
EOS architectural evolution and strategic development di-
rections

Georgios Bitzes1,∗, Fabio Luchetti1,∗∗, Andrea Manzi1,∗∗∗, Mihai Patrascoiu1,∗∗∗∗, Andreas-
Joachim Peters1,†, Michal Kamil Simon1,‡, and Elvin Alin Sindrilaru1,§

1CERN, Esplanade des Particules 1, 1217 Meyrin, Geneva, Switzerland

Abstract. EOS [1] is the main storage system at CERN providing hundreds
of PB of capacity to both physics experiments and also regular users of the
CERN infrastructure. Since its first deployment in 2010, EOS has evolved and
adapted to the challenges posed by ever-increasing requirements for storage
capacity, user-friendly POSIX-like interactive experience and new paradigms
like collaborative applications along with sync and share capabilities.
Overcoming these challenges at various levels of the software stack meant com-
ing up with a new architecture for the namespace subsystem, completely re-
designing the EOS FUSE module and adapting the rest of the components like
draining, LRU engine, file system consistency check and others, to ensure a sta-
ble and predictable performance. In this paper we detail the issues that triggered
all these changes along with the software design choices that we made.
In the last part of the paper, we move our focus to the areas that need immediate
improvements in order to ensure a seamless experience for the end-user along
with increased over-all availability of the service. Some of these changes have
far-reaching effects and are aimed at simplifying both the deployment model but
more importantly the operational load when dealing with (non/)transient errors
in a system managing thousands of disks.

1 Introduction

The EOS Open Storage System was originally targeted for the particular use case of user
analysis in LHC experiments. Based on experience from previous storage projects at CERN
the usage of a relational database as metadata backend was dropped and replaced by an in-
memory namespace. The single file access latency was reduced to ms level. Initially EOS
offered only remote access protocols (XRootD, gridFTP). Today a big part of IO is done using
a FUSE filesystem interface.

∗e-mail: georgios.bitzes@cern.ch
∗∗e-mail: fabio.luchetti@cern.ch
∗∗∗e-mail: andrea.manzi@cern.ch
∗∗∗∗e-mail: mihai.patrascoiu@cern.ch
†e-mail: andreas.joachim.peters@cern.ch
‡e-mail: michal.simon@cern.ch
§e-mail: elvin.alin.sindrilaru@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

2 Project History

The EOS project started with an architecture document written in April 2010. Since 2011
EOS releases had been named with gemstones. The major releases were called Amber (2011),
Beryl (2012), Aquamarine (2014) and Citrine (2017-2019).

Three major changes within the Citrine version were the introduction of IPV6 support in
2017, the change of the namespace architecture in 2018 and the support of the Cern Tape
Archive (CTA) in 2019. The number of production instances has seen a linear increase over
time. First use cases were grid storage systems for LHC experiments, since 2015 use cases
like CERNBox [2] as a sync&share platform had been added. The project has run two ma-
jor R&D project phases, the first one integrating external scalable storage technologies like
Seagate Kinetic1 and Ceph RADOS2 from 2014 to 2017. Since 2019 EOS was participating
in the Extreme Data Cloud (XDC) project [5] implementing the ideas of Quality Of Service
(QOS) and Data Lakes.

[h]

CHEP 2019Architectural evolution & strategic development directions

Project History

timeline

2019

2009 2010
2011

2012
2013

2014
2015

2016
2017

2018
v 0.2 v 0.3

castor-xrootd
IF

lustre-xrootd
IF

architecture
document EOSATLAS

EOSCMS 
 EOSALICE

kinetic R&D

librados R&D

EOSLHCB

v 0.3.x

v 4.0
v 4.3

AMBER BERYL

AQUA
MARINE

CITRINE

EOSPUBLIC

EOSMEDIA
EOSALICEDAQ

EOSHOME

EOSCTAATLASPPS

EOSUSER

wopiswan tapesync&share

Quarkdb

QOS, caches & data lakes

EOSPROJECT

EOS Project Timeline
The project timeline is illustrated in figure 2.

3 Storage Use Cases

EOS is used today in two major areas:

• disk storage

– raw data storage - large files with sequential IO, write once read many storage (WORM)
– analysis use cases - files of any size, random or forward seeking access, WORM storage

1Kinetic drive technology has been phased out
2RADOS - Reliable Autonomic Distributed Object Storage

2

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

– home and project areas for the CERNBox service - file of any size including file updates,
software compilation and distribution use cases

– cloud storage at AARNet [3] and the Joint Research Centre JRC [4] - geo-distributed
deployment (60 ms latency between storage nodes) and sync&share use cases

– Tier2 center and university storage - mainly analysis use cases and simulation output
storage

– online systems - DAQ3 - high-throughput IO, WORM storage

• tape storage

– Cern Tape Archive CTA - namespace and disk buffer in front of tape system, WORM
storage

4 Development Areas

This is a brief overview of the major development areas of 2019, which we are illustrating in
detail in the following sections:

• namespace architecture (implemented in the MGM4 service)

• storage consistency (provided by the FST5 service)

• filesystem access (FUSE client and access control lists ACL)

• tape integration (CTA)

• protocols & API (Protobuf [6],XrdHttp [7], GRPC [8])

• tokens & authorisation

4.1 Namespace Architecture Evolution

4.1.1 QuarkDB

The namespace architecture until 2017 was based on a stateful metadata service. The names-
pace was in-memory and loaded on service startup. Changes were written to a changelog file
used for master/slave replication. The in-memory solution reached its limit in 2017 on the
largest instance at CERN EOSUSER with more than half a billion of files and memory re-
quirements over one TB. The startup time of the service was more than one hour and had led
to problematic service outages whenever a restart was either necessary or forced by a software
bug. The architecture has evolved into an almost stateless metadata service with an active/-
passive architecture in combination with service sharding to scale out metadata performance.
This transition is shown in figure 1.

The enabling technology was the introduction of QuarkdDB (see [9]).
QuarkDB [10] is a persistent KV store offering part of the REDIS [11] protocol. Persistency
is provided by RocksDB [13], high-availability is provided by a cluster of servers using RAFT
[12] as consensus algorithm. QuarkDB is highly available, high performance, scalable and
provides low-latency access to billions of small objects. The QuarkDB API provides the
following data types/mechanisms, which are used by the MGM service:

• KV pairs

3Data acquisition system
4Metadata Management Server
5File Storage Server

3

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

CHEP 2019Architectural evolution & strategic development directions

Architectural Evolution

MGM

FST FST FST FST

MGM

CERNBOX 2017
EOSUSER

CERNBOX 2019
EOSHOME

FST FST FST FST

FST FST FST FST

GW

MGM MGM MGM

ROUTE ROUTE ROUTE

QDBQDBQDB

FST FST FST FST

FST FST FST FST

FST FST FST FST

RO RO RO RO RO RO

RO RO RO RO RO RO

1TB RAM

at namespace scalability limit
availability constrained by infrequent long boot time of 2h

namespace scalability limit by size of SSDs on QDB nodes
automatic built-in HA mechanism for MGM failover

tested with >5B
files600M files

i00

i01 i02

i03 i04

Figure 1. Namespace Architecture Evolution

• sets

• hashes

• pub-sub

• leases

Figure 2 illustrates a typical deployment setup with three database services. The MGM ser-
vice uses still a similar implementation of in-memory metadata - his time only as a cache. Per-
formance comparisons show minimal differences between in-memory and QuarkDB based
namespaces. The major improvement is that the service startup time has decreased in some
cases from 1h to 10s.

4.1.2 Namespace High Availability

A new high-availability model is based on the lease functionality offered by QuarkDB. In a
typical deployment three MGM services try to obtain/renew an exclusive lease for the active
MGM state every few seconds. If a lease is obtained the configuration is automatically loaded
and this MGM services becomes active. All MGMs without a lease stay passive and redirect
requests to the active MGM service. Service fail-over can be forced using the command line
interface or happens automatically when the active MGM does not renew his lease. This is
illustrated in figure 3.

4

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

Figure 2. QuarkDB three-node deployment

Figure 3. Lease mechanism using QuarkDB

4.2 Filesystem Consistency

For EOS v4.6 the filesystem consistency check functionality (FSCK) has been re-engineered.
With the transition from in-memory to QuarkDB namespace the implementation was not
usable anymore in large instances. This was problematic because some instances had accu-
mulated inconsistencies over 9 years, which in turn can lead to data loss.

The FSCK functionality is provided by three elements:

• backward consistency check

• forward consistency check

• repair engine

The backward consistency check compares filesystem contents to the namespace informa-
tion. A data scanner runs on every FST node and collects inconsistencies in size, checksum
and file layout. The CERN default setting is to scan all data one per week - scanning means
here to read complete files using direct IO to compute and validate their checksums. This
check collects also orphaned files: these are files which exist on a disk, but there is a location
pointer from the namespace to access these.
The forward consistency check compares namespace information to filesystem contents. The
MGM scanner identifies missing replicas on filesystem.
The last component is the repair engine which collects and report all errors from backward
and forward scan and triggers automatic repair actions.

5

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

4.3 Filesystem Access

The FUSE daemon providing filesystem access has seen four implementation generations in
EOS.

• xrootdfs - native XRootD FUSE mount

• eosd v1 - native EOS FUSE mount

• eosd v2 - native EOS FUSE mount using kernel caching with TTLs

• eosxd - native EOS FUSE mount client with active cache-invalidation using callbacks

One of the main problem areas in filesystem access in the past was the expected POSIX
compatibility of the mount client. For eosd this has been very limited and certain features
like hard links, byte-range locks and cross-client metadata synchronisation were not existing.
The latest generation client eosxd provides now most POSIX features:

• POSIX and BSD file locking
• hard links within directories only

• RichACL [14] client support

• local file caching and write journaling
• bulk deletions and rm -r f

• strong security like kerberos, X509 and OIDC/token support [15]

• subtree based user, group and project quota
The latest development project in this area is the support of copy on write snapshot

support to offer the possibility of consistent backups.

4.4 Tape Integration

The storage group at CERN is developing a replacement of the CASTOR [16] software called
CERN tape archive CTA [17]. This service entered production in early 2020 and allows the
coupling of EOS to CTA.

EOS provides a disk cache while CTA implements the management and transfer of tape
data. A file on tape is visible in EOS as an offline replica. EOS has been extended with a
synchronous notification interface to inform CTA about changes in the disk cache.

In a CTA enabled instance data is write-once read-many (WORM). CTA uses a new EOS
mechanism to inject a replica from tape into the disk cache. An extension of the XRootD
protocol allows checking migration to tape and trigger recalls from tape. This allows to drop
the need for a storage resource manager (SRM), which had been introduced many years ago
to provide this interface but highlighted many problems in the SRM standard.

The operation model of CTA is to provide a big disk-only EOS instance combined with a
smaller CTA enabled EOS instance. Transfers between disk and tape storage are orchestrated
by the file transfer service (FTS [18]). Regular users have only direct access to the disk-only
EOS instance, while data migration and recall is only provided to production services (see
figure 4

4.5 Protocol Support

4.5.1 GRPC

We added GRPC support with token and X509 authentication as a new namespace API. The
idea behind GRPC is to provide to high-level services a well standardized protocol with

6

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

Figure 4. EOS/CTA deployment model with disk-only and tape-enabled EOS instances

support for almost any language. The primary target at CERN is the CERNBox service.
Clients can be mapped from their DN or from an individually created token to a uid/gid pair.
Another use case of GRPC is the service migration from CASTOR to CTA. All the existing
meta data has to be migrated from an Oracle database into the EOS namespace and GRPC
offers a very efficient way to do bulk insertions.
GRPC protocol is not implemented using the XRootD protocol bridge interface, which is
used for XrdHttp (see 4.5.2). The library provided C++ embedded GRPC server listens
on a separate port with a separate thread pool. GRPC functions access the XRootD OFS
filesystem object to access the same XRootD server API, which provide the storage server
implementation for XRootD and HTTP(S) protocols.
The currently supported operations in GRPC are:

• mkdir/rmdir

• touch

• rm/unlink

• ls/find

• rename

• symlink

• setxattr

• chown/chmod/acl

• list-version/purge-version

API calls like f ind use the GRPC streaming interface allowing clients to process results
as they are produced by the MGM service. In particular this allows reducing response time
for large queries and to minimize memory requirements in the MGM service.
GRPC by default uses PROTOBUF and is suitable for metadata access. GRPC using flat-
buffers [21] could replace WebDav/HTTP(S)/XRootD protocol as data transport protocol in
the future.

4.5.2 HTTP(S)

Currently HTTP support in EOS is based on libmicrohttpd [19]. HTTPS can only be provided
using a NGINX proxy in front of EOS native HTTP access. XrdHttp however is a native
implementation of HTTP and HTTPS access for the XRootD framework and we have now
bridged the libmicrohttpd based implementation to XrdHttp. Both interfaces can be used in
parallel which will allow us in the future to deprecate libmicrohttpd. XrdHttp also provides

7

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

now macaroons [20], token and HTTPS third-party copy support with optional delegation,
which is envisaged by the WLCG6 community to replace gridFTP protocol in the near future.

4.5.3 S3

AARNet uses a MiniO [22] plug-in to provide S3 compatible access to EOS instances. EOS
itself has an internal S3 implementation. The coverage of the implemented S3 API is rela-
tively small, in particular bucket handling and ACL functions are missing. The internal S3
interface might be deprecated in the next major release version.

4.6 Tokens

Besides bearer token support which is prepared in the context of WLCG and the XRootD
project, we have added a proprietary token format. This token format allows one to grant
bearers of a token scoped access to EOS instances. An EOS token is a serialized protobuf
structure, which is zlib compressed and base64 URL-encoded and signed. This allows to use
identical token formats for HTTP(S) and XRootD protocol. A token carries the following
entities:

• a namespace scope: file, directory or tree

• an ACL entry replacing locally stored ACLs using identical EOS ACL syntax

• an optional role e.g. the owner to use when creating a file

• an optional set of origin restrictions for clients and their authentication

• a generation value allowing immediate token revocation without changing encryption keys

• an expiration time

Figure 5 shows the JSON representation of a token, figure 6 shows how token are used
and created using the EOS command line interface.

Figure 5. JSON representation of an EOS token

Tokens can be used to provide delegation, sharing and single file access token functional-
ity (similar to signed S3 URLs). Details to the token format can be found under [23].

6Worldwide LHC Computing Grid

8

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

Figure 6. Usage and creation of an EOS token

5 Community Events

The CERN EOS team is organizing a yearly workshop beginning of each year to foster ex-
change between users and providers of EOS services. Information and all presentations of
the fourth edition 2020 can be found under [24]

6 Summary

EOS development has left the area of rapid feature extensions. Focus today is on consoli-
dation of a new architecture, improvement of reliability & consistency and optimization of
internal storage services to profit from QuarkDB by code refactoring. Support for the HTTP
ecosystem is important based on the WLCG community direction towards HTTPS based file
transfers and access. GRPC is strategic as metadata API, WebDAV as data access API. Era-
sure Coding (EC) is another major cost reduction factor in EOS deployments. Details about
EC are discussed in a separate publication of this conference [25].
The architectural change started in 2018 has proven to bring great improvements in usability,
stability and efficiency of EOS services. It is the necessary preparation for the scalability and
performance challenges in future LHC runs and requirements of many other science commu-
nities.

References

[1] Exabyte Scale Storage at CERN, Andreas J Peters and Lukasz Janyst 2011 J. Phys.: Conf.
Ser. 331 052015

[2] CERNBox - the cloud storage solution from CERN, https://cernbox.web.cern.ch
[3] Australias Acadamic and Research Network, https://www.aarnet.edu.au
[4] Joint Research Centre JRC, https://ec.europa.eu/jrc/

[5] eXtreme Data Cloud, https://www.extreme-datacloud.eu
[6] Protocol Buffers, https://github.com/protocolbuffers
[7] XRootd HTTP Interface, https://github.com/xrootd/xrootd/tree/master/src/XrdHttp
[8] gRPC - a high-performance RPC framework, https://grpc.io
[9] Scaling the EOS namespace – new developments, and performance optimizations, EPJ

Web of Conferences 214, 04019 (2019) CHEP 2018, https://doi.org/10.1051/epjconf/
201921404019

[10] QuarkDB - a highly available datastore, https://github.com/gbitzes/QuarkDB
[11] Redis - in-memory data structure store, https://redis.io
[12] In Search of an Understandable Consensus Algorithm, D. Ongaro and J. Ousterbout,

Stanford University, https://raft.github.io/raft.pdf

9

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

[13] RocksDB - an embeddable, persisten key-value store, https://github.com/facebook/

rocksdb
[14] Implementing an advanced access control model on Linux, Aneesh Kumar, Andreas

Gruenbacher, Greg banks, https://www.kernel.org/doc/ols/2010/ols2010-pages-19-32.pdf
[15] OpenID Connect, https://openid.net/connect
[16] CERN Advanced STORage manager, https://castor.web.cern.ch
[17] CERN Tape Archive, https://cta.web.cern.ch
[18] File Transfer Service, https://fts.web.cern.ch
[19] GNU Libmicrohttpd, https://www.gnu.org/software/libmicrohttpd
[20] Macaroons: Cookies with Contextual Caveats for Decentralized Authorisation in the

Cloud, Arnar Birgisson and Joe Gibbs Politz and Úlfar Erlingsson and Ankur Taly and
Michael Vrable and Mark Lentczner, 2014, Network and Distributed System Security
Symposium

[21] Flatbuffer, https://google.github.io/flatbuffers/
[22] MINIO - High Performance, Kubernetes-Friendly Object Storage, https://min.io
[23] Using Eos Tokens for Authorisation, http://eos-docs.web.cern.ch/eos-docs/using/

tokens.html
[24] EOS Workshop 2020, https://indico.cern.ch/event/862873
[25] Erasure Coding for production in the EOS Open Storage System, this proceedings,

Computing in High Energy Physics, CHEP 2020

10

EPJ Web of Conferences 245, 04009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504009

