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Paterna.
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Motivated by the idea of Comprehensive Unification, we consider a gauged SO(3) flavor exten-
sion of the Standard Model, including right-handed neutrinos and a Peccei-Quinn symmetry.
The model accommodates the observed fermion masses and mixings and yields a characteristic,
successful relation among them. The Peccei-Quinn symmetry is an essential ingredient.

1 SO(3) as a gauge family symmetry: the threefold way

Since the late ’70s and beginning of the ’80s many proposals have been made to explain family
replication and the pattern of fermion masses and mixings. To this end, it seems appropriate
to consider symmetry groups containing triplet representations. Many possibilities emerge. For
example, one can use discrete symmetries like ∆(27) 2, A4

3 or T7
4 as flavor symmetries since

all of them contain triplet representations. However, only two options appear if one considers
continuous symmetries: SU(3) and SO(3). Therefore, the requirement of a gauged theory of
flavor reduces our possible choices considerably.

SU(3) is an appealing possibility that has been studied in the past (see for example6). This
family symmetry is particularly interesting because one can use Higgses in sextet, 6, represen-
tation. The 6 is an interesting representation to explain why the third family is much heavier
than the second and first generations. A fermion mass term, in this case, must come from the
vacuum expectation value (VEV) of a Higgs with SU(3) charge

Mf ∼ yf f̄L〈H〉fR . (1)

This possibility, however, requires a chiral assignment of flavor charge to fermions, fL ∼ 3 and
fR ∼ 3∗, and is plagued by anomalies unless extra, exotic fermions are introduced to cancel
them. Therefore one loses minimality to generate the hierarchy among generations a. We will
not consider this possibility further.

In this work we consider SO(3) as a gauge family symmetry1. The SO(3) group is theoret-
ically interesting because it is more easily compatible with the ideas of Grand Unified Theories
(GUT). For example, in the usual SU(5) and SO(10) theories one embeds the Standard Model
particle content in the chiral, anomaly free sets of representations: 3× (5̄+ 10) for SU(5) and
3× 16 for SO(10). As we have said, assigning these representations as SU(3) triplets generally
leads to anomalies. For example, in the SO(10) × SU(3) theory the standard (16,3) combi-
nation has an [SU(3)F ]

3 anomaly. This is not the case for SO(3) because it is automatically

aNote that this requirement of anomaly cancellation is absent if the SU(3)F is a global symmetry. However,

quantum gravity might require that all symmetries should be gauged 5.
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anomaly free. This property was used in 7 where we revived the idea of Comprehensive Uni-
fication, merging gauge and family symmetry, that was initially proposed in the ’80s 8. More
specifically, the breaking scheme SO(18) → SO(10) × SO(5)× SO(3) 9 allows for the standard
SO(10) gauge unification together with a hypercolor SO(5), which confines the 5 extra families
(leaving 3), and an SO(3) family symmetry group. This motivates consideration of SO(3) as a

family unification group. SO(3) as a gauge family symmetry was first proposed in 10. In their
pioneer work, Wilczek and Zee proposed that in the same way the SU(2) group relates up and
down-type fermions a new interaction relating families in the horizontal direction could explain
family replication. In addition the authors also propose a particular symmetry breaking pattern
as the origin of the fermion mass and mixing hierarchies.

The use of SO(3) family symmetry was a successful, predictive scenario. First of all, in that
framework quark mixing angles can be written in terms of quark masses:
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. (2)

In addition they predicted an interesting relation between quark and lepton masses

memµ

m2
τ

=
mdms

m2
b

=
mumc

m2
t

. (3)

With this formula, the threefold way was able to predict a very light top quark:

mpredicted
t ≈ 15 GeV. (4)

It is important to notice that this idea was born 16 years before the top quark was discovered.
In 1995 the top quark was discovered with a mass around 173 GeV, ruling out the original
threefold way. Notice also that due to the predicted CKM matrix (see Eq. 2) the b quark,
whose properties were not very well known by that time, was expected to decay mainly to up
quarks in the original SO(3) scenario.

2 SO(3) × U(1)PQ, the threefold way revamped

In this work 1 we revisit the SO(3) family symmetry scenario and study which are the re-
quirements to make it phenomenologically viable. We find that the implementation of the PQ
mechanism 11,12,13 à la DFSZ 14 allows to avoid the wrong top quark mass prediction and
solve the strong CP problem, simultaneously. A crucial point is that in the absence of heavy
vector-like quarks the QCD anomaly condition, needed to implement the PQ mechanism, can
only be achieved by introducing a duplicated Higgs sector (see table 1). We assume the following
pattern for their VEV

〈Φu,d〉 =
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. (5)

The ǫ1,2 correspond to small perturbations around the minimum of the scalar potential. These
scalars will couple to up-type and down-type fermions selectively.

L = q̄L(y1Ψ
u + y2Φ

u)uR + q̄L(y3Ψ
d + y4Φ

d)dR + l̄L(y5Ψ
d + y6Φ

d)eR + h.c. (6)

After electroweak breaking, Eq. (6) leads to the quark mass matrices
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(7)



Table 1: Particle content and transformation properties under the SM and flavor SO(3) gauge groups. The VEVs
of SM singlets σ and ρ break U(1)PQ and lepton number, generating Majorana neutrino masses.

qL uR dR lL eR νR Φu Φd Ψu Ψd σ ρ

SU(3)c 3 3 3 1 1 1 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 2 2 2 2 1 1

U(1)Y
1
6

2
3

-1
3

-1
2

−1 0 -1
2

1
2

-1
2

1
2

0 0

SO(3)F 3 3 3 3 3 3 5 5 3 3 5 1

U(1)PQ 1 -1 -1 1 -1 -1 2 2 2 2 2 2

while for the charged leptons we have

M e =
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, (8)

where we took into account the VEV alignment patterns of the SO(3) triplet and quintuplet

scalars, respectively (see 1 for more details). From the mass matrices above we get, in first
approximation neglecting the perturbations ǫ1,2, the fermion masses

mu,d,e = 0 , mc,s,µ = |y2,4,6ku,d − y1,3,5v
u,d| , mt,b,τ = |y2,4,6ku,d + y1,3,5v

u,d| . (9)

Once the perturbations ǫu,d1,2 are taken into account a small mass is generated for the first family

m1st ∼ ǫ22/m2nd . (10)

One can notice that this resembles to a seesaw mass relation and explains the smallness of the
first family. In addition, turning on the perturbations, ǫi, allows us to get the conceptual relation
between quark and lepton masses (also present in a A4 supersymmetric scenario 3)

mτ√
memµ

≈ mb√
mdms

. (11)

This successful formula nicely relates down-type quark and charged lepton masses. On the other
hand, the doubled Higgs structure forced by PQ symmetry allows us to avoid the unwanted top
quark mass prediction mτ√

memµ
≈ mt√

mumc
present in10. In addition to this relation, quark mixing

angles can be written in terms of quark masses with a reasonable accuracy
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. (12)

Notice that unlike θC and |Vub|, the |Vcb| matrix element is not given in terms of quark masses

but it is predicted to be small. This solves the issue of the original threefold way 10, that
predicted the b quark decaying mainly to up quarks through the weak charged current.

Another interesting feature of the framework is that since lepton number, PQ and SO(3)
family symmetries are spontaneously broken at the same scale some connections between flavor,
neutrino mass and the axion mass scales appear. In particular, the axion and neutrino mass
scales get connected through the conceptual relation

ma ∼
(

ΛQCDmπ/v
2
EW

)

mν . (13)

The connection between family and PQ symmetry breaking scales allows one to constrain the
axion decay constant. This is because the SO(3) gauge bosons can mediate ∆F = 2 processes
like K0 − K̄0 mixing, which constrain the gauge boson mass to be

g2

M2
F

≤ 1

[104 TeV ]2
. (14)



Since SO(3) bosons obtain their mass from the scalar breaking PQ symmetry, a constrain to
the axion decay constant appears: fa ≥ 107 GeV. This lower bound is, however, much weaker
than astrophysical constraints 15.

3 Conclusions

Taking Comprehensive Unification using spinors as a guideline we have studied the consequences
of extending the Standard Model with an SO(3) family symmetry. We find that the implemen-
tation of the PQ symmetry is a crucial ingredient to achieve a phenomenologically viable theory
which also offers interesting predictions in the flavor sector. In addition, the predicted QCD
axion constitutes, as usual, a successful dark matter candidate.
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