
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2021-036
LHCb-PAPER-2021-001

March 19, 2021

Search for CP violation in
D+

(s)
→ h+π0 and D+

(s)
→ h+η decays

LHCb collaboration†

Abstract

Searches for CP violation in the two-body decays D+
(s)→ h+π0 and D+

(s)→ h+η

(where h+ denotes a π+ or K+ meson) are performed using pp collision data collected
by the LHCb experiment corresponding to either 9 fb−1 or 6 fb−1 of integrated
luminosity. The π0 and η mesons are reconstructed using the e+e−γ final state,
which can proceed as three-body decays π0→ e+e−γ and η→ e+e−γ, or via the
two-body decays π0 → γγ and η → γγ followed by a photon conversion. The
measurements are made relative to the control modes D+

(s)→ K0
Sh

+ to cancel the
production and detection asymmetries. The CP asymmetries are measured to be

ACP (D+→ π+π0) = (−1.3± 0.9± 0.6)%,

ACP (D+→ K+π0) = (−3.2± 4.7± 2.1)%,

ACP (D+→ π+η) = (−0.2± 0.8± 0.4)%,

ACP (D+→ K+η) = (−6 ± 10 ± 4 )%,

ACP (D+
s → K+π0) = (−0.8± 3.9± 1.2)%,

ACP (D+
s → π+η) = ( 0.8± 0.7± 0.5)%,

ACP (D+
s → K+η) = ( 0.9± 3.7± 1.1)%,

where the first uncertainties are statistical and the second systematic. These
results are consistent with no CP violation and mostly constitute the most precise
measurements of ACP in these decay modes to date.
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1 Introduction

The observation of Charge-Parity (CP ) violation in two-body decays of neutral D
mesons [1] motivates searches for similar effects in charged D meson decays. The two-
body D+

(s)→ h+π0 and D+
(s)→ h+η decays, where h+ denotes a π+ or K+ meson,1 are

mediated by Cabibbo favoured (CF), singly Cabibbo suppressed (SCS) or doubly Cabibbo
suppressed (DCS) processes. The SCS modes D+

s → K+π0, D+→ π+η and D+
s → K+η

receive contributions from two different weak phases, proportional to the products of
the CKM matrix elements VcdV

∗
ud and VcsV

∗
us, allowing CP violation at tree-level. In the

Standard Model (SM), the CP asymmetries are expected to be of the order 10−4–10−3 [2–7].
The CF mode D+

s → π+η and the DCS modes D+→ K+π0 and D+→ K+η receive
contributions from only one weak phase at tree-level, requiring interference with loop-level
processes to exhibit CP violation. The D+

s → π+π0 mode proceeds via an annihilation
topology decay and is therefore highly suppressed.

The SCS D+→ π+π0 mode is of particular interest as the CP asymmetry in the SM
is expected to be zero as a result of isospin constraints [3–6]. The CP asymmetries of the
signal decays are defined to be

ACP (D+
(s)→ h+h0) ≡

Γ(D+
(s)→ h+h0)− Γ(D−(s)→ h−h0)

Γ(D+
(s)→ h+h0) + Γ(D−(s)→ h−h0)

, (1)

where Γ is the partial decay rate and h0 denotes either a π0 or an η meson. A non-zero
value of ACP (D+→ π+π0), coupled with a verification that the isospin sum rule

R =
ACP (D0→ π+π−)

1 +
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(
B00
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is consistent with zero, would be an indication of physics beyond the SM [7–10]. Here,
τD+ and τD0 represent the D+ and D0 lifetimes and B+−, B00 and B+0 represent the
branching fractions of D0→ π+π−, D0→ π0π0 and D+→ π+π0 decays, respectively. A
recent measurement from the Belle collaboration determined the CP asymmetry to be
ACP (D+→ π+π0) = (2.31± 1.24± 0.23)% [10], where the first uncertainty is statistical
and the second is systematic, corresponding to a value of R = (−2.2± 2.7)× 10−3.

In this article measurements of CP asymmetries of seven D+
(s)→ h+π0 and D+

(s)→ h+η

modes are performed, using samples corresponding to either 9 fb−1 or 6 fb−1 of integrated
luminosity, respectively, collected by the LHCb experiment in proton-proton (pp) collisions
at the LHC. The 6 fb−1 data set comprises data collected during 2015–2018 (Run 2)
at a centre-of-mass energy of 13 TeV, whilst the 9 fb−1 data set additionally includes
data collected during 2011–2012 (Run 1) at centre-of-mass energies of 7 TeV and 8 TeV.
The neutral π0 and η mesons are reconstructed via decays to the e+e−γ final state.
The reconstruction of electron and positron tracks, in addition to the charged hadron
track from the D+

(s) meson decay, enables the determination of the displaced D+
(s) meson

decay vertex and suppresses background from particles originating from the primary pp
interaction. The signal receives contributions from the suppressed three-body Dalitz
decays π0 → e+e−γ and η → e+e−γ with branching fractions (1.174 ± 0.035)% and

1Inclusion of charge conjugated processes is implied throughout, except when discussing asymmetry
definitions.
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(6.9 ± 0.4) × 10−3, respectively [11], as well as the more common π0→ γγ and η→ γγ
decays with branching fractions (98.823± 0.034)% and (39.41± 0.20)% [11], where one
of the photons subsequently interacts with the detector material and is converted to an
e+e− pair. Converted photons have been previously exploited at LHCb [12–16], but this
is the first measurement to use converted photons to reconstruct π0 and η mesons.

Experimentally, the raw asymmetry of each signal mode is measured, which is defined
to be

ARaw(D+
(s)→ h+h0) ≡

N(D+
(s)→ h+h0)−N(D−(s)→ h−h0)

N(D+
(s)→ h+h0) +N(D−(s)→ h−h0)

, (3)

where N is the signal yield. This can be approximated by

ARaw(D+
(s)→ h+h0) ≈ ACP (D+

(s)→ h+h0) + AProd(D+
(s)) + ADet(h

+), (4)

where AProd(D+
(s)) and ADet(h

+) represent the production and detection asymmetries of
the corresponding hadrons. In order to cancel the production and detection asymmetries,
the raw asymmetry of D+

(s)→ K0
Sh

+ control decays is subtracted, approximated by

ARaw(D+
(s)→ K0

Sh
+) ≈ ACP (D+

(s)→ K0
Sh

+) + AProd(D+
(s)) + ADet(h

+) + AMix(K
0), (5)

where the extra term AMix(K
0) arises due to the CP asymmetry induced by mixing

and decay of the neutral K0
S meson [17]. As the nuisance asymmetries are known to be

kinematically dependent, the D+
(s)→ K0

Sh
+ samples are weighted to match the kinematic

distributions of the signal candidates to optimally reduce the impact of the production and
detection asymmetries. The CP asymmetry for the signal modes can then be determined
as

ACP (D+
(s)→ h+h0) = ARaw(D+

(s)→ h+h0)− Aw
Raw(D+

(s)→ K0
Sh

+)

+ACP (D+
(s)→ K0

Sh
+) + AMix(K

0),
(6)

where Aw
Raw represents the raw asymmetry determined from weighted samples, the values of

ACP (D+
(s)→ K0

Sh
+) are accounted for using external inputs with sub-percent precision [18],

and AMix(K
0) is calculated using a description of the detector material and the distribution

of K0
S decay times and momentum in the selected data, as detailed in Refs. [18,19].

This article is structured as follows: the LHCb experiment is described in Section 2; the
requirements used to reconstruct the signal samples are given in Section 3; a description of
the fits to the invariant mass distributions can be found in Section 4; the treatment of the
D+

(s)→ K0
Sh

+ control modes is given in Section 5; the sources of systematic uncertainty are
detailed in Section 6; and finally the results and conclusions are summarised in Section 7.

2 Detector

The LHCb detector [20, 21] is a single-arm forward spectrometer covering the
pseudorapidity range between 2 and 5, designed for the study of particles containing
b or c quarks. The detector includes a high-precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction region (VELO), a large-area
silicon-strip detector located upstream of a dipole magnet with a bending power of about
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4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream
of the magnet. The tracking system provides a measurement of the momentum, p, of
charged particles with a relative uncertainty that varies from 0.5% at low momentum
to 1.0% at 200 GeV/c. The minimum distance of a track to a primary pp collision vertex
(PV), the impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where
pT is the component of the momentum transverse to the beam, in GeV/c. Different types
of charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors. Photons, electrons and hadrons are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The online event selection is performed by a trigger,
which consists of a hardware stage, based on information from the calorimeter and muon
systems, followed by a software stage, which applies a full event reconstruction.

Simulation is required to determine the invariant-mass distributions of the signal
decays, develop the selection and constrain the yields of background from other particles
misidentified as the signal-decay products. In the simulation, pp collisions are generated
using Pythia [22] with a specific LHCb configuration [23]. Decays of unstable particles are
described by EvtGen [24], in which final-state radiation is generated using Photos [25].
The interaction of the generated particles with the detector, and its response, are im-
plemented using the Geant4 toolkit [26] as described in Ref. [27]. The underlying pp
interaction is reused multiple times, with an independently generated signal decay for
each [28].

3 Event selection

To reconstruct the D+
(s) meson candidate a well-identified kaon or pion track is combined

with a neutral meson to form a secondary decay vertex displaced from any PV. The
neutral π0 and η candidates are formed from two oppositely charged electron tracks
that are combined with a photon candidate to create a neutral-meson decay vertex. A
bremsstrahlung-recovery algorithm associates additional deposits from soft photons to
those produced by the electrons in the electromagnetic calorimeter. To improve the
resolution, the electron tracks must include a track segment within the VELO.

At the hardware trigger level, candidates are selected by either directly identifying
high transverse-momentum deposits from the signal in the electromagnetic or hadronic
calorimeters, or by independently identifying another energetic particle produced in
the pp collision. Inclusive multivariate (MVA) software triggers ensure the presence of
well-reconstructed tracks that are inconsistent with originating from any PV. A second
high-level software trigger performs a full event reconstruction to form the D+

(s) candidates.
In Run 1, no dedicated exclusive triggers for the signal modes were implemented, but small
samples of D+

(s)→ h+π0 candidates are reconstructable as a result of the overlap with
existing exclusive two- and three-body D-meson-decay triggers. No attempt is made to
reconstruct D+

(s)→ h+η candidates using the Run 1 data set. In Run 2, dedicated exclusive

software triggers were added to form both D+
(s)→ h+π0 and D+

(s)→ h+η signal candidates.
These require the presence of a photon and three well-reconstructed tracks, inconsistent
with originating from any PV. The invariant masses of the π0 (η) meson candidates are
required to be in the range 70 < m(e+e−γ) < 210 MeV/c2 (450 < m(e+e−γ) < 650 MeV/c2)
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with pT > 200 MeV/c (500 MeV/c). The D+
(s) candidate is required to have a good vertex

quality and a transverse momentum pT > 3000 MeV/c.
Offline, the D+

(s) candidate selection is refined by requiring that the momentum of the

tracks is in the range 3 < p < 100 GeV/c and their pseudorapidity is between 1.5 and
5.0. The D+

(s) candidates are required to have a mass in the range 1600 < m(D+
(s)) <

2200 MeV/c2, be consistent with originating at a primary interaction and have a decay
time of t > 0.15 ps (0.25 ps) for D+

(s)→ h+π0 (D+
(s)→ h+η) candidates. Additionally, the

angle between the momentum direction and the vector joining the PV and D+
(s) decay

vertex, referred to as the direction angle, must be smaller than 10 mrad.
Fiducial requirements are placed on the charged-hadron tracks to remove regions

of large detection asymmetries, for example regions where a track of one charge would
be bent out of the acceptance by the magnetic field whilst the opposite charge would
be detected; the same criteria are used as in the previous measurements of the control
modes [18].

Particle identification (PID) requirements are applied using MVA-based PID variables
for the charged particles and the photon to reduce the amount of combinatorial and
misidentification background [29, 30]. Loose PID requirements are applied to the pion
and electron tracks. Tighter requirements are applied to kaon candidates to reduce
the rate of π+→ K+ misidentification from the more abundant pion modes into the
suppressed kaon modes. When reconstructing π0 mesons, a loose requirement is placed
on an MVA-based photon-quality variable [31], whilst for η mesons, a tighter condition
is required to reduce the level of combinatorial background. Requirements are placed
on electron bremsstrahlung PID variables to ensure that the correct photon deposits are
recovered. Decays with a total of either zero or one bremsstrahlung photon per e+e− pair
are used in this analysis. For D+→ h+π0 (D+→ h+η) decays this corresponds to 62%
and 38% (31% and 48%) of the reconstructed candidates, respectively. Decays with two
or more bremsstrahlung photons per e+e− pair are removed as they result in a poor D+

(s)

invariant mass resolution and high background level.
The offline selection requirements give a reasonable compromise between the efficiency

of candidates selected with different numbers of bremsstrahlung photons, and also between
candidates decaying via photon conversions or three-body h0 → e+e−γ decays, with
efficiencies of the order O(10−6) in Run 1 and O(10−5) in Run 2.

After the full selection has been applied, approximately 3% (2%) of events are found to
have multiple D+

(s)→ h+π0 (D+
(s)→ h+η) candidates predominately due to combinations

with alternative photon candidates, of which all are retained. The signal decays are found
to be dominated by π0→ γγ and η→ γγ decays followed by a photon conversion, rather
than the three-body Dalitz decays π0→ e+e−γ and η→ e+e−γ, with approximately 86%
of the candidates resulting from photon conversions.

4 Signal modes and fit model

The raw asymmetries of the signal modes are measured using two-dimensional extended
simultaneous unbinned maximum-likelihood fits to the invariant mass m(e+e−γ) and
the invariant mass difference m(h+h0) ≡ m(h+e+e−γ)−m(e+e−γ) + M(h0)PDG, where
M(h0)PDG corresponds to the known π0 and η masses [11]. The quantity m(h+h0) is
constructed to reduce the correlations between the two dimensions, and is referred to
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Figure 1: Distribution of the (left) m(h+π0) and (right) m(e+e−γ) mass for (top) D+
(s)→ π+π0

and (bottom) D+
(s)→ K+π0 candidates, summed over all categories of the simultaneous fit.

Projections of the total fit result and individual fit components are overlaid. This includes
D+→ h+π0 decays in dashed red, D+

s → h+π0 decays in solid grey, pure combinatorial decays
in dashed black and real-π0 combinatorial background in dotted green. The misidentification
background is too small to be seen in these distributions.

as the D+
(s) candidate mass henceforth. The m(h+h0) and m(e+e−γ) mass distributions

are shown for D+
(s)→ h+π0 and D+

(s)→ h+η candidates in Figs. 1 and 2. The fits are

performed for D+
(s) → h+π0 candidates in the ranges 1750 < m(h+h0) < 2100 MeV/c2

and 90 < m(e+e−γ) < 180 MeV/c2, and for D+
(s) → h+η candidates in the ranges

1775 < m(h+h0) < 2100 MeV/c2 and 470 < m(e+e−γ) < 640 MeV/c2.
The fits are performed simultaneously on candidates in categories that depend on the

running period, the presence of bremsstrahlung photons, charged-hadron type (pion or
kaon) and the candidate charge. All D+

(s)→ h+η candidates were collected during Run 2.

The D+
(s)→ h+π0 candidates are split into three running period categories, 2011, 2012 and

Run 2, where the centre-of-mass energies were 7, 8, and 13 TeV, respectively. Candidates
with either zero or one bremsstrahlung photon per e+e− pair are split into two categories
as they have different mass resolutions. The fits are performed on candidates with π+ and
K+ mesons simultaneously to allow the signal yields in either category to determine the
misidentification-background yields in the corresponding category.

Two-dimensional probability density functions (PDFs) are used to model different
contributions within the mass windows. These contributions can be categorised as signal
decays, misidentification background, partially reconstructed low-mass background and
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Figure 2: Distribution of the (left) m(h+η) and (right) m(e+e−γ) mass for (top) D+
(s)→ π+η and

(bottom) D+
(s)→ K+η candidates, summed over all categories of the simultaneous fit. Projections

of the total fit result and individual fit components are overlaid. This includes D+→ h+η decays
in dashed red, D+

s → h+η decays in solid grey, pure combinatorial decays in dashed black and
partially reconstructed background in dotted magenta. The misidentification background is too
small to be seen in these distributions.

combinatorial background. The total yield and raw asymmetry of all signal and background
components are free to vary in the fits. A component for D+

s → π+π0 signal is included in
the fit, but due to the negligible yield no corresponding raw asymmetry is measured. The
PDFs are assumed to be the same for positively and negatively charged candidates, but
otherwise allowed to differ for the other categories of the simultaneous fit. In the fit to
D+

(s)→ h+π0 candidates the same raw asymmetries are shared between different running
periods.

The signal modes are modelled by the sum of a two-dimensional Gaussian function
and two two-dimensional Crystal Ball functions [32]. The shape parameters and fraction
of each function are determined from fits to simulated decays passing the full selection. To
account for residual correlations between m(h+h0) and m(e+e−γ) resulting in part from
radiative tails, the mean h0 (D+

(s)) mass is allowed to vary quadratically as a function of

the D+
(s) (h0) mass in the fits to D+

(s)→ h+π0 (D+
(s)→ h+η) candidates. When performing

fits to data, freely varying scaling factors are applied to the widths of the PDFs, and freely
varying offsets are added to the mean positions and quadratic correlation coefficients to
account for differences between data and simulation. Different parameters are introduced
for each running period and bremsstrahlung category. When determining PDFs from
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simulated decays, the candidates are weighted to account for the PID requirements using
input from calibration samples [30].

The fit model accounts for misidentified signal decays, where a π+ track has been
incorrectly assigned the K+ mass hypothesis, or vice versa, using the same two-dimensional
parameterisation as the signal shapes. The PDF parameters are determined from fits
to the corresponding simulated signal decays passing the full selection for the charged
hadron with the wrong mass hypothesis, including weights to account for the misidentifi-
cation probabilities. When performing the fits to data, the yield of the misidentification
background is constrained to the yield of signal in the other charged-hadron category
multiplied by the relevant ratio of efficiencies determined from simulated decays and PID
calibration samples. The yields of misidentification background contributions are below
approximately 3% of the corresponding signal yields.

Combinatorial background resulting from random combinations of tracks and photons
is modelled with an exponential function in the m(h+h0) dimension and a second-order
Chebychev polynomial function in the m(e+e−γ) dimension. In the fit to D+

(s)→ h+π0

candidates, it is found necessary to include a combinatorial component comprising a real
π0 meson combined with an unrelated track. The PDF is constructed from a peaking
distribution in the m(e+e−γ) dimension and an exponential function in the m(h+h0)
dimension. The peaking distribution is constructed from the sum of two Crystal Ball
functions, whose shape is determined from one-dimensional fits to the simulated signal
decays. However, when fitting data a freely varying mass offset and resolution scaling
factor are included to allow the π0 mass distribution to differ from that of the signal
decays. No significant contribution from combinatorial decays with a real η meson and
an unrelated track is found when fitting D+

(s)→ h+η decays, therefore no corresponding
component is included.

Decays of charm mesons to h+h0X final states, where X is at least one unreconstructed
particle, appear as partially reconstructed background below the D+

(s) meson masses. Using

external input on branching fractions and charm-meson production cross-section ratios [11,
33] it is determined that only the decay D+

s → π+ηπ0 has a significant contribution in
the fit to D+

(s)→ π+η candidates. To account for this component, a shape comprising

an exponential function in the m(h+η) dimension with a freely varying coefficient and a
peaking m(e+e−γ) distribution constructed from two Crystal Ball functions is added.

The fit model is validated using pseudo-experiments and no significant biases in the
values or statistical uncertainties of the raw asymmetries are observed. The projections of
the fits to D+

(s)→ h+π0 and D+
(s)→ h+η candidates, summed over all relevant categories,

are shown in Figs. 1 and 2, respectively. The pull distributions are examined for each
category of the fit in both projections and in two dimensions, and no significant biases
are seen. The corresponding signal yields and raw asymmetries are listed in Table 1.
The D+ and D+

s signal distributions overlap, leading to small correlations between the
measured raw asymmetries. The correlation coefficients are listed in Table 2 and the
largest correlation is 10%.

5 Control modes

The impact of production and detection asymmetries of the signal modes is accounted
for using large samples of D+

(s)→ K0
Sh

+ decays. The samples are selected using similar
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Table 1: Signal yields in each running period and corresponding raw asymmetries for D+
(s)→ h+π0

and D+
(s)→ h+η candidates. The uncertainties are statistical.

Mode Yield ARaw (%)
2011 2012 Run 2

D+→ π+π0 740± 60 2 240± 120 25 750± 430 −1.64± 0.93
D+
s → π+π0 20± 30 −50± 50 450± 120 -

D+→ K+π0 10± 13 90± 30 2 440± 110 −2.53± 4.75
D+
s → K+π0 54± 13 150± 30 2 580± 90 −0.25± 3.87

D+→ π+η - - 32 760± 380 −0.55± 0.76
D+
s → π+η - - 37 950± 340 0.75± 0.65

D+→ K+η - - 880± 70 −5.39± 10.40
D+
s → K+η - - 2 520± 70 1.28± 3.67

Table 2: Correlation coefficients between the raw asymmetries determined for D+
(s)→ h+π0 and

D+
(s)→ h+η decays.

D+→ π+π0 D+→ K+π0 D+
s → K+π0

D+→ π+π0 1.00
D+→ K+π0 −0.01 1.00
D+
s → K+π0 −0.09 0.10 1.00

D+→ π+η D+→ K+η D+
s → π+η D+

s → K+η

D+→ π+η 1.00
D+→ K+η −0.00 1.00
D+
s → π+η 0.01 0.00 1.00

D+
s → K+η −0.06 0.10 −0.00 1.00

requirements to the signal modes, where possible. Candidates are built at the high-level
software trigger stage by first combining two well-reconstructed hadronic tracks that are
inconsistent with originating from any PV to create the K0

S decay vertex. Similar to the
electrons, these tracks must also have track segments within the VELO. The K0

S candidate
is combined with a hadronic track with either the pion or kaon mass hypothesis to form
the D+

(s) decay vertex. The same momentum, pseudorapidity and fiducial requirements
are placed on the tracks as used for the signal. The candidates are required to have
482 < m(π+π−) < 512 MeV/c2 and 1800 < m(K0

Sh
+) < 2050 MeV/c2, a decay time of

t > 0.25 ps, and the same direction angle and pT requirements as the signal. Tighter PID
requirements are placed on the control mode candidates than the signal to remove larger
contamination from misidentification background.

The kinematic distributions of the signal and control candidates are determined using
the sPlot technique [34] with m(K0

Sh
+) as the discriminating variable for the latter. Binned

maximum-likelihood fits are performed on the control-mode candidates using signal models
comprising a Gaussian function and Johnson SU function [35] as described in Ref. [18].
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Figure 3: Distributions of the (left) m(K0
Sπ

+) and (right) m(K0
SK

+) mass of control mode
candidates in (top) Run 1 and (bottom) Run 2. The total PDF and individual fit components
are overlaid, including D+→ K0

Sh
+ decays in dashed red, D+

s → K0
Sh

+ decays in solid grey and
background decays in dashed black.

The results are shown in Fig. 3. The weighting procedure is performed separately for
Run 1 and Run 2 to allow for differences in the signal selection during these periods.
To ensure the cancellation of the production and detection asymmetries, the relevant
D+

(s) and h+ kinematics (p, azimuthal angle and pseudorapidity) are weighted to match

those of the signal. Due to the large correlation between the D+
(s) and h+ kinematics the

weights for each variable are determined using a two-dimensional binning of the D+
(s) and

h+ distributions. In addition to the kinematics, weights are determined for the trigger
category and IP distributions for the D+

(s) candidates. At the hardware trigger stage the
candidates can be split into exclusive categories according to the origin of the positive
trigger decision: the first category contains any candidate with a calorimeter deposit
associated to the h0 or K0

S decay; the second category contains any remaining candidate
with a deposit not associated to any of the signal particles; and the third category contains
candidates still remaining with a high pT deposit associated to the charged pion or
kaon. The control-mode candidates are weighted to reproduce the populations of signal
candidates in each of these three categories.

The IP of the D+
(s) candidate is indicative of whether the meson was produced in the

primary interaction, or as a product of a b-hadron decay, and therefore with a significant IP
with respect to the PV, referred to as a secondary decay. In the latter case the production
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Table 3: Absolute systematic uncertainties (%) on the CP asymmetries for D+
(s)→ h+π0 decays.

Source D+→ π+π0 D+→ K+π0 D+
s → K+π0

Fit model 0.59 1.55 1.01
PID asymmetry 0.06 0.27 0.15
Secondary decays < 0.01 0.01 0.02
Combined ARaw Run 1 and Run 2 0.23 0.65 0.30
Control modes 0.03 1.18 0.59
AMix(K

0) < 0.01 < 0.01 < 0.01
ACP (D+

(s)→ K0
Sh

+) 0.12 0.08 0.26

Total 0.65 2.07 1.24

Table 4: Absolute systematic uncertainties (%) on the CP asymmetries for D+
(s)→ h+η decays.

Source D+→ π+η D+
s → π+η D+→ K+η D+

s → K+η

Fit model 0.35 0.15 4.04 1.08
PID asymmetry 0.06 0.01 0.87 0.16
Secondary decays < 0.01 0.02 0.01 0.04
Control modes 0.05 0.39 0.14 0.12
AMix(K

0) < 0.01 < 0.01 < 0.01 < 0.01
ACP (D+

(s)→ K0
Sh

+) 0.12 0.20 0.08 0.26

Total 0.38 0.46 4.13 1.13

asymmetry of the parent b-hadron could differ from that of the D+ or D+
s meson. The

signal and control mode selections require that the D+
(s) candidates are consistent with

originating at a PV, suppressing the fraction of candidates from secondary decays to less
than 10%. If the fraction of D+

(s) candidates from the primary interaction and secondary
decays varies between the signal and control mode then the production asymmetries may
not exactly cancel, therefore the control sample is weighted to match the IP distribution
of the signal.

Binned maximum-likelihood fits are performed to the charge-split samples to determine
the raw asymmetries separately for Run 1 and Run 2. The signals are described using the
sum of a Gaussian function and Johnson SU function, using the same model as described
in Ref. [18]. The fits are performed after the samples have been weighted to match the
kinematics of the signal modes, and the statistical uncertainty is calculated using the
weights to account for the loss of precision resulting from the weighting procedure.

6 Systematic uncertainties

The systematic uncertainty on the CP asymmetries receives contributions from a number
of sources, including the signal and background parameterisations, the control modes and
selection requirements. The assumptions used when creating the signal and background
parameterisations are varied and the corresponding systematic uncertainty is quantified us-

10



ing the resulting difference in the raw asymmetries in the fits to data. This includes using:
alternative signal parameterisation comprising Johnson SU functions instead of Crystal
Ball functions; different pure-combinatorial m(h+h0) parameterisations of a constant plus
exponential function; alternative pure-combinatorial m(e+e−γ) parameterisations of a
third-order Chebychev polynomial function; alternative real-π0 combinatorial parameterisa-
tion of a double Johnson SU ; and different misidentification-background parameterisations
using Johnson SU functions instead of Crystal Ball functions. The efficiencies used to
constrain the level of misidentification background are varied within the corresponding
uncertainties in 100 fits and the spread in the raw asymmetries is used to estimate the
systematic uncertainty. The impact on the raw asymmetries is quantified when various
neglected background components are included in the model, including semileptonic
D+

(s)→ h0e+νe and D+
(s)→ h0µ+νµ decays, partially reconstructed D0→ K−π+π0 decays

and a combinatorial component with a real-η distribution. Additionally, the assumption
that the pure-combinatorial m(h+h0) exponential slope is independent of m(e+e−γ) is
relaxed by allowing a linear dependence. The signal tail parameters that are fixed to
values obtained from simulation are allowed to vary with an overall scaling factor and
the impact on the raw asymmetries is quantified. The assumption that the mean D+

(s)

mass positions are the same for D+
(s) and D−(s) candidates is tested by allowing different

values. The systematic uncertainty from the fit model is dominated by the fixed tail
parameters for D+→ π+π0, the fixed misidentification efficiency ratio for D+→ K+π0

and D+
s → K+π0 decays, the signal parameterisation for D+→ π+η decays and the lack

of real-η combinatorial contribution for D+
s → π+η, D+→ K+η and D+

s → K+η decays.
The selection of the signal and control modes uses different requirements for the PID

variables. Tighter conditions are needed for the control modes to reduce misidentification
background such as Λ+

c → pK0
S decays. The size of a possible charge asymmetry induced

by these different requirements is quantified by first computing the asymmetry of the PID
efficiencies, εPID, when determined separately for positively and negatively charged hadrons,
APID = [εPID(h+)−εPID(h−)]/[εPID(h+)+εPID(h−)]. Then, the difference in PID asymmetry
when calculated using signal and control mode PID requirements, ∆APID = Asignal

PID −Acontrol
PID ,

is used to quantify the corresponding systematic uncertainty. Additionally, the difference
in the raw asymmetries when not performing the IP weighting is used to quantify the
systematic uncertainty arising from the secondary decays.

The asymmetries for D+
(s)→ h+π0 decays are determined from simultaneous fits to

data sets taken during Run 1 and Run 2, with a single CP asymmetry shared between the
categories for each mode. In contrast, the control-mode fits are performed separately for
Run 1 and Run 2 and then a weighted average is performed to combine the measurements,
where the weighting is determined from the yields of signal mode decays. The systematic
uncertainty arising from this method is quantified by performing the signal fits separately
for Run 1 and Run 2, taking the appropriate difference with the control-mode asymmetries
and then combining the Run 1 and Run 2 results to get an alternative estimate.

The control-mode weighting is performed in nearly equally populated bins. The binning
scheme is varied to determine the associated systematic uncertainty. After performing
the weighting procedure, the remaining discrepancies in the kinematic distributions are
quantified by summing the difference in the normalised distributions of signal and control
modes, multiplied by the local asymmetry minus the average asymmetry. The fit model
used to measure the control-mode raw asymmetries is varied from the sum of a Johnson
SU function and a Gaussian function to the sum of a Crystal Ball function and a Gaussian
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Table 5: Final ACP (%) results for the D+
(s)→ h+π0 modes. The uncertainties of ACP (D+

(s)→
h+π0) are statistical and systematic respectively. The uncertainties of ARaw(D+

(s)→ h+π0) are

purely statistical. The uncertainties of AMix(K0) are systematic. Externally measured values of
ACP (D+

(s)→ K0
Sh

+) are taken from Refs. [18, 36–40].

D+→ π+π0 D+→ K+π0 D+
s → K+π0

ARaw(D+
(s)→ h+π0) −1.64 ± 0.93 −2.53 ± 4.75 −0.25 ± 3.87

Aw
Raw(D+

(s)→ K0
Sh

+) −0.45 ± 0.02 0.58 ± 0.08 0.60 ± 0.07

ACP (D+
(s)→ K0

Sh
+) −0.02 ± 0.12 −0.01 ± 0.08 0.09 ± 0.26

AMix(K
0) −0.070± 0.004 −0.072± 0.004 −0.072± 0.004

ACP (D+
(s)→ h+π0) −1.3± 0.9± 0.6 −3.2± 4.7± 2.1 −0.8± 3.9± 1.2

function. The contribution to the control mode raw asymmetry from the neutral-kaon
mixing and decay asymmetry is calculated and the corresponding uncertainty of this
calculation is dominated by the knowledge of the detector material. The uncertainties of
the external values of the control mode ACP are included as systematic uncertainties.

The systematic uncertainties are listed for the D+
(s)→ h+π0 modes in Table 3 and for

the D+
(s)→ h+η modes in Table 4. These are dominated by the fit-model uncertainty in

most cases, except for the mode D+
s → π+η which is dominated by the uncertainty arising

from the control mode D+
s → K0

Sπ
+, the smallest of the control samples.

As a crosscheck, the fits are performed in various subsamples: split by year of data
taking; magnet polarity; trigger category; bremsstrahlung category; D+

(s) kinematics and

h+ kinematics. No significant biases are found with respect to the nominal results.

7 Results and conclusions

The CP asymmetries are calculated using Eq. 6, where for each mode the correspond-
ing control channel Aw

Raw, independently measured ACP (D+
(s)→ K0

Sh
+) and calculated

AMix(K
0) are taken. The final results are listed in Tables 5 and 6. The results are

shown with the corresponding statistical uncertainty from the fits and the total system-
atic uncertainty as listed in Tables 3 and 4. The systematic uncertainties attributed to
Aw

Raw(D+
(s)→ K0

Sh
+), ACP (D+

(s)→ K0
Sh

+) and AMix(K
0) are listed separately.

In summary, measurements of CP asymmetries in D+
(s)→ h+π0 and D+

(s)→ h+η decays

are performed using pp collision data corresponding to 9 fb−1 and 6 fb−1 of integrated
luminosity collected at the LHCb experiment, respectively. The neutral mesons are
reconstructed using the e+e−γ final state, allowing the D+

(s) decay vertex to be recon-
structed. The production and detection asymmetries are cancelled using large samples
of D+

(s)→ K0
Sh

+ decays, weighted to match the kinematics of the signal modes. The CP

12



Table 6: Final ACP (%) results for the D+
(s)→ h+η modes. The uncertainties of ACP (D+

(s)→ h+η)

are statistical and systematic respectively. The uncertainties of ARaw(D+
(s)→ h+η) are purely

statistical. The uncertainties of AMix(K0) are systematic. Externally measured values of
ACP (D+

(s)→ K0
Sh

+) are taken from Refs. [18, 36–40].

D+→ π+η D+
s → π+η

ARaw(D+
(s)→ h+η) −0.55 ± 0.76 0.75 ± 0.65

Aw
Raw(D+

(s)→ K0
Sh

+) −0.46 ± 0.04 −0.02 ± 0.37

ACP (D+
(s)→ K0

Sh
+) −0.02 ± 0.12 0.13 ± 0.20

AMix(K
0) −0.070± 0.004 −0.070± 0.004

ACP (D+
(s)→ h+η) −0.2± 0.8± 0.4 0.8± 0.7± 0.5

D+→ K+η D+
s → K+η

ARaw(D+
(s)→ h+η) −5.39 ± 10.40 1.28 ± 3.67

Aw
Raw(D+

(s)→ K0
Sh

+) 0.33 ± 0.10 0.36 ± 0.10

ACP (D+
(s)→ K0

Sh
+) −0.01 ± 0.08 0.09 ± 0.26

AMix(K
0) −0.073± 0.004 −0.073± 0.004

ACP (D+
(s)→ h+η) −6± 10± 4 0.9± 3.7± 1.1

asymmetries are determined to be

ACP (D+→ π+π0) = (−1.3± 0.9± 0.6)%,

ACP (D+→ K+π0) = (−3.2± 4.7± 2.1)%,

ACP (D+→ π+η) = (−0.2± 0.8± 0.4)%,

ACP (D+→ K+η) = (−6 ± 10 ± 4 )%,

ACP (D+
s → K+π0) = (−0.8± 3.9± 1.2)%,

ACP (D+
s → π+η) = ( 0.8± 0.7± 0.5)%,

ACP (D+
s → K+η) = ( 0.9± 3.7± 1.1)%,

where the first uncertainty is statistical and the second systematic. All of the results are
consistent with CP symmetry and the first five constitute the most precise measurements
to date. Very recently the Belle collaboration has also reported precise measurements
of ACP (D+

s → K+π0), ACP (D+
s → π+η) and ACP (D+

s → K+η) [41]. The result for
ACP (D+→ π+π0) is consistent with the SM expectation and the previous measurement
by the Belle collaboration [10]. Using the relevant lifetimes, branching fractions and CP
asymmetries from Ref. [11] and an updated average of ACP (D+→ π+π0) = (0.43± 0.79)%
calculated using the measurements by Belle [10], CLEO [42] and the result presented here,
the isospin sum rule defined in Eq. 2 is found to be consistent with zero, with a value of
R = (0.1± 2.4)× 10−3.
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iUniversità degli Studi di Milano, Milano, Italy
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qUniversità di Siena, Siena, Italy
rUniversità di Urbino, Urbino, Italy
sMSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
tAGH - University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Kraków, Poland
uP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
vNovosibirsk State University, Novosibirsk, Russia
wDepartment of Physics and Astronomy, Uppsala University, Uppsala, Sweden
xHanoi University of Science, Hanoi, Vietnam

23


	Introduction
	Detector
	Event selection
	Signal modes and fit model
	Control modes
	Systematic uncertainties
	Results and conclusions
	References

