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We have solved the Balistky-Kovchegov evolution equation including the impact-parameter
dependence and obtained solutions which are not spoiled by the emergence of non-perturbative
effects, dubbed Coulomb tails. This has been achieved due to the fact that using the collinearly-
improved kernel to the BK equation suppresses heavily the part of the phase-space of the equation
from which the Coulomb tails originate. This, in conjunction with an appropriate initial condition,
allows for a correct description of existing data as well as to produce predictions of processes that
are feasible for measurement at future facilities such as at the EIC or LHeC.

1 Introduction

The high-energy limit of QCD has been intensively studied in the past years due to the proper-
ties of the strong coupling and the applicability of perturbative expansions. This limit is reached
from the experimental side by collider experiments and from the theoretical side by evolution
equations. The evolution in energy (identified in this approach as rapidity) can be described by
the Balitsky-Kuraev-Fadin-Lipatov (BFKL) equation [1, 2] that incorporates gluon branching pro-
cesses. A non-linear contribution originating from gluon recombination is taken into account in the
Balitsky-Kovchegov (BK) evolution equation [3–5]. This equation has been solved in the impact-
parameter independent frame with great success in the past [6]. In this proceedings, we report
our findings from [7, 8], namely a suppression of the Coulomb tails in the impact-parameter de-
pendent computation in the collinearly improved framework. In this case, the Coulomb tails, that
violate the Martin-Froissart bound and make data description impossible [9], are suppressed by
the implementation of the recently proposed collinearly improved kernel [10]. The collinear re-
summation suppresses the contribution of the large daughter dipoles to the evolution, which are
also sensitive to the non-perturbative region where Coulomb tails are the strongest. This in turn
restores phenomenological predictive power of this equation for future and past experiments as
shown in [7, 8].
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2 The Balitsky-Kovchegov equation

The BK equation with the impact parameter dependence reads

∂N(r, b;Y )

∂Y
=

∫
d~r1K(r, r1, r2)

(
N(r1, b1;Y ) +N(r2, b2;Y )−N(r, b;Y )−N(r1, b1, Y )N(r2, b2;Y )

)
,

(2.1)

where ~r2 = ~r− ~r1 and |~ri| ≡ ri. The vectors ~ri describe the size and orientation of the dipoles. The
variables bi denote the magnitudes of the impact parameters of the daughter dipoles.

The collinearly improved kernel suppresses the part of the phase space of the equation where
large daughter dipoles are dominant [10–13] and is written as

K(r, r1, r2) =
αs
2π

r2

r21r
2
2

[
r2

min(r21, r
2
2)

]±αsA1 J1(2
√
αsρ2)√
αsρ

. (2.2)

The value ofA1 is 11/12 and the sign in the third factor is chosen positive when r2 < min(r21, r
2
2)

and negative otherwise. ρ ≡
√
Lr1rLr2r, J1 is the Bessel function and Lrir ≡ ln(r2i /r

2). The
smallest dipole prescription was chosen for the running coupling: αs = αs(rmin), where rmin =

min(r1, r2, r) as in [11].
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Figure 1: Absolute value of the ratio Kci/Krc at a fixed dipole size r = 1GeV−1 and orientation
with respect to the daughter dipole θrr1 = π/2 as a function of the daughter dipole size. Figure
taken from [7].

The region, where Coulomb tails enter the evolution is the one where large daughter dipoles
are emitted due to the fact that those regions allow for a sufficiently small impact-parameter of
a daughter dipole even when the mother dipole is far from the target center [7, 9]. As discussed
earlier, this region is suppressed in the collinearly improved kernel w.r.t. the running coupling
kernel [14] (shown in Fig. 1). We proposed a new prescription for the initial condition used for
impact-parameter dependent computations that is motivated by the physical size of the proton
target

N(r, b, Y = 0) = 1− exp

(
−1

2

Q2
s

4
r2T (bq1 , bq2)

)
, (2.3)
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where bqi are the impact parameters of the individual quark and antiquark of the initial bare dipole
and

T (bq1 , bq2) =

[
exp

(
−
b2q1
2B

)
+ exp

(
−
b2q2
2B

)]
. (2.4)

This initial condition combines the approach of the GBW model [15] for the dipole-size de-
pendence and an exponential fall-off for the proton profile in the impact parameter space [16–20].
More details and the value of the parameters can be found in [7]. The geometry of the target-dipole
interaction is taken into account by the fact that we consider the contribution of the two quarks
separately to the initial condition [7].

3 Results

Fig. 2 shows the computed dipole scattering amplitude as a function of rapidity, impact parameter
and transverse dipole size. Coulomb tails in the large-b regions are strongly suppressed [7] due to
the nature of the collinear resummation. We have also used the obtained scattering amplitude to
predict various observables that have been measured in the past years to take use of the fact, that
these solutions are no longer spoiled by the presence of non-perturbative effects to such extent that
it would spoil its predictive abilities (see Figs 3 and 4).
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Figure 2: The dipole scattering amplitude as a solution to the BK equation with the collinearly
improved kernel as a function of r for b = 10−6 GeV−1 (upper left) and b = 4 GeV−1 (upper right),
and as a function of b at r = 0.1 GeV−1 (lower left) and at r = 1 GeV−1 (lower right). Figure taken
from [7].
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Figure 3: Comparison of the structure function data from HERA [21] (solid circles) to the predic-
tion of the impact-parameter dependent BK equation with the collinearly improved kernel (lines).
Figure taken from [7].
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Figure 4: Comparison of the predictions of the model (solid lines) with HERA data from H1 [22, 23]
for the |t| dependence of the exclusive photoproduction (left) and electroproduction (right) cross
sections of the J/ψ meson. Figure taken from [7].

4 Summary

The collinearly improved kernel along with the impact-parameter dependent BK equation has
been used to demonstrate, that the previously established problem of Coulomb tails can be highly
suppressed and the new solutions allow for a correct description of data, restoring thus the pre-
dictive capabilities of the equation when including the impact-parameter dependence. This is due
to the fact, that the time-ordered gluon emissions that are embedded in the collinear resumma-
tion [11] suppress the region of large daughter dipoles [7]. This is useful for phenomenological
applications in QCD namely for the future planned facilities such as LHeC and the EIC [24, 25].
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