The ATLAS Forward Proton Time-of-Flight detector: use and projected performance for LHC Run3

Tomáš Komárek tomas.komarek@cern.ch On behalf of the AFP group

Joint Laboratory of Optics of Palacky University and FZÚ AV ČR 17. listopadu 50A, 772 07 Olomouc Czech Republic

March 4, 2021

The AFP project

- ATLAS Forward Proton
- Forward detector focused on diffractive protons
- $lue{}$ Placed in Roman Pots (RP) $\sim 210\,\mathrm{m}$ from the ATLAS IP
- 3D silicon tracker + ToF (only far stations)

ToF detector

- A fast Cherenkov timing detector
- Purpose:
 - assign protons detected by AFP to individual collisions in IP1
 → timing measurement determines vertex position to match

- Reduces background in high pileup situations
- Expected performance few tens of ps, strong impact on background suppression!

AFP – how the real thing looks like

Past performance

Beam tests – timing resolution

Best results so far obtained at SPS NA beam test (140 ${
m GeV}$ pions)

Raw signal: $20\,\mathrm{ps}$ single channel, $14\,\mathrm{ps}$ train combination

HPTDC: 20.6 ps train combination

In DESY (6 ${\rm GeV}$ electron beam) results not as nice, but able to do comparative studies (impact of upgrades)

Note: fits in raw plot (left) without timing reference resolution subtraction (9 ps)

ToF detector performance analysis

- Performance analysis of 2017 data
- Poor efficiency of few percent (due to fast PMT degradation, new PMTs don't suffer from this)
- Good timing resolution nonetheless! (single bars $20-50\,\mathrm{ps}$, first in train worst as expected from simulation, following bars mostly $<30\,\mathrm{ps}$)

Performance of the ATLAS Forward Proton Time-of-Flight Detector in 2017, ATL-FWD-PUB-2021-002

Upgrades for Run 3

Photomultipliers

- Need for long-life tubes with relatively low MCP $R~(\sim 20-30\,{
 m M}\Omega)$
- Low target PMT gain 2×10^3 to further improve rate capability (previously $\sim 10^5$), requires additional amplification stage
- New custom backend with proper HF connectors and better crosstalk behaviour
- Original fixed ratio HV divider might not be optimal at lower HV operation – exploring alternative options and their impact

Out of Vacuum solution

Out of vacuum redesign - PMT moved out of the pot, behind window

- Fixes trouble with HV in secondary vacuum, better cooling
- Able to replace PMT or preamps without opening pot! (eg. during short TS)
- Got rid of non-optimal signal feedthroughs

TDC – Time to Digital Convertor

- PicoTDC to replace ageing HPTDC
- No longer at risk of being the bottleneck for timing, readout speed
 - \blacksquare 24.4 \rightarrow 3.05 ps bin size
 - \blacksquare our "all time best" result was $14\,\mathrm{ps}$ train combination on scope (vs $20.6\,\mathrm{ps}$ with HPTDC)
- Capable of time-over-threshold (amplitude) measurement at full resolution
- Exact deployment timeline still uncertain, fresh hardware!

Other upgrades

- Glueless bars production
 - expected to give more light, glue (Epotek 305) absorbed shorter wavelengths
 - removed radiation weak point
- Integration of 2. and 3. stage amplifier, remotely controlled attenuation
- Better PMT interference shielding
- Evaluating new experimental HV divider
 - \blacksquare low PMT gain means low HV \to low voltage on front and back stages with original fixed ratio HV divider
- Integration of light pulse generator for in-situ tests

PMT performance at high rates

- Gain deteriorates at very high event rates (charge depletion from MCP), influencing timing and efficiency
- Low PMT gain and low MCP R help improve rate capability
 - less charge depleted per event, faster recharge through strip current
- \blacksquare Expected in Run 3: $\sim 20\,\mathrm{MHz}$ per train
 - plus some background, but dominated by single diffraction
 - not uniform across trains; depends on LHC optics
- Tested using laser, scanning through different event rates

DESY beam test results

Out of vacuum modification

- $13-15\,\%$ amplitude reduction due to glass (roughly compensated by removed flex feedthroughs)
- Timing resolution not impacted

Glueless bars

- No change of train timing (due to dispersion)
- Significant improvement of efficiency

Efficiency of the ToF measured with respect to the SiPM trigger for the amplitude threshold of -150 mV at the distance of 5 mm from the edge.

HV [V]	Gain [-]	Glued bars Number of bars with detectable signal				Solid bars Number of bars with detectable signal			
		2050	$3.8 \cdot 10^{4}$	-	-	-	-	20%	68%
2100	$5.4 \cdot 10^4$	28%	68%	89%	94%	67%	91%	93%	95%
2150	$7.6 \cdot 10^4$	66%	90%	93%	95%	89%	93%	94%	95%
2200	$1.1 \cdot 10^{5}$	86%	93%	94%	96%		-	-	9

Summary

Expected timing

- \sim 25 30 ps single bar resolution
- 20 − 25 ps train combined resolution
- Without PicoTDC a bit worse ($\sim 16\,\mathrm{ps}$ contribution)

Impact on analysis

- Need full simulation to evaluate exact impact
- For reference:
 Performance studies of Time-of-Flight detectors at LHC
 DOI: 10.1088/1748-0221/16/01/P01030
- Increased pileup in Run 3 means AFP would benefit from operational ToF at least as much as in Run 2

Thank you

Thank you for your attention!