-spin
data. Consider for example the relation a1,1 = 0, listed in equation (5.6). Using the formulas
above we can write it as follows

∫ ∞

m2
gap

dm2

(m2)2

ρ+−
4 (m2)

m8
=

∫ ∞

m2
gap

dm2

(m2)2

( ∞∑
J=2

1 + (−1)J

2
ρ++

J (m2)
m8

J 2

+

∞∑
J=5

ρ+−
J (m2)

m8
(J 2 − 21)

)
, (5.10)

where all the terms in the rhs of equation (5.10) are non-negative. In other words, crossing
symmetry allows us to express the moment of ρ+−

4 (m2) in terms of all other spectral densities.
Let us next describe the first few bounds for k � 6. We do not attempt to derive the bounds

across the couplings of different dimensionalities as it was done in references [3, 4, 6, 7].
Instead we focus on the geometry of couplings of the same dimensionality as was studied in
reference [5]. For k = 1, 3, 5 we do not get any nontrivial bounds. For even k the results are
presented below.

k = 0:
We first start with k = 0. From (5.7) it immediately follows that

a0,0 � 0 . (5.11)

Moreover, we have

ak,0 =
1
π

∫ ∞

m2
gap

dm2

m2k+10

( ∞∑
J=0

1 + (−1)J

2
ρ++

J (m2) + (−1)k
∞∑

J=4

ρ+−
J (m2)

)
.

(5.12)

27 In the ++ channel the closed-form expression takes the form P j
++(J 2) = 1

Γ( j+1)2

∏ j
n=1(J 2 − n(n − 1)).

43



J. Phys. A: Math. Theor. 54 (2021) 344002 Z Bern et al

This immediately implies that ak,0 for even k can be interpreted as even moments μk

μk ≡
1
π

∫ ∞

m2
gap

dm2

m2k+10

( ∞∑
J=0

1 + (−1)J

2
ρ++

J (m2) +
∞∑

J=4

ρ+−
J (m2)

)
. (5.13)

As a result the bounds of reference [77] apply. For odd k, we obviously have |ak| � μk.
k = 2:
Next consider k = 2. Here the couplings of the same dimensionality are a2 =

(a2,0, a2,1, a2,2). One obvious constraint is

a2,0 � 0 . (5.14)

On top of that we get the following list of constraints which specify the boundary of the
region of allowed couplings,28

{〈a2, is, is + 2〉is�2, 〈a2, (iu + 1)(2), i(2)
u 〉iu�4, 〈a2, 4(2)

u , 2s〉} � 0 . (5.15)

Here we follow the notation of reference [5], which is defined as

〈a2, i, j〉 ≡ det

⎛
⎝a2,0 vi,0 v j,0

a2,1 vi,1 v j,1

a2,2 vi,2 v j,2

⎞
⎠ , (5.16)

where we also define the following vectors

v(s)
J,m = (Js)m ≡ 1

m!
∂m

t d0,0
J (1 + 2t)|t=0, (5.17)

v(u)
J,k,m = (J(k)

u )m ≡ 1
m!

∂m
t

1
(k − m)!

∂k−m
s

1
(1 + s + t)

d4,4
J (1 + 2t)
(1 + t)4

|s,t=0, (5.18)

where in the formula above we set the arbitrary mass scale m2 = 1 since it leads to trivial overall
rescaling of the vectors that enter into the determinant (5.16) and as such does not affect the
positivity bounds (5.15). Note that the vector v(u)

i,k depends on the order k of the corrections
that we are studying, which we denote by i(k)

u . For example, to evaluate (5.15) we should set
k = 2 in equation (5.18). The constraints (5.15) have an intuitive explanation. By plugging
the dispersive representation of the couplings into the determinant 〈a2, i, j〉 we get a sum over
partial waves where the coefficients of partial wave i and j are zero. The plane 〈a2, i, j〉 then
separates the region in the coupling space where these coefficients are positive and negative.

We see that equation (5.15) involves cyclic constraints from the s-channel 〈a2, is, is + 2〉is�2,
similarly from the u-channel 〈a2, (iu + 1)(2), i(2)

u 〉iu�4, as well as a mixed constraint 〈a2, 4(2)
u , 2s〉

that involves low-spin partial waves. This phenomenon observed in reference [5] continues to
hold for higher k as well. It allows us to easily identify the set of conditions that carve out the
region of allowed couplings analytically rather straightforwardly by inspecting the low-spin
boundaries. Of course, in practice we only look for possible boundaries up to some finite spin
Jmax and assume that the observed pattern continues all the way to Jmax = ∞.

In deriving the bounds above we did not impose crossing symmetry. At the level k = 2 we
are working it implies that

Crossing : a2,1 = a2,2 . (5.19)

28 The constraint (5.14) can be understood as arising from the limiting point when isoriu →∞.
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Figure 8. The allowed region for
a2,1
a2,0

given by equation (5.20) is depicted in black. The
explicit amplitudes that emerge from integrating out the one-loop matter or tree-level
string theories are depicted in various colors. Assuming LSD in the form (5.26) with
α = 102 one can derive stronger bounds which we depict by the dashed line.

Taking the crossing-symmetric slice of the constraints (5.15) gives the two-sided bound on
the Wilson coefficients

−90
11

� a2,1

a2,0
=

a2,2

a2,0
� 6 . (5.20)

It is very striking that for the explicit UV completions studied here we find a much narrow
window of possibilities that we depict in figure 8. We now try to understand the origin of this
fact. To do this it will be useful to use the null constraint a2,1 − a2,2 = 0 to derive a bound
similar to equation (5.20). By adding the null constraint to the dispersive representations for
a2,1 and a2,2 it is straightforward to show that

− 108
13

〈ρ+−
5 〉2

〈ρ++
0 〉2 + 〈ρ+−

4 〉2 + 〈ρ+−
5 〉2

� a2,1

a2,0

=
a2,2

a2,0
� 6〈ρ++

2 〉2 +
16
7 〈ρ

+−
4 〉2

〈ρ++
0 〉2 + 〈ρ+−

4 〉2 + 〈ρ++
2 〉2

, (5.21)

where we introduced 〈. . .〉 for the relevant integrals over intermediate energies m2

〈ρJ〉k ≡
1
π

∫ ∞

m2
gap

dm2

m2k+10
ρJ(m2) . (5.22)

To derive the upper bound in equation (5.21) we used the dispersive representation for
a2,1 − 2

7 (a2,2 − a2,1). To derive the lower bound we considered a2,1 +
4

13 (a2,2 − a2,1).
The bound (5.21) is rigorous. Its advantage however is that it only contains low-spin spec-

tral densities. By adding the null constraint a2,1 − a2,2 = 0 with an appropriate coefficient we
made sure that all the higher-spin contributions are sign-definite and the bound (5.21) then
follows. It is clear then how can we come close to the saturation of the bounds (5.20). The
upper bound saturation requires that 〈ρ++

2 〉2 is dominant, whereas the lower-bound saturation
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requires that 〈ρ+−
5 〉2 dominates. Note that each of these is not the minimal spin that appears in

the corresponding channel, which are 〈ρ++
0 〉2 and 〈ρ+−

4 〉2 correspondingly.
This is not what happens in the known physical theories as we will show in more detail. In

the examples that we analyze in this paper the higher-spin contributions to the spectral densities
are suppressed compared to the minimal spin ones. The fact that at large spin the spectral
densities decay exponentially in spin is something familiar from the fact that the scattering is
local in the impact parameter space. Analyzing the concrete examples we see that this hierarchy
continues all the way to minimal spin. We call this phenomenon LSD of partial wave and
mathematically we can express it as follows:

Low-spin dominance (weak) : 〈ρ+−
4 〉k � 〈ρ+−

J>4〉k, 〈ρ++
0 〉k � 〈ρ++

J>0〉k . (5.23)

In fact, equation (5.23) is very conservative and in the explicit examples the suppression of
higher-spin partial waves is much stronger than equation (5.23). Nevertheless, already using
equations (5.21) and (5.23) we can strengthen the bound (5.20) to obtain

(5.21) + (5.23) : −54
13

� a2,1

a2,0
=

a2,2

a2,0
� 3 . (5.24)

We clarify that here we derived equation (5.24) to illustrate the point that LSD implies
stronger bounds. We have not tried to find the optimal bound that follows from equation (5.23)
and dispersive representations of the couplings. It would be interesting to study this more
systematically.

It is also instructive to see what happens if we assume LSD in the strong form

Low-spin dominance (strong) : 〈ρ+−
4 〉k � 〈ρ+−

J>4〉k, 〈ρ++
0 〉k � 〈ρ++

J>0〉k .

(5.25)

We will discuss in more detail the expected form of the hierarchy below in the section dedi-
cated to spectral densities, but for now it is sufficient to say that we will find that equation (5.25)
correctly captures the region occupied by the known theories. To make (5.25) more precise let
us introduce its quantitative version

Low-spin dominance(α− factor) : 〈ρ+−
4 〉k � α〈ρ+−

J>4〉k,

〈ρ++
0 〉k � α〈ρ++

J>0〉k .
(5.26)

For illustrating bounds, below we choose for concretenessα = 102. This choice is not acci-
dental as the perturbative examples considered in this paper, tree-level string amplitudes and
one-loop matter amplitudes, happen to be of this type.29

Let us now consider the bounds coming from equation (5.21) with the additional assumption
of α = 102 LSD (5.26). In this way we obtain

(5.21) + (5.26)|α=102 : −0.083 � a2,1

a2,0
=

a2,2

a2,0
� 2.286 . (5.27)

It is also interesting to consider what happens if we consider α→∞. In this case one can
again use the trick of adding a null constraint (a2,2 − a2,1) with some non-zero coefficient to

29 One exception is the heterotic string amplitude where we have 〈ρ++
2 〉k ∼ 1

10 〈ρ
++
0 〉k .
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dispersive representation of the couplings to show that

LSDα→∞ : 0 � a2,1

a2,0
=

a2,2

a2,0
� 2 . (5.28)

Remarkably, we find that the region occupied by known theories in figure 8 lies inside
equation (5.27) and even equation (5.28). We will see below that the phenomenon of the data
being well explained by the strong version of LSD continues for higher k’s as well.

k = 4:
For k = 4 we first consider a subset of couplings â4 = (a4,0, a4,1, a4,2). From the dispersive

representation of the couplings it immediately follows that

a4,0 � 0 . (5.29)

Analyzing the sums over the partial waves we get the following list of constraints30

{
〈â2, is, is + 2〉is�2, 〈â4, i(4)

u + 1, i(4)
u 〉iu�5, 〈â4, 5(4)

u , 2s〉
}
� 0 . (5.30)

These include the usual cyclic constraints, as well as an extra fixed constraint. We plot the
allowed region in the as shaded (green) in figure 9. A characteristic feature of the allowed
region is that it is unbounded.

In deriving the bounds above we have not used crossing symmetry which leads to improved
two-sided bounds. To do that we can consider a complete set of couplings at k = 4, namely a4 =
(a4,0, a4,1, a4,2, a4,3, a4,4). It is then straightforward to check by inspection that the following set
of constraints define the boundary region in the space of couplings:{

〈a4, is, is + 2, js, js + 2〉 j>i�2, 〈a4, i(4)
u , i(4)

u + 1, j(4)
u , j(4)

u + 1〉 j>i�5,

〈a4, is, is + 2, j(4)
u + 1, j(4)

u 〉i�4, j�5, 〈a4, 2s, 4s, j(4)
u + 1, j(4)

u 〉 j�7,

〈2s, a4, is, is + 2, 5(4)
u 〉i�4, 〈5(4)

u , a4, j(4)
u , j(4)

u + 1, 2s〉 j�7,

〈a4, 4(4)
u , 5(4)

u , 6(4)
u , 7(4)

u 〉, 〈a4, 2s, 4s, 4(4)
u , 5(4)

u 〉, 〈a4, 2s, 4s, 7(4)
u , 4(4)

u 〉,

〈a4, 4(4)
u , 5(4)

u , 7(4)
u , 2s〉, 〈4(4)

u , a4, 5(4)
u , 6(4)

u , 4s〉, 〈4(4)
u , a4, 6(4)

u , 7(4)
u , 4s〉

}
� 0 .

(5.31)

It is easy to recover the previous constraints (5.30) from equation (5.31) by taking some of the
spins to infinity. For example limis→∞〈2s, a4, is, is + 2, 5(4)

u 〉i�4 � 0 reduces to 〈â4, 5(4)
u , 2s〉 � 0.

A somewhat new feature of this case compared to the ones considered above that mixed s–u
channel boundaries come in infinite families. However, these families are again either cyclic, as
in 〈a4, is, is + 2, j(4)

u + 1, j(4)
u 〉i�4, j�5 or involve low-spin partial wave only and therefore easily

identifiable. We find it quite remarkable that the allowed region can be found analytically!
We then consider the section of this region by the crossing symmetry relations that take the

form

Crossing : a4,3 = 2(a4,2 − a4,1), a4,4 = a4,2 − a4,1 . (5.32)

As a result we get the region of allowed couplings depicted in red in figure 9. To generate the
plot we considered bounds (5.31) where we truncated the maximal spin to imax, jmax, kmax = 20.

30 By taking isoriu →∞ limit in equation (5.30) we recover the simple bound (5.29).
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Figure 9. The allowed region for (
a4,1
a4,0

,
a4,2
a4,0

). The lightly shaded (green) region corre-
sponds to the bounds (5.30). The darkly shaded (red) region corresponds to the bounds
(5.31). The black theory island (which is so narrow that on this scale it looks like a line
segment) is the region covered by known amplitudes. The small gray-shaded region that
surrounds the black theory island corresponds to the LSD α = 102 bounds.

We also checked explicitly that the all determinants obtained in this way are non-negative given
dispersive representation for the couplings truncated to Jmax = 200.

The bounds coming from imposing equation (5.31) together with crossing symmetry (5.32)
are two-sided, both from above and from below. The theory island occupied by the known
theories forms a tiny black slit inside the allowed region.

As we did for k = 2 we can again understand the structure of the island using the idea of
LSD. To this extent we can use the null constraints coming from crossing (5.32) to derive the
following rigorous bounds

− 7.01〈ρ+−
5 〉4 + 20.18〈ρ+−

6 〉4

〈ρ++
0 〉4 + 〈ρ+−

4 〉4 + 〈ρ+−
5 〉4 + 〈ρ+−

6 〉4

� a4,1

a4,0
� 6〈ρ++

2 〉4 + 20〈ρ++
4 〉4 + 4.01〈ρ+−

4 〉4

〈ρ++
0 〉4 + 〈ρ+−

4 〉4 + 〈ρ++
2 〉4 + 〈ρ++

4 〉4
, (5.33)

− 20.16〈ρ+−
5 〉4

〈ρ++
0 〉4 + 〈ρ+−

4 〉4 + 〈ρ+−
5 〉4 + 〈ρ+−

6 〉4

� a4,2

a4,0
� 6〈ρ++

2 〉4 + 90〈ρ++
4 〉4 + 6.43〈ρ+−

4 〉4 + 15.32〈ρ+−
6 〉4

〈ρ++
0 〉4 + 〈ρ+−

4 〉4 + 〈ρ++
2 〉4 + 〈ρ++

4 〉4 + 〈ρ+−
6 〉4

. (5.34)
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Again we see that the corners of the red regions in figure 9 can be obtained from
equation (5.33) by assuming that the sub-leading spins in the corresponding channels are dom-
inant. This is not what happens in the physical theories and again assuming weak LSD (5.23)
we can get a tighter bounds in which physical theories reside. In practice, we see that physical
theories occupy even smaller region which can be understood using the strong version of LSD
(5.25).

A striking feature of figure 10 is that the known theories align closely with the straight line
with the slope 3/2. To understand this we can derive the bound analogous to equation (5.33)
for the difference a4,2 − 3

2 a4,1. It takes the following form

− 3〈ρ++
2 〉4 + 15〈ρ+−

5 〉4

〈ρ++
0 〉4 + 〈ρ+−

4 〉4 + 〈ρ++
2 〉4 + 〈ρ+−

5 〉4

� a4,2 − 3
2 a4,1

a4,0
� 60〈ρ++

4 〉4 + 0.47〈ρ+−
4 〉4 + 45.58〈ρ+−

6 〉4

〈ρ++
0 〉4 + 〈ρ+−

4 〉4 + 〈ρ++
4 〉4 + 〈ρ+−

6 〉4
. (5.35)

We emphasize that at this point the bound (5.35) is rigorous and no additional assumptions
have been made. To derive an upper bound we have considered the dispersive representation for
a4,2 − 3

2 a4,1 +
1687
7205(a4,3 − 2a4,4) + 411

524 (a4,3 − 2(a4,2 − a4,1)), where we made use of crossing
(5.32). The lower bound follows directly from the dispersive representation of a4,2 − 3

2 a4,1.
To make use of it, we can now assume α = 102 LSD and apply it to the bounds (5.33) and

(5.35). In this way we get

(5.33) + (5.34) + (5.35) + LSDα=102 : −0.27 �a4,1

a4,0
� 4.01, (5.36)

−0.20 �a4,2

a4,0
� 6.52,

−0.15 �a4,2 − 3
2 a4,1

a4,0
� 0.92. (5.37)

We plot the result in figure 10 and again observe that the known examples neatly land in the
predicted region. Moreover, it is straightforward to see that if we increase α the bound (5.35)
becomes not optimal and instead we get

LSDα→∞ :
a4,2 − 3

2 a4,1

a4,0
= 0, 0 � a4,1

a4,0
� 4, 0 � a4,2

a4,0
� 6 (5.38)

which is the line along which our explicit examples cluster. Intuitively, this result can be under-
stood as follows: we write down explicitly the dispersive representation for the couplings a4,i,

a4,0 =

∫ ∞

m2
gap

dm2

π

ρ++0(m2)
(m2)9

+

∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)9

+ higher spin,

a4,1 = 4
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)9

+ higher spin,

a4,2 = 6
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)9

+ higher spin,

(5.39)

where ‘higher spin’ denotes infinitely many partial-wave contributions. Suppose that the
lowest-spin partial waves in each channel dominates. Note that the leading spin J = 0 contri-
bution in the ρ++J channel drops out from a4,1 and a4,2. Notice that if we set the ‘higher-spin’
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Figure 10. A scaled version of the theory island from figure 9. The dashed black line
bounds the region which is found from equations (5.33) and (5.35) using the LSD
assumption (5.26) withα = 102. The dashed red line a4,2 = 3

2 a4,1 corresponds toα = ∞
bound (5.38). Remarkably, all known theories lie in this small region where they populate
a small region around the α = ∞ curve.

terms to 0 in the formulas above we get the region (5.38). A priori it is not clear that this fol-
lows from sending α→∞ in equation (5.26) since we still have infinitely many spins that can
potentially compensate for the smallness of 1/α. Crossing symmetry, however, guarantees that
it is indeed the case and higher-spin contributions cannot compensate for smallness of 1/α as
can be seen from the explicit analysis using the finite number of partial-wave bounds similar
to equation (5.35).

Note that there are two distinct ways in which points can be close to the straight line in
figure 10. First, as explained above by assuming the strong version of LSD in a4,1 and a4,2.
Another mechanism is to have a4,0 � a4,1, a4,2 which happens when the contribution of ρ++0

to a4,0 dominates over the partial waves that enter to a4,1 and a4,2. In this case the points appear
very close to the origin on the ( a4,1

a4,0
, a4,2

a4,0
) plot and the slope defined by the ratio a4,2

a4,1
is not

directly visible, nor does it need to be 3
2 . In fact, a4,1 and a4,2 have nontrivial higher-spin cor-

rections in equation (5.39), i.e. ρ++
2 is sizable compared to ρ+−

4 and contributes ruining the
3/2 ratio for a4,2

a4,1
. This is precisely what happens for the scalar and fermion contributions in

figure 10. In this case, by looking at figure 10 it is not apparent that equation (5.39) is not
an accurate description of these points since they are close to the origin, which is on the line.
When this happens the simple model of dropping higher-spin contributions in equation (5.39)
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is too crude. For example, consider the one-loop massive scalar amplitude which lies very
close to the origin in figure 10. In this case to accurately capture a4,1 we also need to include
ρ++

2 (m2) (which is comparable to ρ+−
4 (m2) in this case) in the formulas (5.39). For a4,2 to get

1% precision ρ++
4 (m2) required as well. We re-iterate that in deriving the bounds using LSD we

did not make any assumptions about the contributions of infinitely many higher-spin terms in
equation (5.39) and instead used crossing symmetry to derive rigorous and tight bounds based
on equation (5.26). In contrast, when we use equation (5.39) and try to estimate the contribu-
tion of higher-spin partial waves we observe that depending on the model and the coupling at
hand, the number of terms required to be kept in the expansion to reach good precision varies.

We observe that the relation (5.38) generates a hierarchy∼10−2 between certain coefficients
in the low-energy EFT. A naive low-energy observer could have been puzzled by the fact that
|a4,2 − 3

2 a4,1| � a4,0. We see that this hierarchy is generated by unitarity, namely it appears
due to the dominance of the dispersive integrals by the low-spin partial waves. We discuss this
point further in section 5.5.

k = 6:
The analysis gets more and more complicated as we go to higher k. For k = 6 we get the

s-dimensional coupling vector a6 = (a6,0, a6,1, a6,2, a6,3, a6,4, a6,5, a6,6). Out of seven couplings
only four are independent due to the crossing-symmetry relations

Crossing : a6,4 = 5(a6,1 − a6,2) + 3a6,3,

a6,5 = 6(a6,1 − a6,2) + 3a6,3,

a6,6 = 2(a6,1 − a6,2) + a6,3 .

(5.40)

Working out the boundary of the coupling region is more laborious, but follows the same
pattern that we observed before

{〈a6, is, is + 2, js, js + 2, ks, ks + 2〉k> j>i�2,

〈a6, i(6)
u + 1, i(6)

u , j(6)
u , j(6)

u + 1, k(6)
u , k(6)

u + 1〉k> j>i�5,

〈a6, 5(6)
u , 4(6)

u , 6(6)
u , 7(6)

u , 8(6)
u , 9(6)

u 〉, mixed s − u constraints
}
� 0,

(5.41)

where we list the explicit mixed constraints that we found in appendix C. After the boundaries
are identified we take the crossing-symmetric slice (5.40). The resulting region of allowed
couplings is plotted in figure 11. The region covered by the known theories is again a small
island in the space of couplings.

As in the analysis above the island occupied by the explicit examples can be understood
using the idea of strong LSD. As before the first step is to derive a set of rigorous bounds in
terms of the low-spin partial waves. We do not present the complete analysis here but only
present some of the relevant bounds

− 9〈ρ++
2 〉6 + 25〈ρ+−

5 〉6

〈ρ++
0 〉6 + 〈ρ+−

4 〉6 + 〈ρ++
2 〉6 + 〈ρ+−

5 〉6

� a6,2 − 5
2 a6,1

a6,0

� 40〈ρ++
4 〉6 + 315〈ρ++

6 〉6 + 32.56〈ρ+−
6 〉6 + 220.41〈ρ+−

7 〉6

〈ρ++
0 〉6 + 〈ρ+−

4 〉6 + 〈ρ++
4 〉6 + 〈ρ++

6 〉6 + 〈ρ+−
6 〉6 + 〈ρ+−

7 〉6
, (5.42)
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Figure 11. The allowed region for couplings (
a6,1
a6,0

,
a6,2
a6,0

,
a6,3
a6,0

) derived from constraints
(5.41). The black little island (barely visible) is the space occupied by known perturba-
tive amplitudes. The small gray shaded region that surrounds it corresponds to the LSD
α = 102 bound. The details on how the plot was generated can be found in appendix C.

− 20〈ρ++
2 〉6 + 66.67〈ρ+−

5 〉6

〈ρ++
0 〉6 + 〈ρ+−

4 〉6 + 〈ρ++
2 〉6 + 〈ρ+−

5 〉6

� a6,3 − 10
3 a6,1

a6,0

� 73.34〈ρ++
4 〉6 + 1540〈ρ++

6 〉6 + 163.49〈ρ+−
6 〉6 + 495.64〈ρ+−

7 〉6

〈ρ++
0 〉6 + 〈ρ+−

4 〉6 + 〈ρ++
4 〉6 + 〈ρ++

6 〉6 + 〈ρ+−
6 〉6 + 〈ρ+−

7 〉6
. (5.43)

From the formulas above and a similar analysis for a6,i we also see that

LSDα→∞:
a6,2 − 5

2 a6,1

a6,0
= 0,

a6,3 − 10
3 a6,1

a6,0
= 0,

0 � a6,1

a6,0
� 6, 0 � a6,2

a6,0
� 15,

0 � a6,3

a6,0
� 20 .

(5.44)
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As for k = 4 we can understood the result above by simply dropping higher-spin contri-
butions in the dispersive representations for the couplings and keeping only the lowest-spin
partial waves in each channel

a6,0 =

∫ ∞

m2
gap

dm2

π

ρ++0(m2)
(m2)11

+

∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)11

+ higher spin, (5.45)

a6,1 = 6
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)11

+ higher spin, (5.46)

a6,2 = 15
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)11

+ higher spin, (5.47)

a6,3 = 20
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)11

+ higher spin. (5.48)

We emphasize again that while dropping infinitely many terms is not justified, the bound
(5.44) is rigorous.

Assuming the strong version of the LSD and using equation (5.42) we again find the small
region around the island occupied by the explicit examples, as shown in figures 11 and 12.

k = 8:
For k = 8 we do not perform the analysis of finding the allowed region but simply report

on the data in the specific theories. There are five independent couplings at this level which we
choose to be a8,0� j�4. Other couplings a8,5� j�8 can be obtained by crossing. The dispersive
representation of the couplings take the following form

a8,0 =

∫ ∞

m2
gap

dm2

π

ρ++0(m2)
(m2)13

+

∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)13

+ higher spin,

a8,1 = 8
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)13

+ higher spin,

a8,2 = 28
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)13

+ higher spin,

a8,3 = 56
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)13

+ higher spin,

a8,4 = 70
∫ ∞

m2
gap

dm2

π

ρ+−4(m2)
(m2)13

+ higher spin,

(5.49)

where we keep the leading spin contributions in both channels. To visualize the data we con-
sider two three-dimensional slices of the space of couplings with coordinates ( a8,1

a8,0
, a8,2

a8,0
, a8,3

a8,0
)

and ( a8,2
a8,0

, a8,3
a8,0

, a8,4
a8,0

). Formulas (5.49) define a line in this space upon neglecting the higher-spin
partial wave contributions. We depict the result in figure 13 and it is again completely analo-
gous to our observations for lower k’s. It would be interesting to extend the analysis done for
lower k to this case as well.
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Figure 12. The scaled version of the theory island from figure 11. The gray region is
derived using the bounds (5.42) (and similar bounds for a6,i which we do not write down
explicitly) and the LSD assumption (5.26) withα = 102. The dashed black line

a6,2
a6,1

= 5
2

and
a6,3
a6,1

= 10
3 corresponds to LSDα→∞ bounds given in equation (5.44).

5.3. Crossing-symmetric dispersive representation of low-energy couplings

We can also analyze the same amplitude using dispersive representation with a different pair
of channels. We start by recalling that

M4(1+, 2−, 3−, 4+) = (〈23〉[14])4 f (s, u) . (5.50)

We would like to use dispersion relations at fixed t to derive the dispersive representa-
tion for the low-energy couplings. For this purpose it is natural to introduce the following
parameterization of the low-energy expansion of f (s, u)

f (z − t
2

,−z − t
2

) =
(κ

2

)2 1

t( t2
4 − z2)

+ |βR3 |2
( t2

4 − z2)
t

− |βφ|2
1
t

+
∞∑

k�q�0

ãk,qzk−qtq, z = s +
t
2

, k − q ∈ 2Z�0 .

(5.51)

Crossing symmetry f (s, u) = f (u, s) acts as z →−z and therefore constrains k − q to be even.
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Figure 13. A plot for the data for a8, j in various theories. In panel (a) we plot
(

a8,1
a8,0

,
a8,2
a8,0

,
a8,3
a8,0

) and in panel (b) (
a8,2
a8,0

,
a8,3
a8,0

,
a8,4
a8,0

). The dashed line corresponds to the
low-spin dominant line defined by equation (5.49) upon neglecting the higher-spin
contributions to the partial-wave expansion.

To derive the bounds we can try to use dispersive representation for ãk,q, where we keep t
fixed and deform the z integral

ãk,q =
1
q!
∂q

t

∮
dz

2πi
1

zk−q+1

[
f (z − t

2
,−z − t

2
) −

(κ
2

)2 1

t( t2
4 − z2)

− |βR3 |2
( t2

4 − z2)
t

+ |βφ|2
1
t

]∣∣∣∣∣
t=0

, (5.52)

where the contour integral encircles the origin and we explicitly subtracted the contributions
that are singular at t = 0. As discussed in the previous section, unitarity constrains the form of
the discontinuity of f (z − t

2 ,−z − t
2 ). Therefore, in evaluating equation (5.52) we can open the

contour and assuming we can drop the arcs at infinity to arrive at the following representation

ãk,q =
2
q!
∂q

t

∫ ∞

m2
gap

dm2

π

∞∑
J=4

ρ+−
J (m2)

(m2 + t
2 )k−q+1

(−1)JdJ
4,−4

(
1 + 2t

m2

)
t4

∣∣∣∣∣
t=0

,

k − q ∈ 2Z�0 .

(5.53)

The factor of 2 originates from the sum over the s-channel and the u-channel discontinuities.
For odd k − q they cancel each other and we get zero. An important factor 1/t4 originates
from the fact that unitarity constraints are formulated in terms of M+−−+ which includes the
prefactor (〈23〉[14])4—see section 4.2 for details. The factor (−1)J can be understood from
the fact that with a given choice of helicity the discontinuity is positive for the forward limit
u = 0 (as opposed to t = 0).31 In using the representation (5.53) we should not forget that it
was derived assuming that the Regge behavior of the amplitude is such that the arcs at infinity
can be dropped. In particular, given that f (z − t

2 ,−z − t
2 ) ∼ zJ0 for large |z|, and taking into

account the subtractions of terms that are singular at t = 0 the representation (5.53) is valid
only for k − q > max{J0, 2}. As opposed to the previous section all ãk,q, whose dispersive

31 Consistency between equations (5.7) and (5.53), namely matching of the ρ+−
J discontinuities, requires that dJ

4,4(x) =
(−1)JdJ

4,−4(−x), which is indeed the case.

55



J. Phys. A: Math. Theor. 54 (2021) 344002 Z Bern et al

representation is given in equation (5.53), are independent and there are no extra constraints
coming from crossing.

The presence of (−1)J in the sum (5.53) prevents us from deriving useful bounds from
the representation (5.53). We, however, present the data for ãk,q obtained from the explicit
amplitudes since it reveals an interesting aspect of the discussion in the previous section.

For example, consider k = 6. The mapping between a6, j and ã6, j takes the following form

ã6,0 = 2(a6,1 − a6,2) + a6,3,

ã6,2 =
1
4

(−10a6,1 + 10a6,2 − 3a6,3),

ã6,4 =
1

16
(30a6,1 − 14a6,2 + 3a6,3),

(5.54)

and we will not need ã6,6 for our purposes. The remarkable fact about ã6, j is that the dashed
LSD line from figure 12 maps to the point ( 15

4 , 15
16 ) in the ( ã6,2

ã6.0
, ã6,4

ã6.0
) plane, which can also be

found by keeping the lowest-spin contribution in equation (5.53)

LSDα→∞ :

(
ã6,2

ã6,0
,

ã6,4

ã6,0

)
=

(
15
4

,
15
16

)
� (3.75, 0.94) . (5.55)

Therefore, the plane ( ã6,2
ã6,0

, ã6,4
ã6,0

) happens to be precisely orthogonal to the line in figure 12
and it is well-suited to study the fine structure of the distribution of points around the line.

Looking at the plot 12, we see that both the scalar and the fermion lie pretty far from the
naive LSD point. The reason we did not detect this on figure 12 is that for the scalar and fermion:
a6,0 � a6,1, a6,2, a6,3. In this way both points are very close to the LSD line in figure 12, but for
the trivial reason of being close to the origin. In figure 14 we resolve the origin by switching
to variables (5.54) that do not depend on a6,0.

Working with ãk,q emphasizes an important aspect of LSD. While assuming strong LSD

leads to much tighter bounds on ratios ak, j
ak,0

it does not lead to improved bounds for ãk,q
ãk,0

. The

reason can be understood as follows: for any large, but finite α, the admissible range for ak, j
ak,0

includes 0 and a small part of the negative axis. It is then easy to see from the definition (5.54)
that arbitrarily small vicinity of the origin in the

ak, j
ak,0

includes all possible values for
ãk,q
ãk,0

. This

precludes using LSD to derive stronger bounds on
ãk,q
ãk,0

. This simple fact highlights the point that
not all EFT coupling bases are equally illuminating for understanding the underlying structure.

A similar analysis can be performed for k = 8. By switching to the ( ã8,2
ã8,0

, ã8,4
ã8,0

, ã8,6
ã8,0

) coordi-
nates we note that the line from figure 13 maps to a single point. The same point can be obtained
by keeping only J = 4 contribution in (5.53)

LSDα→∞ : (
ã8,2

ã8,0
,

ã8,4

ã8,0
,

ã8,6

ã8,0
) = (7,

35
8

,
7

16
) = (7, 4.375, 0.4375) . (5.56)

Therefore by plotting the data in these coordinates we can resolve the points close to the
origin in figure 13 which were located there due to the fact that a8,0 � a8,i>0. One can check
again that ( ã8,2

ã8,0
, ã8,4

ã8,0
, ã8,6

ã8,0
) is independent of a8,0 and therefore this suppression does not take

place anymore. The result is depicted in figure 15.
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Figure 14. The transverse view of the theory island from figure 12. We indicate various
theories that form the vertices of the island. To reach a particular point inside the UV
island we need to take a superposition of various amplitudes.

5.4. Spectral densities and low-spin dominance

In the discussion above we considered various bounds that follow from the dispersive repre-
sentation of the low-energy couplings and observed the phenomenon of LSD in the known
physical theories. It manifests itself in the fact that the low-energy couplings occupy a very
small region in the space of couplings allowed on general grounds. To see this phenomenon
more clearly it is instructive to look at the spectral densities of the amplitudes directly.

Given a known expression for the amplitude it is not hard to compute various spectral den-
sities. Indeed, it amounts to taking a discontinuity of the amplitude and integrating it against
the proper Wigner d-function. These satisfy a familiar orthogonality relation∫ 1

−1
dx dJ

λ,λ′ (x)dJ̃
λ,λ′ (x) =

2
2J + 1

δJ ,̃J . (5.57)

For tree-level amplitudes the spectral density is a sum of delta-functions which correspond
to the masses of exchanged particles. For the one-loop amplitudes the discontinuity has a con-
tinuous support above the two-particle threshold 4m2. In this case we perform the integration
(5.57) numerically. We focus on the first few spin spectral densities in both ρ++

J and ρ+−
J chan-

nels. To go from spectral densities to the coefficients in the low-energy expansion we need to
compute the moments as in equations (5.39), (5.45), and (5.49).

The results for a few selected cased are listed in figures 16–19. In all cases we see that the
minimal-spin partial waves dominate in the corresponding channel. It is also instructive to plot
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Figure 15. Various data points for (
ã8,2
ã8,0

,
ã8,4
ã8,0

,
ã8,6
ã8,0

). Panels (a) and (b) present the same
plot as seen from different vantage points. In particular, panel (b) makes it clear that the
points essentially lie on a plane.

the moments 〈ρJ〉k which we present in figure 20. The moments clearly satisfy LSD used in
the previous section to derive stronger bounds.

In fact the moments of spectral density 〈ρJ〉k in the examples we consider not only exhibit
the dominance of the lowest-spin partial waves but also rapid decay at higher J. This latter
feature is expected to be completely general. Indeed, the convergence of the sum rules (5.8)
requires that 〈ρJ〉k decay faster than any polynomial at large J. This latter decay can be traced
to locality of scattering in the impact-parameter space.

Indeed, in the perturbative regime at large J we have

ρJ(s) ∼ Im δ(s, b), b =
2J√

s
, (5.58)

where δ(s, b) is the phase shift and b is the impact parameter. For fixed s and large impact
parameters we expect to have

Im δ(s, b) ∼ e−mgapb, mgapb � 1, (5.59)

which controls decay of ρJ(s) at large J. In string theory the leading-order behavior is different

and is controlled by the transverse spreading of strings Im δ(s, b) ∼ e
− b2

2α′ log sα′
4 —see reference

[78].
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Figure 16. Spectral densities for the one-loop minimally-coupled scalar. We observe
that ρ++

0 � ρ+−
J�4, ρ++

J�2 and that ρ+−
4 ∼ ρ++

2 close to the two-particle threshold. This
is fully consistent with the features of the plots for various couplings in the previous
section.

Figure 17. Spectral densities for the one-loop minimally coupled spin-2 particle. We
observe that ρ+−

4 � ρ+−
J>4, ρ++

J�2 and that ρ+−
4 ∼ ρ++

0 . Therefore in the space of couplings
this amplitude is expected to lie on the LSD line.

A priori the large impact parameter discussion is not necessarily relevant for understanding
the large-J behavior of 〈ρJ〉k which involves computing the moment (5.22) over all energies
(as opposed to keeping s fixed as we take the large-J limit). However, in analyzing 〈ρJ〉k for
the amplitudes considered in the present paper we experimentally observed that the integral
over energies is peaked at energies

〈ρJ〉k :
s∗

m2
gap

∼ J. (5.60)
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Figure 18. Spectral densities for the tree-level scattering of gravitons in the superstring
theory. We observe that ρ+−

4 � ρ+−
J>4, ρ++

J�2 and that ρ+−
4 ∼ ρ++

0 . Therefore in the space
of couplings this amplitude is expected to lie on the LSD line.

Figure 19. Spectral densities for the tree-level scattering of gravitons in the heterotic
string theory. We observe that ρ+−

4 � ρ+−
J>4, ρ++

J�2 and that ρ+−
4 ∼ ρ++

0 . Therefore in the
space of couplings this amplitude is expected to lie on the LSD line.

Plugging this into the formula for the impact parameter (5.58) we find that the dominant
impact parameters are mgapb∗ ∼ J1/2 � 1 and therefore the large-J behavior of the moments
〈ρJ〉 is still controlled by large impact-parameter physics. We tested this picture against the
data presented in figure 20 and found a qualitative agreement. It would be interesting to study
the large-J limit of 〈ρJ〉k more systematically. Of course, this discussion does not explain the
fact that the hierarchical structure among partial waves continues all the way to the lowest spins
in the examples we analyzed. It is this latter fact was crucial for the analysis in the previous
section.
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Figure 20. Moments of the spectral density 〈ρJ〉4 (5.22) as a function of spin J for vari-
ous examples. For the scalar one loop result ρ+−

J with J being odd are negligible and are
not presented in the figure. The line in the corresponding panel is obtained by connecting
the even spin values of the spectral density moments.

An important question is to understand how general is the picture that we observed in the
tree-level string amplitudes and one-loop matter amplitudes. A priori these amplitudes look
very different from each other, but at the level of the partial-wave analysis discussed in this
section they exhibit remarkably similar behavior and strong version of LSD. This suggests that
the hierarchical structures we observed in this paper could be a general property of consistent
weakly-coupled gravitational S-matrices, but we do not have a proof yet.

5.5. A hierarchy from unitarity

The LSD discussion above illustrates an interesting phenomenon of emergent hierarchy
between EFT coefficients in the absence of an underlying symmetry. Consider for example
D8R4 type corrections discussed in the k = 4 section above. In writing down the relevant correc-
tion to the amplitude an EFT practitioner guided by the considerations of the supersymmetric
decomposition (2.32) can write the following ansatz

fD8R4 (t, u) = c0 (s2 + t2 + u2)2 + c1 s4 + crest (t2 + u2)2. (5.61)

The first term, which is proportional to c0, is the completely crossing-symmetric term of the
type that appears in the new spin-2 part of the amplitude given in equation (H5), corresponding
to a massive N = 8 supersymmetric multiplet, obtained, for example, by dimensional reduc-
tion from five dimensions. In the N = 8 theory the full crossing symmetry of such terms is a
consequence of N = 8 supersymmetric Ward identities [49]. The c1 term corresponds to the
additional terms needed in the new spin-3/2 part of the amplitude (H4) beyond the fully cross-
ing symmetric terms already appearing in the new spin-2 part of the amplitude. Finally, the
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Figure 21. Examples of a hierarchy from unitarity. The horizontal axis shows illustrates
that the dominance of low-spin spectral densities naturally introduces a 10−2 hierarchy
between various EFT coefficients in the absence of any symmetry. The vertical axis
carries no meaning other than separating the points.

third term containing crest is the remaining independent term with t–u crossing symmetry. This
term is distinguished from the c1 term by its differing behavior for t →∞ with s fixed.

We then express the coefficient above in terms of more familiar ak, j defined in equation (5.5)
and used in the discussion of various bounds. We get the following result

c0 =
1
4

(2a4,1 − a4,2),

c1 =
1
4

(4a4,0 − 5a4,1 + 2a4,2),

crest =
1
2

(a4,2 −
3
2

a4,1).

(5.62)

Remarkably, we see that crest vanishes along the LSD line that follows from equation (5.39).
Plugging in the values of ak, j for the theories discussed here we find a 10−2 hierarchy with
crest � c1 in the absence of any symmetry, as shown in figure 21. For spin S = 1, 3

2 , 2 particle
in the loop we also have crest � c0.
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6. Deriving bounds: multiple polarizations

In this section we consider dispersion relations that combine information from the different
helicity configurations. More precisely, we consider dispersive sum rules (4.24) which we
apply to the matrices built out of various scattering amplitudes (4.13) and (4.14). We derive
bounds on the inelastic amplitudes (single-minus and all-plus amplitudes) in terms of the elastic
double-minus amplitude.

6.1. s = 0

The simplest bounds comes from setting s = 0 in equation (4.25). The relevant equation takes
the form ∮

t0

dt
2πi

Mh(s, t)
1
t

1
(t(s + t))k

∣∣∣∣
s=0

=

∫ ∞

m2
gap

dt
π

2
t2k+1

Disct Mh(0, t) � 0 . (6.1)

By plugging the low-energy expansion of the amplitude in the lhs of the equation above and
requiring that its eigenvalues are non-negative we get

2 f2k−4,0 � |h2k,0|, k = 2, 4, 6, . . . (6.2)

The combination above for different k form a set of moments as can be seen from the rhs
of (6.1). The difference compared to the recent analysis in reference [77] is that in our case we
have a positive semi-definite spectral density matrix instead of a function. By contracting such
matrix moments with an arbitrary polarization vector reduces the problem to the one considered
in reference [77].

The situation simplifies in the parity preserving case when h∗(s, u) = h(s, u). In this case
the eigenvectors Mh,±(s, t) given in equation (4.20) generate the low-energy expansion that
satisfies the moment problem conditions considered in great detail in reference [77]. More
precisely, we define a set of moments asμk−1 ≡ 2 f2k−4,0 − h2k,0 and consider the Hankel matrix
Hi j = μi+ j−1.

Using the results in appendix H for the one-loop amplitude due to minimally-coupled scalar
in the loop the first five moments take the following form

HS=0 =
1

140

(κ
2

)4 1
(4π)2

⎛
⎜⎜⎜⎜⎜⎝

1
135m4

1
24 024m8

1
1969 110m12

1
24 024m8

1
1969 110m12

1
109 745 064m16

1
1969 110m12

1
109 745 064m16

1
4833 678 850m20

⎞
⎟⎟⎟⎟⎟⎠ . (6.3)

In agreement with the general prediction the one-loop moment matrix has nonnegative
minors.

6.2. Away from s = 0: first derivative

We can use (4.16) to derive the bounds by taking the derivative of B+
k (s) with respect to s before

setting s = 0. For example let us consider the first derivative with respect to s. In this way we
get

∂s

∮
t0

dt
2πi

Mh,g(s, t)
1
t

1
(t(s + t))k

∣∣∣∣
s=0

=

∫ ∞

m2
gap

dt
π

1
t2k+2

(
−(2k + 1)Disct Mh,g(0, t) + 2t ∂sDisct Mh,g(0, t)

)
. (6.4)
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The rhs is not positive semi-definite and therefore we cannot derive the bound on the lhs in
a similar fashion. We can, however, consider the following linear combination

2k + 1
2m2

gap

∮
t0

dt
2πi

Mh,g(s, t)
1
t

1
(t(s + t))k

+ ∂s

∮
t0

dt
2πi

Mh,g(s, t)
1
t

1
(t(s + t))k

∣∣∣∣
s=0

=

∫ ∞

m2
gap

dt
π

1
t2k+2

([
t

m2
gap

− 1

]
(2k + 1)Disct Mh,g(0, t)

+ 2t ∂sDisct Mh,g(0, t)

)
� 0 . (6.5)

We now apply equation (6.5) to Mh. By plugging the low-energy expansion (see
equations (3.3) and (4.1)) in the lhs of the formula above and imposing that the eigenvalues of
the resulting matrix are nonnegative we can derive various bounds. Let us consider for example
k = 2. We get the following bound on the inelastic amplitude in terms of the elastic one∣∣∣∣∣h5,1 +

5
2

h4,0

m2
gap

∣∣∣∣∣ � 5

(
f1,0 +

f0,0

m2
gap

)
− 2|βR3 |2 . (6.6)

To apply the dispersive sum rule above to the bosonic string amplitude we first sub-
tracted the contribution of the tachyon exchange to get δ f (bs)(s, u) = f (bs)(s, u) +

(
κ
2

)2 1
1+t

and δ h(bs)(s, u) = h(bs)(s, u) +
(
κ
2

)2
(

s4

1+s +
t4

1+t +
u4

1+u

)
. The resulting functions satisfy all the

properties needed to apply (6.5) for k = 2. We then get, using the formulas from appendix B,

δ f (bs)
0,0 =

(κ
2

)2
(3 + 2ζ(3)) , δ f (bs)

1,0 =
(κ

2

)2
(−3),

δ h(bs)
4,0 =

(κ
2

)2
2, δh(bs)

5,1 =
(κ

2

)2
(−3), |β(bs)

R3 |2 =
(κ

2

)2
(6.7)

which indeed satisfy equation (6.6) where m2
gap = 1 in the string case.

For the one-loop minimally coupled scalar |βR3 |2 ∼ κ6 and appears only at two loops. For
other coefficients that enter into equation (6.6) we get, using equations (3.21) and (3.26),

f S=0
0,0 =

(κ
2

)4 1
(4π)2

1
6300m4

, f S=0
1,0 = −

(κ
2

)4 1
(4π)2

1
41 580m6

,

hS=0
4,0 =

(κ
2

)4 1
(4π)2

1
3780m4

, hS=0
5,1 = −

(κ
2

)4 1
(4π)2

1
7920m6

,

(6.8)

so that, together with m2
gap = 4m2, (6.6) is again satisfied.

More generally, the formula above bounds the correction to the three-point function of the
graviton βR3 from above in terms of the EFT data. To make it more manifest we can rewrite
the above

2|βR3 |2 � 5

(
f1,0 +

f0,0

m2
gap

)
−
∣∣∣∣∣h5,1 +

5
2

h4,0

m2
gap

∣∣∣∣∣ � 10 f0,0

m2
gap

, (6.9)

where in the last inequality we used the fact that | f1,0| � 1
m2

gap
f0,0 which readily follows from

equations (5.6) and (5.8). We can restate it more succinctly in terms of the Wilson coefficients
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of the gravitational EFT

|βR3 |2 � 5
β+

R4

m2
gap

, (6.10)

where m2
gap denotes the mass gap at which the massive degrees of freedom that induce the

higher-derivative corrections appear. Recall that f0,0 = β+
R4 was defined in equation (3.19).

Bounds similar to equation (6.9) can be derived by considering the superconvergence sum
rules for k > 2. We do not list them here.

In fact it is not difficult to strengthen the bound (6.10) by considering the following
unsubtracted dispersive sum rule (analogous to k = 0 in equation (4.24))∮

∞

dt
2πi

1
t

f (s,−s − t) = 0 . (6.11)

The universal tree-level gravitational piece
(
κ
2

)2 1
stu , which is singular at s = 0, does not

contribute to equation (6.11) therefore we can consider(
1

m2
gap

+ ∂s

)
(6.11)

∣∣∣∣∣
s=0

:
β+

R4

m2
gap

− |βR3 |2 =

∫ ∞

m2
gap

dt
π

1
t

([
∂s +

1
m2

gap

]
Disct f

+

[
∂s +

t − m2
gap

m2
gapt

]
Discu f

)∣∣∣∣∣
s=0

� 0, (6.12)

where nonnegativity of the rhs can be readily checked for each partial wave separately by
plugging the discontinuities of f (s, u), given in equation (5.7), into the formula above.32 In
this way we immediately get a bound

|βR3 |2 �
β+

R4

m2
gap

. (6.13)

The bound (6.13) is a step towards making the analysis of reference [11] quantitatively
precise. At least for the R3 correction to the graviton three-point coupling which is consid-
ered here, it translates the problem to bounding the coefficient β+

R4 in terms of G/m2
gap.33 This

problem was beautifully solved recently in reference [7] for D = 10 maximal supergravity in
a perturbative setting similar to ours, and it was addressed nonperturbatively in reference [18].
The method used in reference [7] is not directly applicable in four dimensions due to the IR
divergences, but at least in D � 5 where the 2 → 2 amplitude is nonperturbatively well-defined
it is natural to expect that one will be able to get a bound on β+

R4 in terms of G/m2
gap. It would

be very interesting to demonstrate it explicitly.
Indeed, assuming the nonperturbative Regge bound (4.22), we can consider the (−2) sub-

tracted dispersion relations for f (s, u) which expresses −8πG/s in terms of the contribution of
heavy states, cf equation (3.37) in reference [7]. Existence of such a dispersion relation in the
absence of supersymmetry is crucially due to the fact that we consider gravitons as external
states.

32 More precisely, it follows from ∂n
s

(
dJ

4,4(1+ 2s
m2 )

(m2+s)4

)∣∣∣∣
s=0

> 0 for n = 0, 1 which can be readily checked using formulas

from appendix E.
33 Recall from equation (2.15) that

(
κ/2

)2
= 8πG.
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6.3. Away from s = 0: second derivative

Using exactly the same technique as above one can check that

2k2 − 1
4

∮
t0

dt
2πi

Mh,g(s, t)
1
t

1
(t(s + t))k

+
2k + 1

2t0
∂s

×
∮

t0

dt
2πi

Mh,g(s, t)
1
t

1
(t(s + t))k

+ ∂2
s

∮
t0

dt
2πi

Mh,g(s, t)
1
t

1
(t(s + t))k

∣∣∣∣
s=0

� 0 . (6.14)

Consider k = 2 and plug the low-energy expansion of Mg(s, t) in the formula above. We
get a matrix whose eigenvalues should be non-negative. In this way we can bound the constant
term in the ++−+ amplitude

|g0,0| �
7
4

f0,0

(m2
gap)2

+
5
4

5 f1,0 − 4|βR3 |2
m2

gap
+

3
2

(
f2,0 + 3 f2,1

)
. (6.15)

As in the previous section we can check (6.15) in the bosonic string theory. The extra data
compared to the previous section takes the form

g(bs)
0,0 =

(κ
2

)2
(2ζ3) , δ f (bs)

2,0 =
(κ

2

)2
(3 + 2ζ(5)) ,

δ f (bs)
2,1 =

(κ
2

)2
(2 + 4ζ(3) + 2ζ(5)) .

(6.16)

Plugging (6.16) into equation (6.15) we see that it is indeed satisfied.
For the one-loop minimally coupled scalar we get correspondingly

gS=0
0,0 =

(κ
2

)4 1
(4π)2

1
6306 300m8

, f S=0
2,0 =

(κ
2

)4 1
(4π)2

3
560 560m8

,

f S=0
2,1 =

(κ
2

)4 1
(4π)2

31
9081 072m8

.

(6.17)

Again, we checked that equation (6.15) is satisfied, where we set m2
gap = 4m2.

Using the bounds from the previous section and (6.15) we can bound g0,0 in terms of β+
R4

defined in equation (3.1) as follows

|g0,0| �
815
44

β+
R4

m4
gap

. (6.18)

In deriving (6.18) we first expressed fi, j, defined in equation (4.1), in terms of ak, j, defined
in equation (5.5), and then used equations (5.12) and (5.20). Assuming LSD we get a stronger
bound

LSDα→∞ : |g0,0| �
25
4

β+
R4

m4
gap

, (6.19)

where in deriving this we used the stronger LSD bound (5.28).
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7. Conclusions

Our paper naturally consisted of two parts with the first part providing theoretical data that we
interpreted in the second part in terms of bounds on coefficients of gravitational EFTs. In the
first part, using amplitudes methods, we obtained the one-loop four-graviton amplitude with
a minimally-coupled massive particle of spin up to S = 2 circulating in the loop. By series
expanding these amplitude in large mass, we obtain theoretical data for Wilson coefficients
which we analyze in the second part. Combining this data with similar theoretical data obtained
from tree-level string-theory amplitudes we found that the Wilson coefficients fall on small
islands compared to the general bounds coming from consistency of 2 → 2 scattering deter-
mined along the lines of references [3–5]. It is quite striking that the EFT coefficients derived
from both string-theory and one-loop-massive amplitudes land on the same small islands.
Remarkably this can be explained as a consequence of LSD in the partial-wave expansions.

7.1. Obtaining one-loop amplitudes

In order to compute the one-loop amplitudes used to generate EFT data we applied standard
amplitudes methods, including spinor helicity [25], generalized unitarity [20, 21], the double
copy [22, 23, 38] and integration by parts [33, 51]. Using generalized unitarity we obtained
all integral coefficients except for a few whose integrals have no unitarity cuts in any channel.
We fixed the coefficients of the latter integrals by using the known UV properties of the ampli-
tude. To fully utilize this information we made use of overcomplete integral basis that contains
higher-dimensional integrals, but whose coefficients do not depend on the spacetime dimension
or equivalently the dimensional-regularization parameter ε. In addition, we also demonstrated
that these coefficients do not depend on the mass m of the particles circulating in the loops.
The existence of such a basis imposes constraints that makes it reasonably straightforward to
determine any pieces not captured by the s, t and u channel unitarity cuts. In this basis we used
the fact that the coefficient of the potential 1/ε logarithmic UV divergence is zero [48] to com-
pletely fix the remaining integral coefficients. A basis without ε-dependent coefficients always
exists for one-loop problems [79], however the lack of m-dependence appears to be special to
our case of a closed massive loop with external massless particles.

It would of course be interesting whether there is some way to generalize our approach to
more complicated situations with external legs of differing masses. To generalize our approach
to the generic case of a massive one-loop amplitude one could use information from the higher-
than-logarithmic divergences which are accessible in dimensional regularization by shifting
the dimension downwards as discussed in section 2.5. We showed that knowledge of all these
divergences is sufficient to fully constrain the remaining ambiguities, something we expect
to be true more generally. We expect constraints from UV divergences and from requiring
proper decoupling in the large mass limit to be sufficient to remove any ambiguities in terms
that are not fixed by the unitarity cuts, up to the usual ambiguities tied to scheme choices
and renormalization. This may provide an alternative method for obtaining complete one-loop
amplitudes using on-shell techniques [24].

We exposed a useful supersymmetric decomposition for graviton amplitudes with a massive
particle in the loop. A similar decomposition exists in gauge theory [42]. This decomposition
expressed the amplitude with a particle of spin S in the loop in terms of amplitudes with lower-
spin particles and simpler to calculate pieces. These pieces correspond to amplitudes with a
massive BPS multiplet circulating in the loop.

Having constructed the one-loop four-graviton amplitudes with massive particles in the
loop, it was then straightforward to expand in large mass, generating amplitudes matching those
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from a gravitational EFT. Because the original amplitudes are sensible, satisfying appropriate
Regge behavior and unitarity, this EFT is also sensible and can be used to test the constraints
derived from dispersion relations.

Besides using these results in our study of bounds on EFT coefficients, we also noted a
simple relations between UV divergences in higher dimensions and the coefficients in the 1/m
expansion. This relation requires a particular analytic continuation of the amplitude to higher
dimensions where we keep the number of physical states at their four-dimensional values. It
would be interesting to see if similar relations hold more generally, including higher loops, and
whether this connection can be exploited in studies of bounds on EFT coefficients.

7.2. EFT bounds

In order to derive bounds on the Wilson coefficients, we first reviewed in section 4 the basic
properties of unitarity, crossing, and bounds on the Regge limit in the context of perturbative
2 → 2 scattering of gravitons in four dimensions. These allowed us to study dispersion relations
and derive bounds on the Wilson coefficients.

In section 5 we focused on the double-minus amplitude and derived bounds on the Wilson
coefficients along the lines of references [3–5]. We expressed the low-energy expansion coeffi-
cients as dispersive integrals in equation (5.8). We then identified the two-sided bounds on the
coefficients following the observation in reference [5] that the boundaries of the allowed region
inherit the cyclicity property from the one channel dispersion relation. In this way, by explicitly
extracting the mixed constraints from the mixed s–u channel partial waves we identified the
new boundaries of the allowed region. We do not rigorously prove that our identification of the
bounds is optimal, and we leave filling this gap for future work. We then introduced the idea
of LSD which expresses a relationship between moments of the spectral functions of various
spins, and we used crossing symmetry or null constraints [4] to derive rigorous bounds in terms
of a few low-spin partial waves. We found that all the amplitudes considered in this paper lie
on small islands whose location and shape can be determined using the LSD principle.

In section 6 we studied dispersion relations for the graviton amplitudes of various helicities.
The key observation is that we can apply dispersion relations to matrices (4.5), composed
of the different helicity amplitudes, whose discontinuity is positive semi-definite. Applying
dispersive sum rules along the lines of reference [4] to these matrices we derived constraints
on the Wilson coefficients which appear in the single-minus and all-plus gravitational scattering
amplitudes. Notably we placed a bound on the R3 coefficient that corrects the graviton three-
point amplitude in terms of the R4 coefficient, making a step towards making the analysis of
reference [11] quantitatively precise.

The idea that the set of possibilities to UV complete gravity is much sparser than one naively
would have thought lies at the heart of the swampland program [80]. Usually this sparseness is
associated with non-perturbative aspects of the UV completion. In the present paper we ana-
lyzed the problem in a perturbative setting. By minimally coupling low-spin matter to gravity
we generated S-matrices which we expect should satisfy the axioms of causality and unitar-
ity up to an arbitrary order in G and in an arbitrary n-point amplitude. We can ask therefore a
weaker version of the swampland question: what is the set of perturbatively consistent weakly-
coupled gravitational S-matrices? It is in the framework of this question that the analysis of the
present work can be placed. Unexpectedly, we found that in known examples of perturbatively
consistent gravitational S-matrices the low-energy couplings lie in regions much smaller than
predicted on general grounds of causality and positivity of 2 → 2 graviton scattering. Looking
at the amplitudes for tree-level string theory and minimally coupled one-loop matter it is not a
priori obvious at all that they should be ‘close’ to each other. Dispersive representation of the
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low-energy expansion of both makes this similarity apparent. Indeed, as discussed in section 5
both amplitudes satisfy strong versions of LSD that localizes their low-energy data to regions
that are much smaller than indicated by the general analysis of unitarity and crossing.

An obvious question is: how general is this universality? We motivated it by pointing out
that the examples considered in the present paper define consistent S-matrices for any n → m
scattering, whereas the bounds were derived by considering 2 → 2 scattering only. To answer
this question we would need to better understand the landscape of consistent gravitational
amplitudes, including any unitary perturbative or nonperturbative QFT coupled to gravity, as
well as amplitudes in theories with extra dimensions. In particular, it would be very interesting
to understand if and how consistency of n → m scattering can be used to rigorously establish
stronger bounds on 2 → 2 scattering, potentially bringing us closer to the small theory islands
observed in the present work. It would also be very interesting to understand the example of
large-N QCD coupled to gravity [15].

In this paper, we only considered the leading-order effect from integrating out massive
degrees of freedom. We did not address the question of bounds that can be applied to IR-safe
observables in four dimensions, nor have we included the loops of massless particles which
generate more general logarithmic corrections in the low-energy expansion of the amplitude.
We leave these important questions to future work. The logarithmic running was discussed in
references [5, 17, 77], with the basic idea being that instead of expanding the amplitude around
s, t = 0 one considers dispersive representations of the EFT couplings defined at some scale.
To deal with the IR divergences we may consider dressed states (see e.g. reference [67, 68]
for a recent discussion), for which the full implications of unitarity and crossing are still to be
fully understood. Another interesting problem is to repeat the analysis of the present paper in
the context of AdS4/CFT3 where the problem of IR divergences does not arise, but dispersive
techniques discussed in the present paper still hold [81].

In summary, motivated by low-energy theoretical data obtained from one-loop field-theory
and tree-level string-theory amplitudes, we put forward the idea that EFTs that describe sen-
sible weak gravitational theories live on small islands that can be understood in terms of
partial-wave LSD. It will be important to understand the extent to which this can be extended
to constrain gravitational theories.
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Appendix A. Minimal coupling

In this appendix we present in more detail our definition of minimal coupling of gravity
to a massive spinning particle. For massive spinning particles, the requirement of general-
coordinate invariance and mass-dimension-four operators leaves an ambiguity for integer spin-
particles in defining the minimal coupling to gravity. In this appendix we discuss this ambiguity
and the choice we make in this paper. Our choice corresponds to the one that does not violate
the unitarity and causality constraints of references [12, 39, 40, 82, 83]. We start by review-
ing the case of electromagnetism (EM) where a similar situation exists, before we move on to
consider the gravitational case.

This issue appears only for integer-spin particles. The source of the ambiguity is the exis-
tence of a gauge-invariant operator that has the same mass dimension as the kinetic term. For
half-integer-spin particles, the corresponding operator is of higher-mass dimension and hence
would not count as minimal coupling. Therefore, the cases that require attention are the cou-
pling of a spin-1 or spin-2 particle to gravity. Since the analysis of the coupling of a spin-1
particle to EM is similar, we start by reviewing this case.

Here we fix the ambiguity by requiring that the interactions smoothly match onto the mass-
less limit. To explain our choice, it suffices to evaluate the three-point amplitude between two
massive spinning particles and a photon or a graviton.34 Specifically, we demand that by taking
the massless limit of these amplitudes and identifying the spin-1 particles as gauge bosons and
the spin-2 particles as gravitons, we recover the corresponding amplitudes in Yang–Mills and
pure gravity. The former is indeed realized for the coupling of the W boson to the photon [84].
The double-copy construction used in this paper is smooth in the massless limit, and hence
selects the above prescription.

For this discussion, we follow the formalism of references [85], which allows us to discuss
particles of arbitrary spin.35 After obtaining the relevant three-point amplitudes, we specialize
to the cases of interest. The part of the Lagrangian we give is just the one necessary to obtain the
three-point amplitudes relevant for this discussion. We emphasize that these Lagrangians would
need to be modified with auxiliary-field terms in order to reproduce our one-loop calculation.

For the case of a massive spinning particle φ coupled to EM we have

L = −1
4

FμνFμν + D†
μφ̄Dμφ− m2φ̄φ+ e(g − 1)Fμν φ̄Mμνφ+ · · · , (A1)

where e is the charge of the particle, g is the gyromagnetic ratio and the ellipsis denote possible
auxiliary-field terms. For the Lorentz generator M in the representation of φ we may use

(Mμν)c(s)
d(s) = 2isδ[μ

(c1
ην](d1δd2

c2
. . . δds)

cs) , (A2)

where the indices c(s) and d(s) stand for the symmetrized sets of vector indices {c1, . . . , cs}
and {d1, . . . , ds} and symmetrizations include division by the number of terms.

We may now obtain the three-point amplitude between two massive spinning particles and
a photon, depicted in figure 22. Neglecting the overall normalization we find

AEM−s
3 ∼ ε1 · ε2 ε3 · p1 + i(g − 1)ε1 · M[ε3, p3] · ε2, (A3)

34 In calculating this amplitude one implicitly uses complex kinematics.
35 Descriptions of higher-spin particles date back to Pauli and Fierz [86].

70



J. Phys. A: Math. Theor. 54 (2021) 344002 Z Bern et al

Figure 22. The three-point amplitude necessary to study minimal coupling. The straight
lines represent massive spinning particles, while the wiggly line denotes either a photon
or a graviton.

where labels 1 and 2 denote the massive spinning particles, while particle 3 is a photon. We
use the notation

A · M[p, q] · B ≡ pμqν(Mμν)c(s)
d(s)Ac(s)Bd(s). (A4)

Plugging in the spin-1 representation for M we find

AEM−1
3 ∼ ε1 · ε2 ε3 · p1 + (g − 1) (ε3 · ε1 ε2 · p3 − ε2 · ε3 ε1 · p3) . (A5)

Identifying all three particles as gauge bosons in the massless limit, i.e. demandingAEM−1
3 =

AYM
3 , fixes g = 2.
The case of a massive spinning particle coupled to gravity is similar. In this case, we have

L = − 1
16πG

R +
1
2

gμν∇μφ∇νφ− 1
2

m2φφ +
H
8

Rκλμν φMκλMμνφ+ · · · ,

(A6)

where H is an arbitrary dimensionless coefficient and we again denote possible auxiliary-field
terms by the ellipsis. Plugging in the spin-1 representation we see that the Riemann tensor in
the term proportional to H contracts into the Ricci tensor or scalar which under the equations
of motion is equivalent to a φ2 term. Therefore, the H term may be replaced by using an appro-
priate field redefinition by a φ4-type term, which is not relevant for our discussion. Looking at
the spin-2 representation and taking the massless limit, we recover the background-field-gauge
gravitational Lagrangian of reference [87] for H = 1 upon identifying the spin-2 particle with
the graviton.

We may alternatively reach the same conclusions by looking at the three-point amplitude
between two massive spinning particles and a graviton. This amplitude, shown in figure 22, is
given by

MGR−s
3 ∼ −ε1 · ε2(ε3 · p1)2 + i(ε3 · p1)ε1 · M[ε3, p3] · ε2 +

H
2
ε1 · M[ε3, p3] · M[ε3, p3] · ε2.

(A7)

For the spin-1 representation of M we observe that the last term vanishes. For the spin-2
representation we have

MGR−2
3 ∼ −ε1 · ε2(ε3 · p1)2 − 2 εμκ1 εν2,κ(ε3,μp3,ν − ε3,ν p3,μ)(ε3 · p1)

− H εμν1 εαβ2 (ε3,μp3,ν − ε3,ν p3,μ)(ε3,αp3,β − ε3,β p3,α). (A8)

Identifying the spin-2 particles with gravitons, i.e. setting MGR−2
3 equal to the three-point

amplitude in pure gravity, we find H = 1.
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With this choice our one-loop amplitudes do not violate unitarity or causality constraints
[11, 12, 39, 83]. Hence, they serve as toy models of causal UV completions.

Appendix B. Tree-level string amplitudes

Here we collect the relevant string four-graviton tree-level amplitudes [38]

M(ss)
4 (1+, 2−, 3−, 4+) = −

(κ
2

)2
(〈23〉[14])4 Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
,

M(hs)
4 (1+, 2−, 3−, 4+) = −

(κ
2

)2
(〈23〉[14])4 Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

(
1 − su

t + 1

)
,

M(bs)
4 (1+, 2−, 3−, 4+) = −

(κ
2

)2
(〈23〉[14])4 Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

(
1 − su

t + 1

)2

,

(B1)

where we set the closed string tensionα′ = 4 and (ss), (hs), (bs) stand for superstring, heterotic
string and bosonic string respectively. In the case of the bosonic string we have additional
independent nonvanishing helicity configurations,

M(bs)
4 (1+, 2+, 3−, 4+) = −

(κ
2

)2(
[12][14]〈13〉

)4 Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

,

M(bs)
4 (1+, 2+, 3+, 4+) = −

(κ
2

)2
(

[12][34]
〈12〉〈34〉

)2 4s2t2u2(1 − stu
2 )2

(1 + s)2(1 + t)2(1 + u)2

× Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

.

(B2)

In section 5 we considered the dispersive representation of f (s, u) and used it to derive
various bounds on the Wilson coefficients. We focused on the polynomial expansion of the
amplitudes at low energies around s = t = 0 which are generated by exchanges of massive
states above a certain gap m2

gap. To focus on such contributions let us write down explicitly
the part of the amplitude due to the exchange by light states (in the case of strings these are
tachyon, dilaton, graviton)

f (ss)(s, u) = −
(κ

2

)2 Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

=
(κ

2

)2 1
stu

+ δ f (ss)(s, u),

f (hs)(s, u) = −
(κ

2

)2 Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

(
1 − su

t + 1

)

=
(κ

2

)2
(

1
stu

− 1
t

)
+ δ f (hs)(s, u),

f (bs)(s, u) = −
(κ

2

)2 Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

(
1 − su

t + 1

)2

=
(κ

2

)2
(

1
stu

− 1
t + 1

+
su − 2

t

)
+ δ f (bs)(s, u),

(B3)

where Disc δ f (s, u) is nonzero only for s, t, u � m2
gap = 1 and δ f (s, u) admits the low-energy

expansion (4.1) with the dispersive representation of the couplings (5.8).
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To write the dispersive representations for string amplitudes let us recall their Regge limit
behavior. In the t-channel we have

lim
|t|→∞

| f (ss,hs,bs)(s, u)| � const
|t|2 , s � 0 . (B4)

Therefore, we can write dispersion representation for f (s, u) without subtractions and
δ f (s, u) will take the form (5.7) and the corresponding bounds of section 5.2 apply to δ f (s, u).

The situation is different in the s-channel relevant for section 5.3. In this case we have

lim
|s|→∞

| f (ss)(s, u)| � const
|s|2 , t � 0, (B5)

lim
|s|→∞

| f (hs)(s, u)| � const, t � 0, (B6)

lim
|s|→∞

| f (bs)(s, u)| � const|s|2, t � 0 . (B7)

Therefore, for the heterotic and bosonic strings we would need to consider dispersion rela-
tions with subtractions. In section 5.3 instead we directly considered the dispersive represen-
tation of the relevant couplings (5.52) in the expansion of δ f (s, u). As can be seen from (B3)
the s-channel Regge limit of δ f (s, u) coincides with the ones of the corresponding f (s, u). In
particular, the set of couplings that can admit a dispersive representation in the s-channel in
the three cases correspond to J(ss)

0 = −2, J(hs)
0 = 0, J(bs)

0 = 2, where J0 is the Regge intercept
see the discussion after (5.53).

In section 6 we consider superconvergence relations applied to various helicity amplitudes.
The relevant Regge limits for g(bs)(s, u) and h(bs)(s, u) can be easily read off from equation (B2)
and take the following form

lim
|t|→∞

|g(bs)(s, u)| � const
|t|2 , s � 0, (B8)

lim
|t|→∞

|h(bs)(s, u)| � const|t|2, s � 0 . (B9)

All the Regge bounds discussed in this section are in agreement with the general tree-level
Regge bound (4.21).

Appendix C. Bounding the coupling space at k = 6

In the main body of the paper we did not list the complete set of linear constraints that charac-
terizes the space of admissible couplings in the case of k = 6. For completeness we list full set
of constraints that we did not present in the main text. To reduce cluttering we avoid writing the
subindices that we used in main text and specify which channel should be used in evaluating
the determinant explicitly. The constraints are:

〈suuuuu〉:

{〈2, 4, 5, 6, 7, 9〉, 〈4, 4, 5, 7, 8, 9〉, −〈6, 4, 5, 6, 7, 8〉,

− 〈6, 4, 5, 6, 8, 9〉, −〈6, 4, 6, 7, 8, 9〉,
− 〈2, 5, 6, 7, k, k + 1〉k�9, −〈2, 5, j, j+ 1, k, k + 1〉k> j�9,

− 〈4, 5, 7, 8, k, k + 1〉k�9, −〈4, 5, 8, 9, k, k + 1〉k�10} � 0. (C1)

73



J. Phys. A: Math. Theor. 54 (2021) 344002 Z Bern et al

〈ssuuuu〉:

{−〈2, 4, 5, 7, k, k + 1〉k�9, −〈2, 4, 4, 5, 6, 7〉, −〈2, 4, 4, 5, 7, 9〉,
− 〈2, 6, 4, 5, 8, 9〉, −〈4, 6, 4, 5, 6, 7〉, −〈4, 6, 4, 5, 7, 8〉,

− 〈4, 6, 5, 6, 7, 8〉, 〈2, 4, 4, 5, 8, 9〉, 〈2, 6, 4, 5, 6, 9〉,
〈2, 6, 4, 6, 7, 9〉, 〈4, 6, 4, 7, 8, 9〉, 〈4, 8, 5, 6, 7, 8〉,

〈2, 4, 5, 9, k, k + 1〉k�10, 〈2, 6, 6, 7, k, k + 1〉k�9,

〈2, 6, 5, 6, k, k + 1〉k�9, 〈6, 8, 5, 6, k, k + 1〉k�8,

〈2, 4, j, j+ 1, k, k + 1〉k> j�9,

〈4, 6, j, j+ 1, k, k + 1〉k> j�7, 〈6, 8, j, j+ 1, k, k + 1〉k> j�6,

〈i, i + 2, j, j+ 1, k, k + 1〉i�8;k> j�5} � 0 . (C2)

〈sssuuu〉:

{−〈2, 4, 6, 4, 5, 6〉, −〈2, 4, 6, 4, 6, 7〉, −〈2, 4, 6, 4, 7, 9〉,

〈2, 4, 6, 4, 5, 8〉, 〈2, 4, 6, 4, 8, 9〉,
〈2, 4, 8, 5, 6, 7〉, 〈4, 6, 8, 5, 6, 8〉, 〈4, 6, 8, 6, 7, 8〉, 〈2, 4, 6, 7, k, k + 1〉k�9,

〈2, i, i + 2, 5, j, j+ 1〉i�8; j�6, 〈4, i, i + 2, 5, 7, 8〉i�8} � 0 . (C3)

〈ssssuu〉:

{〈2, 4, 6, 8, 5, 6〉, −〈2, 4, j, j+ 2, 5, 8〉6� j�14, 〈2, 4, j, j+ 2, 5, 7〉 j�8,

− 〈2, 4, j, j+ 2, 8, 9〉6� j�14,−〈2, 4, j, j+ 2, 6, 7〉8� j�24,

− 〈2, 6, j, j+ 2, 5, 6〉 j�8, −〈2, 4, j, j+ 2, k, k + 1〉 j�6,k�9,

− 〈4, 6, j, j+ 2, k, k + 1〉 j�8,k�6,

− 〈i, i + 2, j, j + 2, k, k + 1〉 j>i�6,k�5} � 0 . (C4)

〈sssssu〉:

{−〈2, 4, 6, j, j+ 2, 6〉 j�8,−〈2, i, i + 2, j, j+ 2, 5〉 j>i�6} � 0 . (C5)

In the above formulas, s indicates that in evaluating the determinant one should use is vectors
in the corresponding position, whereas u means that the corresponding vector should be j(6)

u .
Note also that is take only even integer values. To summarize, the precise meaning of 〈sssuuu〉 :
〈2, 4, 6, 7, k, k + 1〉k�9 � 0 is

〈a6, 2s, 4s, 6s, 7(6)
u , k(6)

u , k(6)
u + 1〉k�9 � 0 . (C6)

On the crossing-symmetric slice we found that the strongest constraints arise from the
〈ssuuuu〉 case. To generate figure 11 the maximal spin in the 〈ssuuuu〉 bounds above is set
to imax, jmax, kmax = 20. We used dispersive representations for the couplings truncated to
Jmax = 100 to check that all the determinants are non-negative. We found that the final allowed
region for the couplings is not sensitive to the precise value of kmax.
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Appendix D. Amplitude with an accumulation point in the spectrum

In this appendix we analyze a toy model that violates the LSD property. Nevertheless, we find
that the model still winds up on the LSD island. Consider the amplitude function

f (t, u) = − 1
(t − m2

1)(u − m2
1)(s − m2

2)
(D1)

=
1

t − m2
1

1
m2

1 + m2
2 + t

(
1

s − m2
2

+
1

u − m2
1

)
,

where in the second line we rewrote the amplitude in the dispersive representation using partial
fractions. For scattering of external scalars, a similar model with m1 = m2 was considered in
[4]. This amplitude saturates the tree-level Regge bound and it has an accumulation point in
its spectrum, by which we mean that the residue of the amplitude at either m1 or m2 involves
infinitely many particles of all spins in the partial-wave expansion. Such models should not be
considered physical, but nevertheless it is useful to illustrate features when LSD is violated.

Expanding the s- and u-channel residues in the corresponding partial waves we find that the
amplitude is unitary for

m2 � m1. (D2)

Let us therefore set m1 = 1 and study the model as a function of m2 � 1.
It is easy to find ρ++

J (m2
2) explicitly with the following result

− 1
t − 1

1
1 + m2

2 + t

∣∣∣∣
t=−

m2
2

2 (1−x)

=

∞∑
J=0

ρ++
J (m2

2) dJ
0,0(x), (D3)

where

ρ++
J (m2

2) =
4(2J + 1)

m2
2(2 + m2

2)
QJ

(
2 + m2

2

m2
2

)
, (D4)

is determined by projecting the left-hand-side of equation (D3) onto the Legendre polyno-
mials. The function QJ(z) is the four-dimensional Legendre Q-function36 that can be found
in equation (2.44) of reference [88]. By increasing m2 we can make the spectral densities of
non-minimal spin dominant. One way to understand this is by noting that the lhs of (D3) devel-
ops a singularity at x = ±1 when m2 = ∞ which translates into enhancement of higher-spin
contributions. Therefore, (D1) is an explicit example where LSD does not hold.

In the other channel we have

− 1
t − 1

1
1 + m2

2 + t

∣∣∣∣
t=− 1

2 (1−x)

=

∞∑
J=4

ρ+−
J (1)

( 1+x
2 )4

dJ
4,4(x). (D5)

It is then straightforward to check that ρ+−
J (1) satisfies LSD with α � 10 for any value of m2.

Curiously, if we now consider the values of the couplings ak, j for various values of m2 they
all end up being located at the LSD islands. For m2 close to 1 it is manifest in the properties
of the spectral densities described above. At large values of m2 when the s-channel spectral

36 Note that the Mathematica LegendreQ function is defined somewhat differently. The precise relation is QJ(z) =
LegendreQ[J, z + i0] − i π2 LegendreP [J, z] for z > 1.
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density ρ++
J (m2

2) violates the LSD property the reason is that its contribution to the low-energy

couplings ak, j is suppressed by an extra factor of
(

1
m2

2

)k− j
coming from the expansion of 1

s−m2
2

at

small s, compared to the u-channel contribution that does satisfy α � 10 LSD. In other words,
for m2 � 1 we have 〈ρ+−

J 〉k � 〈ρ++
J 〉k.

To summarize, while (D1) with an accumulation point in the spectrum does provide an
example of an amplitude function which violates the LSD assumption at m2

m1
� 1, from the low-

energy couplings point of view it still ends up in the LSD island region because the ρ++
J (m2

2)
spectral function that violates the LSD property ends up being irrelevant. While this model
should not be considered physical, it does illustrate the idea that potential violations of the
LSD principle do not affect the location of the island if there is a separation of scales between
the lowest-mass state and higher-mass physics that sources the violation.

Appendix E. Wigner d-matrices

Here we list convenient formulas for Wigner d-matrices used in bulk of the paper

dJ
4,4(x) = 2−J(x + 1)J

2F1

(
−J − 4, 4 − J; 1;

x − 1
x + 1

)
, (E1)

dJ
4,−4(x) =

2−J−7

315
Γ(J + 5)
Γ(J − 3)

(1 − x)4(x + 1)J−4
2F1

(
4 − J, 4 − J; 9;

x − 1
x + 1

)
,

(E2)

dJ
4,0(x) =

2−J−3

3

√
Γ(J + 5)
Γ(J − 3)

(1 − x)2(x + 1)J−2
2F1

(
4 − J,−J; 5;

x − 1
x + 1

)
,

(E3)

dJ
0,0(x) = 2F1

(
−J, J + 1; 1;

1 − x
2

)
. (E4)

By expanding the formulas above around x = 1 it is easy to check formulas (4.17)–(4.19)
for the first few n’s. In Mathematica notation the dJ

λ1,λ2
(x) functions are given by

WignerD[{J,λ2,λ1}, ArcCos[x]]. For a detailed derivation of the partial-wave expansion for
spinning external particles see reference [65].

Appendix F. Explicit values of one-loop four-graviton amplitudes

In this appendix we collect the final results for the integrated one-loop amplitudes. For the
double-minus configuration, we give the results for the M{S}

4 defined in equation (2.32). These
results are also collected in a Mathematica ancillary file [89]. The supersymmetric decomposi-
tion (2.32) directly gives the amplitude for any massive particle up to spin 2 circulating in the
loop. For the single-minus and all-plus helicity configurations, we present the amplitude with
a scalar particle circulating in the loop. The amplitudes with a higher-spin particle circulating
in the loop are all proportional to this one as shown in equation (2.34). In this appendix we
give the results for the amplitudes in terms of scalar integral functions whose values we cite in
appendix G.
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F.1. The double-minus configuration

We first give our results formally to all orders in the dimensional-regularization parameter ε.
We write them in terms of an overcomplete basis that contains higher-dimensional integrals
as we find this form to be the most concise. This basis is chosen so that the coefficients of
the integrals are free of both ε and m. As we explained in appendix G.2, using dimension-
shifting relations the higher-dimension integrals are directly expressible in terms of standard
(4 − 2ε)-dimensional ones. We collect the explicit values of the (4 − 2ε)-dimensional integrals
to leading orders in ε [90] in appendix G.1.

We manifest Bose symmetry under a 2 ↔ 3 relabeling (which implies s ↔ u) by writing
the amplitudes as

M{S}
4 (1+, 2−, 3−, 4+) = − 1

(4π)2−ε

(κ
2

)2
Mtree

4

(
F{S}

1 (s, u) + F{S}
2 (s, u) + F{S}

2 (u, s)
)

, (F1)

where F{S}
1 (s, u) = F{S}

1 (u, s) with kinematics in the Euclidean region, and the tree-level
amplitude Mtree

4 is given in equation (2.55).

For the M{0}
4 pieces we have

F{0}
1 (s, u) =

13s4 + 52s3u + 75s2u2 + 52su3 + 13u4

96t4
I1

− 8s4 + 40s3u + 55s2u2 + 40su3 + 8u4

8sut3
I6−2ε
1

− (s2 − su + u2)2t
64s2u2

I2(t) +
1

32

(
16 − 7s

u
− 7u

s

)
I6−2ε
2 (t)

− 45
16t

I8−2ε
2 (t) +

s8 + s7u + su7 + u8

128s3u3
I3(t)

− 5(s5 + u5)
64s2u2

I6−2ε
3 (t) +

25(s2 − su + u2)
32su

I8−2ε
3 (t)

+
105
16t

I10−2ε
3 (t) − s5u5

256t7
I4(s, u) +

7s4u4

32t6
I6−2ε
4 (s, u)

− 105s3u3

32t5
I8−2ε
4 (s, u) +

105s2u2

8t4
I10−2ε
4 (s, u) − 105su

16t3
I12−2ε
4 (s, u) , (F2)

F{0}
2 (s, u) = − s3(s2 + 2su + 2u2)(s4 + 4s3u + 5s2u2 + 2su3 + u4)

64u2t6
I2(s)

− s2(7s4 + 30s3u + 50s2u2 + 40su3 − 12u4)
32ut5

I6−2ε
2 (s)

− 45s4 + 118s3u + 294s2u2 + 96su3 + 16u4

16st4
I8−2ε
2 (s)

+
s6(s6 + 7s5u + 21s4u2 + 35s3u3 + 35s2u4 + 21su5 + 7u6)

128u3t7
I3(s)

+
s4(5s5 + 25s4u + 50s3u2 + 50s2u3 + 25su4 + 32u5)

64u2t6
I6−2ε
3 (s)

+
5s3(5s3 + 15s2u + 15su2 − 32u3)

32ut5
I8−2ε
3 (s)
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+
3s2(35s + 128u)

16t4
I10−2ε
3 (s) − s5t

256u3
I4(s, t)

− s4

32u2
I6−2ε
4 (s, t) − 9s3

32tu
I8−2ε
4 (s, t) − 15s2

8t2
I10−2ε
4 (s, t) − 105su

16t3
I12−2ε
4 (s, t).

(F3)

For the M{1/2}
4 pieces we have

F{1/2}
1 (s, u) =

4s2 + 7su + 4u2

8t2
I1 +

(s − u)2t
16su

I2(t) +
3
4

I6−2ε
2 (t)

+
(s5 + u5)t

32s2u2
I3(t) +

s3 + u3

4su
I6−2ε
3 (t) − 15

8
I8−2ε
3 (t)

− s4u4

64t5
I4(s, u) +

15s3u3

32t4
I6−2ε
4 (s, u)

− 45s2u2

16t3
I8−2ε
4 (s, u) +

15su
8t2

I10−2ε
4 (s, u), (F4)

F{1/2}
2 (s, u) =

s3(s + 2u)(s2 + 2su + 2u2)
16ut4

I2(s) +
3s3 + 7s2u + 12su2 + 2u3

4t3
I6−2ε
2 (s)

− s4(s + 2u)(s4 + 3s3u + 4s2u2 + 2su3 + u4)
32u2t5

I3(s)

− s3(2s3 + 6s2u + 6su2 − 5u3)
8ut4

I6−2ε
3 (s) − 3s2(5s + 16u)

8t3

× I8−2ε
3 (s) +

s4t
64u2

I4(s, t) +
3s3

32u
I6−2ε
4 (s, t)

+
9s2

16t
I8−2ε
4 (s, t) +

15su
8t2

I10−2ε
4 (s, t). (F5)

For the M{1}
4 pieces we have

F{1}
1 (s, u) = − t

4
I2(t) +

s4 + s3u + su3 + u4

8su
I3(t) +

3t
4

I6−2ε
3 (t)

− s3u3

16t3
I4(s, u) +

3s2u2

4t2
I6−2ε
4 (s, u) − 3su

4t
I8−2ε
4 (s, u), (F6)

F{1}
2 (s, u) = − s(s2 + 2su + 2u2)

4t2
I2(s) +

s4(s2 + 3su + 3u2)
8ut3

I3(s)

+
s2(3s + 8u)

4t2
I6−2ε
3 (s) − s3t

16u
I4(s, t) − s2

4
I6−2ε
4 (s, t) − 3su

4t
I8−2ε
4 (s, t). (F7)

For the M{3/2}
4 pieces we have

F{3/2}
1 (s, u) = − t2

2
I3(t) − s2u2

4t
I4(s, u) +

su
2

I6−2ε
4 (s, u), (F8)
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F{3/2}
2 (s, u) = − s2(s + 2u)

2t
I3(s) +

s2t
4

I4(s, t) +
su
2

I6−2ε
4 (s, t) . (F9)

Finally, for the M{2}
4 pieces we have

F{2}
1 (s, u) = −stu I4(s, u) , (F10)

F{2}
2 (s, u) = −stu I4(s, t). (F11)

We note that the progression of the new pieces from more complicated contributions to sim-
pler ones as the spin increases is a direct consequence of the supersymmetric decomposition
(2.32). As the spin increases the new pieces have lower and lower power counts correspond-
ing to increasing supersymmetry. The final pieces (F10) and (F11) correspond to D = (4 − 2ε)
scalar box integrals with no powers of loop momentum in the numerator. This may be com-
pared to the M{0}

4 contribution which has eight powers of loop momentum in the numerator.
This high power count results in, for example, the D = (12 − 2ε) box integrals appearing in
equations (F2) and (F3).

Next we expand the above results to leading order in the dimensional-regularization param-
eter ε. Using equation (G11) we express the higher-dimensional integrals in terms of (4 − 2ε)-
dimensional ones whose explicit values through O(ε0) are collected in appendix G.1. In the
following expressions, the integrals are understood as truncated to this order.

Both F{S}
1 and F{S}

2 are UV divergent. However, when put together in equation (F1), the
UV divergence cancels as expected [52]. We expose this cancellation by separating the bubble
integral in equation (G3) into a divergent part I2(0) and a finite part defined in equation (G5).
After canceling the 1/ε-pole we write the amplitude as

M{S}
4 (1+, 2−, 3−, 4+) = − 1

(4π)2

(κ
2

)2
Mtree

4

(
f {S}

1 (s, u) + f {S}
2 (s, u) + f {S}

2 (u, s)
)

, (F12)

where f {S}
1 (s, u) = f {S}

1 (u, s) and f {S}
1,2 are UV finite.

For the M{0}
4 pieces corresponding to equations (F2) and (F3) we have

f {0}
1 (s, u) =− 1

360t5

(
540m4sut2 + su

(
2s4 + 23s3u + 222s2u2

+ 23su3 + 2u4
)
− 2m2t

(
8s4 + 5s3u − 366s2u2

+ 5su3 + 8u4
))

− su
2t7

(
s4u4 + 8m2s3u3t + 20m4s2t2u2

+ 16m6sut3 + 2m8t4
)

I4(s, u), (F13)

f {0}
2 (s, u) =

u
60st6

(
2m4t2(73s3 − 147s2u − 48su2 − 8u3)

+ 2m2st(9s4 + 78s3u − 105s2u2 − 28su3 − 4u4)

+ s2(s − u)(s4 + 9s3u + 46s2u2 + 9su3 + u4)
)

Ifin
2 (s)

− s2u
t7

(su + 2m2t)(s2u2 + 4m2stu + 2m4t2) I3(s) − m8su
t3

I4(s, t), (F14)
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where the integrals are defined in equations (G3), (G6) and (G7). For the M{1/2}
4 pieces

corresponding to equations (F4) and (F5) we have

f {1/2}
1 (s, u) =− (s2 + 14su + u2 + 24m2t)su

24t3

− (su + 2m2t)(s2u2 + 4m2stu + m4t2)su
2t5

I4(s, u) , (F15)

f {1/2}
2 (s, u) =

(
(s − u)(s2 + 8su + u2)s + 4m2(−4s3 + 2s2u + 7su2 + u3)

)
u

12t4
Ifin
2 (s)

− (su + 3m2t)(su + m2t)s2u
t5

I3(s) − m6su
t2

I4(s, t). (F16)

For the M{1}
4 pieces corresponding to equations (F6) and (F7) we have

f {1}
1 (s, u) = − su

2t
− (s2u2 + 4m2stu + 2m4t2)su

2t3
I4(s, u), (F17)

f {1}
2 (s, u) =

(s − u)su
2t2

Ifin
2 (s) − (su + 2m2t)s2u

t3
I3(s) − m4su

t
I4(s, t). (F18)

For the M{3/2}
4 pieces corresponding to equations (F8) and (F9) we have

f {3/2}
1 (s, u) = − (su + 2m2t)su

2t
I4(s, u), (F19)

f {3/2}
2 (s, u) = − s2u

t
I3(s) − m2su I4(s, t). (F20)

Finally, for the M{2}
4 pieces corresponding to equations (F10) and (F11) we have

f {2}
1 (s, u) = −stu I4(s, u) , (F21)

f {2}
2 (s, u) = −stu I4(s, t). (F22)

F.2. The all-plus configuration

As noted in equation (2.34), the result for particles of any spin 0 � S � 2 circulating in the
loop is proportional to the S = 0 case. The all-orders-in-ε form of this amplitude using the
higher-dimensional integral basis is

MS=0
4 (1+, 2+, 3+, 4+) =

1
(4π)2−ε

(κ
2

)4
(

[12][34]
〈12〉〈34〉

)2 1
2

(F3(s, t, u)

+ F4(s, t) + F4(t, u) + F4(u, s)) , (F23)

where

F3(s, t, u) =
(s2 + t2 + u2)2

64stu
I1 −

15
4

I6−2ε
1 , (F24)

F4(s, t) =
u2(s3 + t3)2

32s3t3
I2(u) +

u3(7s2 − 16st + 7t2)
16s2t2

I6−2ε
2 (u)
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+
45u2

8st
I8−2ε
2 (u) +

u4(s7 + t7)
64s4t4

I3(u) +
5u3(s5 + t5)

32s3t3
I6−2ε
3 (u)

+
25u2(s3 + t3)

16s2t2
I8−2ε
3 (u) − 105u2

8st
I10−2ε
3 (u) +

s4t4

128u4
I4(s, t)

+
s3t3

16u3
I6−2ε
4 (s, t) +

9s2t2

16u2
I8−2ε
4 (s, t) +

15st
4u

I10−2ε
4 (s, t)

+
105
8

I12−2ε
4 (s, t). (F24)

There is no corresponding tree-level amplitude for the all-plus helicity. Instead, we choose
the above spinor-helicity combination to be completely Bose symmetric. Given this choice, the
combination in the parenthesis also has this property. Furthermore, we arrange our functions
such that F3 is completely Bose symmetric, while F4(s, t) = F4(t, s).

The expression simplifies significantly if we expand in ε and drop the O(ε) pieces. We have

MS=0
4 (1+, 2+, 3+, 4+) =

1
(4π)2

(κ
2

)4
(

[12][34]
〈12〉〈34〉

)2 1
2

(
− 1

120

(
120m4

+ s2 + t2 + u2
)
+ 2m8 (I4(s, t) + I4(t, u)

+ I4(u, s)) +O(ε)

)
. (F26)

Because the corresponding tree-level amplitude vanishes this amplitude is infrared finite. As
for the other helicities it is UV finite because of the lack of a viable counterterm [52]. Another
interesting property is that for m → 0 it has no logarithms. The all-minus amplitude follows
from parity and is given by swapping angle and square brackets.

F.3. The single-minus configuration

As for the all-plus case, for the single-minus configuration we only need the S = 0 case. The
single-minus amplitude in a form valid to all orders in ε is

MS=0
4 (1+, 2+, 3−, 4+) =

1
(4π)2−ε

(κ
2

)4(
[12]〈13〉[14]

)4 1
2

(F5(s, t, u)

+ F6(s, t) + F6(t, u) + F6(u, s)) . (F27)

We choose the little group combination to have complete Bose symmetry. The function F5

is completely Bose symmetric, while F6(s, u) = F6(u, s). We find

F5(s, t, u) =
(s2 + t2 + u2)2

64(stu)3
I1 +

246(stu)2 − 9(s2 + t2 + u2)3

4(stu)4
I6−2ε
1 , (F28)

F6(s, u) =
s6 + u6

32s5u5
I2(t) − s4 + 2s3u − 2s2u2 + 2su3 + u4

16s4u4t
I6−2ε
2 (t)

− 3(9s4 + 22s3u + 42s2u2 + 22su3 + 9u4)
8s3u3t4

I8−2ε
2 (t)

+
s9 + 2s8u + s7u2 + s2u7 + 2su8 + u9

64s6u6
I3(t)
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+
3(s6 + s5u + su5 + u6)

32s5u5
I6−2ε
3 (t)

+
31s6 + 93s5u + 93s4u2 + 126s3u3 + 93s2u4 + 93su5 + 31u6

16s4u4t3
I8−2ε
3 (t)

+
3(29s4 + 52s3u − 18s2u2 + 52su3 + 29u4)

8s3u3t4
I10−2ε
3 (t)

+
s2u2

128t6
I4(s, u) − su

16t5
I6−2ε
4 (s, u) − 15

16t4
I8−2ε
4 (s, u)

− 15
4sut3

I10−2ε
4 (s, u) +

105
8s2t2u2

I12−2ε
4 (s, u). (F29)

Next, we expand the above amplitude to leading order in ε. We write

MS=0
4 (1+, 2+, 3−, 4+) =

1
(4π)2

(κ
2

)4(
[12]〈13〉[14]

)4 1
2

( f5(s, t, u) + f6(s, t)

+ f6(t, u) + f6(u, s)) . (F30)

As in the double-minus configuration, we extract the UV poles from the bubble integrals in
order to manifest the UV-divergence cancellation. In this way we may express the amplitude in
terms of the UV-finite functions f5 and f6. We choose these functions such that f5 is completely
Bose symmetric and f6(s, u) = f6(u, s). We have

f5(s, t, u) =
1

360(stu)4

(
(s2 + t2 + u2)(stu)2 − 15m2(stu)(s2 + t2 + u2)2

+ m4
(
90(s2 + t2 + u2)3 − 2520(stu)2

))
, (F31)

and

f6(s, u) =
m4

s3u3t4

(
2s4 + 5s3u + 5su3 + 2u4

)
Ifin
2 (t)

+
2m4

s4t4u4

(
s7 + 4s6u + 6s5u2 + 4s4u3 + 4s3u4 + 6s2u5

+ 4su6 + u7 − m2(2s5u + 6s4u2 + 6s3u3 + 6s2u4 + 2su5)
)

× I3(t) +
m4

s2u2t4

(
s2u2 + 4m2(stu) + 2m4t2

)
I4(s, u). (F32)

As for the all-plus amplitude amplitude, because there is no corresponding tree-level ampli-
tude there are no infrared singularities and again in the m → 0 limit the expression is free of
logarithms. The single-plus helicity configuration follows from parity.

F.4. Pure gravity

For completeness, we also give the corresponding one-loop amplitude with a massless graviton
circulating in the loop. We obtain this result by taking the massless limit of the amplitude with
a massive spin-2 particle circulating in the loop, after accounting for the additional states (see
equation (2.29)). Our results match the ones previously obtained in reference [19].

82



J. Phys. A: Math. Theor. 54 (2021) 344002 Z Bern et al

Referring to this amplitude as MGR
4 , for the all-plus configuration we have

MGR
4 (1+, 2+, 3+, 4+) =

−1
(4π)2

(κ
2

)4
(

[12][34]
〈12〉〈34〉

)2 s2 + t2 + u2

120
, (F33)

while for the single-minus configuration we find [87]

MGR
4 (1+, 2+, 3−, 4+) =

1
(4π)2

(κ
2

)4(
[12]〈13〉[14]

)4 s2 + t2 + u2

360(stu)2
. (F34)

For the double-minus configuration the amplitude takes the form

MGR
4 (1+, 2−, 3−, 4+)

=
rΓ

(4π)2−ε

(κ
2

)2
stuMtree

4

[
2
ε

1
stu

(
s log

(
−s
μ2

)
+ t log

(
−t
μ2

)

+ u log

(
−u
μ2

))
+

2
stu

(
u log

(
−t
μ2

)
log

(
−s
μ2

)

+ t log

(
−s
μ2

)
log

(
−u
μ2

)
+ s log

(
−t
μ2

)
log

(
−u
μ2

))

+
4s6 + 14s5u + 28s4u2 + 35s3u3 + 28s2u4 + 14su5 + 4u6

t8

×
(

log2
( s

u

)
+ π2

)

+
(s − u)(261s4 + 809s3 u + 1126s2u2 + 809su3 + 261u4)

30t7

× log
( s

u

)
+

1682s4 + 5303s3u + 7422s2u2 + 5303su3 + 1682u4

180t6

]
,

(F35)

where

rΓ =
Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
. (F36)

Here μ is an infrared dimensional regularization scale. Since massless gravitons circulate in
the loop there is an infrared divergence. On the other hand there is no UV divergence because
there is no available counterterm [52]. In this expression we use the FDH scheme [28]. For the
massless case the analytic continuation from the Euclidean region to the physical one is simple
and accomplished by taking log(−s) → log(s) − iπ. We have explicitly verified that our results
for the graviton in the loop match the ones calculated in reference [19], up to the opposite sign
for the M{1/2}

4 piece already noted in reference [54].

Appendix G. Values of one-loop integrals

In this appendix we give the values of the integrals appearing in the amplitudes collected in
appendix F. We first present the (4 − 2ε)-dimensional integrals and then discuss the higher-
dimensional integrals. Furthermore, we provide an algorithmic procedure for obtaining an
expression for the amplitudes with no ε or mass dependence in the integral coefficients.
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G.1. Explicit values of one-loop integrals

We now collect the values for the integrals appearing in the above amplitudes [90]. We present
the integrals in the unphysical Euclidean region where s, t, u < 0 and then discuss the analytic
continuation to the physical region. We define a generic D-dimensional n-point integral by

ID
n = i(−1)n+1(4π)D/2

∫
dD p

(2π)D

1
(p2 − m2)((p− p1)2 − m2) · ((p− pn−1)2 − m2)

, (G1)

where the pi’s are linear combinations of the external momenta. The integral ID
n is also labeled

by the specific choice of the pi’s. For example, we use ID
2 (s) for a D-dimensional bubble integral

that has an invariant mass square of s = (k1 + k2)2 flowing through its external legs. Similarly,
we use ID

3 (s) and ID
4 (s, t) for a D-dimensional triangle and box respectively, where we use all

scales that may appear in the integral as arguments of the corresponding function. When dealing
with a (4 − 2ε)-dimensional integral we suppress the superscript writing I4−2ε

n ≡ In.
For the purposes of this paper it is sufficient to present the explicit expressions for the (4 −

2ε)-dimensional, one-through four-point integrals up to O(ε0). The tadpole (one-point) integral
takes the form

I1 = m2−2εΓ(1 + ε)
ε(ε− 1)

. (G2)

The bubble (two-point) integral with a kinematic invariant s is given by

I2(s) = I2(0) + Ifin
2 (s) +O(ε), (G3)

where

I2(0) = m−2εΓ(1 + ε)
ε

=
1
ε
+O(ε0), (G4)

and

Ifin
2 (s) = 2 + x(s) log

(
x(s) − 1
x(s) + 1

)
, (G5)

with x(s) ≡
√

1 − 4m2/s. The triangle (three-point) integral is

I3(s) = − 1
2s

log2

(
x(s) + 1
x(s) − 1

)
+O(ε). (G6)
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Finally, the box (four-point) integral is given by

I4(s, t) =
2

stx(s t)

[
2 log2

(
x(s t) + x(s)

x(s t) + x(t)

)
+ log

(
x(s t) − x(s)

x(s t) + x(s)

)

× log

(
x(s t) − x(t)

x(s t) + x(t)

)
− π2

2
+

∑
i=s, t

(
2Li2

(
x(i) − 1

x(s t) + x(i)

)

− 2Li2

(
− x(s t) − x(i)

x(i) + 1

)
− log2

(
x(i) + 1

x(s t) + x(i)

))]
, (G7)

where x(s t) ≡
√

1 − 4m2/s − 4m2/t. To evaluate the expressions in physical regions, e.g. s >
0, t, u < 0, we need to account for the iε prescription which for all our integrals is obtained by
shifting the mass by m2 → m2 − iε.

In order to match to the low-energy EFT, we expand the above integrals in the large-mass
limit. It is straightforward to expand the tadpole, bubble and triangle integrals in this limit. For
the box integral we use

I4(s, t) =
1

6m4
+

s + t
60m6

+
2s2 + st + 2t2

840m8
+

(s + t)(3s2 − 2st + 3t2)
7560m10

+
12s4 + 3s3 t + 2s2t2 + 3st3 + 12t4

166 320m12

+
(s + t)(10s4 − 8s3t + 9s2t2 − 8st3 + 10t4)

720 720m14

+
60s6 + 10s5t + 4s4t2 + 3s3t3 + 4s2t4 + 10st5 + 60t6

21 621 600m16

+
105s7 + 15s6t + 5s5t2 + 3s4t3 + 3s3t4 + 5s2t5 + 15st6 + 105t7

183 783 600m18

+
280s8 + 35s7t + 10s6t2 + 5s5t3 + 4s4t4 + 5s3t5 + 10s2t6 + 35st7 + 280t8

2327 925 600m20

+
252s9 + 28s8t + 7s7t2 + 3s6t3 + 2s5t4 + 2s4t5 + 3s3t6 + 7s2t7 + 28st8 + 252t9

9777 287 520m22

+
1

449 755 225 920m24

(
2520s10 + 252s9t + 56s8t2 + 21s7t3 + 12s6t4 + 10s5t5

+ 12s4t6 + 21s3t7 + 56s2t8 + 252st9 + 2520t10
)

+
1

1873 980 108 000m26

(
2310s11 + 210s10t + 42s9t2 + 14s8t3 + 7s7t4 + 5s6t5

+ 5s5t6 + 7s4t7 + 14s3t8 + 42s2t9 + 210st10 + 2310t11
)

+
1

101 194 925 832 000m28

(
27 720s12 + 2310s11t + 420s10t2

+ 126s9t3 + 56s8t4 + 35s7t5 + 30s6t6 + 35s5t7 + 56s4t8

+ 126s3t9 + 420s2t10 + 2310st11 + 27 720t12
)
+O(m−30). (G8)

This expansion is included in the ancillary files [89].
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G.2. Higher-dimension integrals

In constructing the amplitudes we used an overcomplete basis of integrals containing both
(4 − 2ε)- and higher-dimensional integrals, which as we noted has the advantage of removing
ε and m dependence from the integral coefficients. We now explain the construction of this form
of the amplitudes and how one returns to the usual integral basis containing only the (4 − 2ε)-
dimensional scalar integrals introduced in equation (2.7). In the (4 − 2ε)-dimension form the
coefficients of the integrals have explicit ε and m dependence. As we discussed in section 2.6,
the basis including higher-dimension integrals is useful for exploiting known properties of the
amplitude in order to fix the coefficients a0 and b0 in equation (2.7), which we cannot obtain
from the generalized-unitarity cuts.

Higher-dimension integrals occur naturally in the course of evaluating the loop integrands.
Integrals with powers of the higher-dimensional components of loop momentum μ (defined in
equation (2.42)) in the numerator may be expressed directly in terms of higher-dimensional
integrals. Following reference [20] we have,∫

d4�

(2π)4

d−2εμ

(2π)−2ε

(μ2)r

Dabcd
= P(ε, r)(4π)r

∫
d4+2r−2εL

(2π)4+2r−2ε

1
Dabcd

, (G9)

where the loop momentum on the right-hand side is integrated over a (4 + 2r − 2ε)-
dimensional space, Dabcd is defined in equation (2.23), and

P(ε, 0) = 1,P(ε, r) = −ε(1 − ε)(2 − ε) . . . (r − 1 − ε), r > 0. (G10)

The resulting higher-dimensional integrals may be expressed in terms the (4 − 2ε)-
dimensional ones using the dimension-shifting formula [91]:

ID+2
n =

1
(n − D − 1)c0

[
2ID

n −
n∑

i=1

ciI
D(i)
n−1

]
, (G11)

which holds for any spacetime dimension D and n � 5. ID
n refers to an n-gon integral in D

dimensions, defined in equation (G1). We use ID(i)
n−1 for the integral obtained by ID

n by removing
the propagator between legs (i − 1) and i. The ci are combinations of kinematic factors given
by

ci =

n∑
j=1

S−1
i j , c0 =

n∑
i=1

ci, (G12)

where the matrix S for the cases of interest to us is given by

Si j = m2 − 1
2

p2
i j, with pi j = pi−1 − pj−1. (G13)

For example, a (6 − 2ε)-dimensional box integral is expressed in terms of a (4 − 2ε)-
dimensional box and four (4 − 2ε)-dimensional triangles, illustrated in figure 23.

Using equation (G11), we can reduce an expression that contains higher-dimensional inte-
grals to one that does not. For the reverse process, i.e. in order to eliminate all ε and m
dependence in a one-loop amplitude M1−loop

4 , we adopt the following strategy: we start by
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Figure 23. The D-dimensional box integral and its four triangle-integral daughters.

inspecting the coefficients of the boxes, which take the following schematic form

M1−loop
4 =

P(ε)Q(s, t, m)
(4 − (4−2ε) − 1)(4 − (6 − 2ε) − 1)(4 − (8 − 2ε) − 1)(4 − (10 −2ε) − 1)

I4+ · · ·

(G14)

where P(ε) is at most an order-four polynomial in ε that does not cancel any of the poles of the
expression and Q(s, t, m) is some rational function. The maximum degree in ε is directly tied to
the maximal power of loop momentum that can appear in the numerator for minimally-coupled
gravity. Here we assume the highest possible power of loop momentum, which corresponds to
a spin-0 particle circulating in the loop. I4 in equation (G14) stands for a box integral in our
amplitude, whose arguments we do not specify since we are being schematic. This discussion
applies to all box integrals in our amplitude. The ellipsis contains other master integrals and
their coefficients. Looking at equation (G11), we may identify this term as coming from the
I12−2ε
4 integral,

M1−loop
4 = P(ε)Q′(s, t, m)I12−2ε

4 + · · · , (G15)

where Q′(s, t, m) is some new rational function. Note that the ellipsis also changes as dictated
by equation (G11). Now we may set D = 4 − 2ε in equation (G11) and rewrite it as follows,

εI6−2ε
n =

1
2c0

[
2In −

n∑
i=1

ciI
(i)
n−1 − c0(n − 5)I6−2ε

n

]
, (G16)

where I4−2ε
n ≡ In. Similarly, setting D = 6 − 2ε in equation (G11) we get

εI8−2ε
n =

1
2c0

[
2I6−2ε

n −
n∑

i=1

ciI
6−2ε(i)
n−1 − c0(n − 7)I8−2ε

n

]
, (G17)

etc. Combining the two we may trade for example ε2I8−2ε
n for an expression containing I8−2ε

n ,
I6−2ε
n , In and lower-point integrals with ε dependence only in the coefficients of the lower-point
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integrals. In this fashion we turn equation (G15) into

M1−loop
4 =

4∑
r=0

Qr(s, t)I4+2r−2ε
4 + · · · (G18)

with some different rational functions Qr(s, t). In this way we eliminate all explicit ε and m
dependence in the coefficients of the boxes (we discuss the m dependence momentarily). Only
after this step is completed, the poles in ε in the coefficients of the triangles have a similar
interpretation, i.e. as coming from higher-dimensional triangles. This is because there is a feed
down from the coefficients of the boxes to those of the triangles due to equation (G11). The
fact that the poles of the triangles align correctly is a nontrivial check of our calculation. We
repeat this process sequentially for all lower-point integrals to completely remove the explicit
ε and m dependence in the coefficients.

This procedure always succeeds. The reason is that there exists an alternative process of
reducing the integrals to master integrals that does not introduce any explicit ε dependence, but
instead introduces these higher-dimensional integrals (for an extensive discussion we refer the
reader to appendix I of reference [79]). The existence of such a process guarantees the success
of a procedure like the one outlined above. In addition, we may understand why there is no
m dependence in the coefficients of the master integrals in this basis as follows: we imagine
performing the calculation in a covariant gauge, in which all propagators in the integrals have
the canonical form (p2 − m2), and there are no other poles in the loop momentum or the mass.
We use

m2 = L2 − (L2 − m2), μ2 = −L2 + �2 (G19)

to trade all m and μ dependence in the coefficients for tensor integrals and lower-point inte-
grals. Once all m and μ dependence has been eliminated in this way, we may reduce the tensor
integrals using the IBP reduction procedure described in appendix I of reference [79]. The
resulting expression contains higher-dimensional integrals without ε or m dependence.

Appendix H. High-order expansion of the one-loop four-graviton amplitudes
in the large-mass limit

In this appendix, we present the large-mass expansion of our one-loop four-graviton amplitudes
through O(m−20). The same results are collected in a Mathematica ancillary file [89]. We give
the amplitudes in terms of loop integrals in appendix F. We obtain the results of this appendix
by expanding the ones of appendix F in the large-mass limit. We give the values and expansion
of the integrals in appendix G.1. The present representation corresponds to low-energy effective
description of the gravitational theories under consideration.

The data contained here should be useful for systematic investigations at higher orders in
the 1/m expansion than carried out in this paper. The examples in sections 5–6 based on low
orders in the expansion suggest that Wilson coefficients in physical theories lie on small islands
in the allowed parameter space. Rather strikingly, these islands are one dimensional to a good
approximation, which is due to the LSD property. Rather remarkably the string-theory data we
use also satisfy similar properties, so the Wilson coefficients obtained from string theory also
populate these islands. We hope that the data presented here will facilitate further investigations
of these features.

Using the amplitudes expanded in the large-mass limit one may obtain the low-energy effec-
tive description of the theory, along the lines of section 3. Besides the operators present in
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the action of equation (3.1), one should include operators of the schematic form D2kR4. The
operators D2kR4 correspond to the terms of O(m−(4+2k)).

We organize the amplitudes in a supersymmetric decomposition (2.32) in terms of the new
contributions for a given spin, M{S}

4 . We may then assemble these pieces into the contributions
for a particle of a given spin circulating in the loop using equation (2.32). Regarding the double-
minus configuration, starting with the spin-0 contribution and moving to the additional new
pieces through spin 2, we have,

f {0}(s, u) = K
(

1
6300m4

+
t

41 580m6

+
81(s2 + u2) + 155su

15 135 120m8
+

t
(
161(s2 + u2) + 324su

)
151 351 200m10

+
3556(s4 + u4) + 14 035(s3u + su3) + 21 030s2u2

15 437 822 400m12

+
t
(
2052(s4 + u4) + 8218(s3u + su3) + 12 287s2u2

)
41 902 660 800m14

+
4634(s6 + u6) + 27 650(s5u + su5) + 69 026(s4u2 + s2u4) + 91 987s3u3

430 200 650 880m16

+
t
(
87 780(s6 + u6) + 526 770(s5u + su5) + 1314 684(s4u2 + s2u4) + 1752 653s3u3

)
37 104 806 138 400m18

+
2551 824(s8 + u8) + 20 357 964(s7u + su7) + 71 183 961(s6u2 + s2u6)

4823 624 797 992 000m20

+
142 285 437(s5u3 + s3u5) + 177 823 240s4u4

4823 624 797 992 000m20

)
, (H1)

f {1/2}(s, u) = K
(

1
1120m4

+
t

8400m6
+

15(s2 + u2) + 28su
554 400m8

+
t
(
153(s2 + u2) + 313su

)
30 270 240m10

+
665(s4 + u4) + 2596(s3u + su3) + 3890s2u2

605 404 800m12

+
t
(
581(s4 + u4) + 2345(s3u + su3) + 3495s2u2

)
2572 970 400m14

+
29 106(s6 + u6) + 172 676(s5u + su5) + 430 955(s4u2 + s2u4) + 574 230s3u3

586 637 251 200m16

+
t
(
34 440(s6 + u6) + 207 564(s5u + su5) + 517 436(s4u2 + s2u4) + 690 109s3u3

)
3226 504 881 600m18

+
39 270(s8 + u8) + 312 240(s7u + su7) + 1091 604(s6u2 + s2u6)

16 491 024 950 400m20

+
2181 716(s5u3 + s3u5) + 2726 549s4u4

16 491 024 950 400m20

)
, (H2)
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f {1}(s, u) = K
(

1
180m4

+
t

1680m6
+

22(s2 + u2) + 39su
151 200m8

+
t
(
20(s2 + u2) + 43su

)
831 600m10

+
825(s4 + u4) + 3125(s3u + su3) + 4684s2u2

151 351 200m12

+
t
(
315(s4 + u4) + 1308(s3u + su3) + 1930s2u2

)
302 702 400m14

+
1036(s6 + u6) + 6027(s5u + su5) + 15 036(s4u2 + s2u4) + 20 030s3u3

4410 806 400m16

+
t
(
7056(s6 + u6) + 43 316(s5u + su5) + 107 555(s4u2 + s2u4) + 143 715s3u3

)
146 659 312 800m18

+
11 760(s8 + u8) + 92 232(s7u + su7) + 322 372(s6u2 + s2u6)

1075 501 627 200m20

+
644 205(s5u3 + s3u5) + 805 050s4u4

1075 501 627 200m20

)
, (H3)

f {3/2}(s, u) = K
(

1
24m4

+
t

360m6
+

9(s2 + u2) + 14su
10 080m8

+
t
(
8(s2 + u2) + 21su

)
75 600m10

+
10(s4 + u4) + 34(s3u + su3) + 51s2u2

332 640m12

+
t
(
225(s4 + u4) + 1075(s3u + su3) + 1518s2u2

)
50 450 400m14

+
105(s6 + u6) + 558(s5u + su5) + 1391(s4u2 + s2u4) + 1852s3u3

86 486 400m16

+
t
(
224(s6 + u6) + 1533(s5u + su5) + 3729(s4u2 + s2u4) + 5035s3u3

)
1102 701 600m18

+
5292(s8 + u8) + 38 416(s7u + su7) + 134 211(s6u2 + s2u6)

97 772 875 200m20

+
268 122(s5u3 + s3u5) + 335 050s4u4

97 772 875 200m20

)
, (H4)

f {2}(s, u) = K
(

1
2m4

+
s2 + su + u2

120m8
+

stu
504m10

+
(s2 + su + u2)2

3780m12
+

(s2 + su + u2)stu
7920m14

+
75(s6 + u6) + 225(s5u + su5) + 559(s4u2 + s2u4) + 743s3u3

7207 200m16

+
3(s2 + su + u2)2stu

400 400m18

+
(s2 + su + u2)(56(s6 + u6) + 168(s5u + su5) +557(s4u2 + s2u4)+834s3u3)

122 522 400m20

)
.

(H5)
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We give the relation between M4(1+, 2−, 3−, 4+) and f (s, u) in equation (3.3) and define
K in equation (3.22).

For the all-plus and single-minus configurations it suffices to give the result for the spin-
0 contribution since we obtain the remaining amplitudes via equation (2.34). For the all-plus
configuration we have

hS=0(s, u) = K
(

stu
504m2

+
(s2 + su + u2)2

3780m4
+

(s2 + su + u2)stu
7920m6

+
75(s6 + u6) + 225(s5u + su5) + 559(s4u2 + s2u4) + 743s3u3

7207 200m8

+
3(s2 + su + u2)2stu

400 400m10

+
(s2 + su + u2)

(
56(s6 + u6) + 168(s5u + su5) + 557(s4u2 + s2u4) + 834s3u3

)
122 522 400m12

+

(
392(s6 + u6) + 1176(s5u + su5) + 2481(s4u2 + s2u4) + 3002s3u3

)
stu

888 844 320m14

+
(s2 + su + u2)2

(
105(s6 + u6) + 315(s5u + su5) + 1412(s4u2 + s2u4) + 2299s3u3

)
4888 643 760m16

+
(s2 + su + u2)

(
150(s6 + u6) + 450(s5u + su5) + 1049(s4u2 + s2u4) + 1348s3u3

)
stu

5766 092 640m18

+
1

33 731 641 944 000m20

(
35 640(s12 + u12)

+ 213 840(s11u + su11) + 1174 365(s10u2 + s2u10) + 3911 625(s9u3 + s3u9)

+ 8797 526(s8u4 + s4u8) + 14 072 594(s7u5 + s5u7) + 16 416 696s6u6
))

, (H6)

while for the single-minus configuration we find

gS=0(s, u) = K
(

1
5040m2stu

+
1

6306 300m8
+

(s2 + su + u2)
441 080 640m12

+
stu

2715 913 200m14
+

(s2 + su + u2)2

22 406 283 900m16
+

(s2 + su + u2)stu
64 250 746 560m18

+

(
27(s6 + u6) + 81(s5u + su5) + 197(s4u2 + s2u4) + 259s3u3

)
25 057 791 158 400m20

)
. (H7)

The relation of M4(1+, 2+, 3+, 4+) and M4(1+, 2+, 3−, 4+) to h(s, u) and g(s, u) is found
in equation (3.3).
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