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Abstract

The beauty hadron decays is unique laboratory to study charmonium and
charmonium-like states, such as the χc1(3872) meson, other exotic states and the
tensor D-wave ψ2(3823) states. However the nature of many exotic charmonium-like
candidates are still unknown. The most recent LHCb results related to b-hadron de-
cays to charmonium states and obtained using large data samples collected during the
Run 1 and Run 2 periods are presented. This includes the most precise determination
of the mass and width of the χc1(3872) state using the B+→ J/ψπ+π−K+ decays,
observation of a resonant structure denoted as X(4740) in the J/ψφ mass spectrum
from B0

s→ J/ψπ+π−K+K− decays and the precise measurement of the B0
s meson

mass.
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1 Introduction

In the last two decades a plethora of new results in the charmonium spectra have been
obtained in the beauty decays studies. A lot of the conventional and exotic charmonium
resonances are observed such as χc1(3872), χc1(4700) and Pc(4312)+ and conventional
ψ2(3823) state. The LHCb experiment has collected high statistics during Run 1 and Run 2
periods that allows us to perform many precise measurements of the branching fractions
of B- and B0

s -meson decays and searches for new decays and states. The results described
below are based on the data samples collected by the LHCb experiment in proton-proton
(pp) collisions at the Large Hadron Collider from 2011 to 2018 with centre-of-mass energies
of
√
s = 7, 8 and 13 TeV.

2 Study of the B+→ J/ψπ+π−K+K− decays

Candidates of the B0
s→ J/ψπ+π−K+K− decays are reconstructed via J/ψ → µ−µ+

and selected using based on kinematics, particle identification and topology [1]. The
yields of B0

s→ J/ψπ+π−K+K− decays via the B0
s→ ψ(2S)φ and B0

s→ χc1(3872)φ and
B0

s→ J/ψK∗0K∗0 chains are determined using three-dimensional unbinned extended
maximum-likelihood fits. The observed signal yield for the B0

s→ χc1(3872)φ decays is
154± 15 which corresponds to a statistical significance more than 10 standard deviations.
The fit to the mass distribution for the signal channel is shown in figure 1.
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Figure 1: Distributions of the (left) J/ψπ+π−K+K− and (right) J/ψπ+π− mass for selected
B0
s→ χc1(3872)φ candidates (points with error bars) [1]. The red filled area corresponds to the

B0
s→ χc1(3872)φ signal. The orange line is the total fit.

In addition, the decays B0
s→ χc1(3872)K+K− where the K+K− pair does not originate

from aφmeson, is studied using a two-dimensional unbinned extended maximum-likelihood
fit which is performed to corresponding mass distributions. The observed yield of signal
decays is 378± 33, that is significantly larger than the yield of the B0

s→ χc1(3872)φ decays,
indicating a significant B0

s→ χc1(3872)K+K− contribution. A narrow φ component can
be separated from the non-φ components using an unbinned maximum-likelihood fit to
the background-subtracted and efficiency-corrected K+K− mass distribution. The fraction
of the B0

s→ χc1(3872)K+K− signal component is found to be (38.9 ± 4.9)%. Using the
obtained signal yields and fractions for described channels and corresponding efficiency
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Figure 2: Background-subtracted K+K− mass distribution for selected B0
s→ χc1(3872)K+K− can-

didates (points with error bars) [1]. The orange line is the total fit.

ratios the following branching fractions are calculated:

BB0
s→χc1(3872)φ × Bχc1(3872)→J/ψπ+π−

BB0
s→ψ(2S)φ × Bψ(2S)→J/ψπ+π−

= (2.42± 0.23± 0.07)× 10−2 ,

BB0
s→J/ψK∗0K∗0 × B2

K∗0→K+π−

BB0
s→ψ(2S)φ × Bψ(2S)→J/ψπ+π− × Bφ→K+K−

= 1.22± 0.03± 0.04 ,

BB0
s→χc1(3872)(K+K−)non-φ

BB0
s→χc1(3872)φ × Bφ→K+K−

= 1.57± 0.32± 0.12 ,

where the first uncertainty is statistical and the second is systematic. The result for
B0

s→ χc1(3872)φ decay is found to be in a good agreement with the result by the CMS
collaboration [2] but is more precise.

Four tetraquark candidates have been observed by the LHCb collaboration using an
amplitude analysis of the B+→ J/ψφK+ decays [3, 4]. A search of the exotic states in
the J/ψφ spectrum is performed using the B0

s→ J/ψπ+π−φ decays. The B0
s→ J/ψπ+π−φ

candidates are determined with two-dimensional unbinned extended maximum-likelihood
fit to the J/ψπ+π−K+K− and K+K− mass distributions.

The background-subtracted J/ψφ mass spectrum of B0
s→ J/ψπ+π−φ candidates

are shown in figure 3. It shows a prominent structure at a mass around 4.74 GeV/c2.
Since the regions of ψ(2S) and χc1(3872) resonance masses are vetoed and no sizeable
contributions from decays via other narrow charmonium states are observed in the
background-subtracted J/ψπ+π− mass spectrum, this structure cannot be explained by
cross-feed from the J/ψπ+π− mass spectrum. Moreover no such structure is seen in non-φ
region of the K+K− mass. However the φπ+π− spectrum exhibits significant deviations
from the phase-space distribution, indicating possible presence of excited φ states, referred
to as φ∗ states hereafter. The decays B0

s→ J/ψφ∗ via intermediate φ(1680), φ(1850) or
φ(2170) states [5] are studied using simulated samples and no peaking structures are
observed. Under the assumption that the observed structure, referred to as X(4740)
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Figure 3: Background-subtracted J/ψφ mass distribution for the selected B0
s→ J/ψπ+π−φ signal

candidates (points with error bars) [1]. The red filled area corresponds to the B0
s→ X(4740)π+π−

signal. The orange line is the total fit.

hereafter, has a resonant nature, its mass and width are determined through an unbinned
extended maximum-likelihood fit. The fit result is superimposed in figure 3. The obtained
signal yield is 175± 39 and corresponds to a statistical significance above 5.3 standard
deviations. The mass and width for the X(4740) state are found to be

mX(4740) = 4741± 6± 6 GeV/c2 ,

ΓX(4740) = 53± 15± 11 MeV.

The observed parameters qualitatively agree with those of the χc1(4700) state observed by
the LHCb collaboration in references [3, 4]. The obtained mass also agrees with the one
expected for the 2++ cscs tetraquark state [6].

The B0
s decays to the ψ(2S)K+K− final states characterize the relatively small energy

release allowing precise measurement of the B0
s meson mass. The mass of the B0

s meson
is determined from an unbinned extended maximum-likelihood fit to the ψ(2S)K+K−

mass distribution. The improvement in the B0
s mass resolution and significant decrease of

the systematic uncertainties is achieved by imposing a constraint on the reconstructed
mass of the J/ψπ+π− system to the known ψ(2S) meson mass [5]. The measured value of
the B0

s meson mass is found to be

mB0
s

= 5366.98± 0.07± 0.13 MeV/c2 ,

that is the most precise single measurement of this quantity.

3 Study of the B+→ J/ψπ+π−K+ decays

The search of the spin-2 component of the D-wave charmonium triplet, the ψ2(3823)
state, is performed with B+ → J/ψπ+π−K+ decays [7,8]. To extract the B+ candidates, a
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multivariate classifier algorithm based on a decision tree with gradient boosting is applied.
For signal yield determinations of the B+→ (ψ(2S)→ J/ψπ+π−)K+, B+→ (χc1(3872)→
J/ψπ+π−)K+ and B+→ (ψ2(3823)→ J/ψπ+π−)K+, a simultaneous unbinned extended
maximum-likelihood fit to the mJ/ψπ+π−K+ and mJ/ψπ+π− variables is performed. The
signal yield for the B+ → ψ2(3823)K+ decays is determined to be 137 ± 26 which
correspond to statistical significance above 5.1 standard deviations. Large signal yield
for the B+→ ψ(2S)K+ signal, 4230± 70, allows for the precise measurement of the mass
and width of the χc1(3872) state. For the first time the non-zero Breit–Wigner width is
observed for the χc1(3872) state with significance more than 5 standard deviations and its
measured value is:

Γχc1(3872) = 0.96+0.19
−0.18 ± 0.21 MeV .

The upper limit for the Breit–Wigner width of ψ2(3823) is improved and its value is set
to be Γψ2(3823) < 5.2 (6.6) MeV, for 90 (95)% C.L. The mass splitting between the states
are found to be

δm
χc1(3872)
ψ2(3823)

= 47.50± 0.53± 0.13 MeV/c2 ,

δm
ψ2(3823)
ψ(2S) = 137.98± 0.53± 0.14 MeV/c2 ,

δm
ψ2(3823)
ψ(2S) = 185.49± 0.06± 0.03 MeV/c2 ,

The results Breit–Wigner mass of the χc1(3872) state are in good agreement with an
independent analysis of inclusive b→ χc1(3872)X decays [9]. The binding energy of
the χc1(3872) state is derived from the mass splitting and its value is found to be
δE = 0.12± 0.13 MeV. It is consistent with zero within uncertainties, that are currently
dominated by the uncertainty for the neutral and charged kaon mass measurements [10,11].

The measured yields of the B+→ χc1(3872)K+, B+→ ψ2(3823)K+ and B+→ ψ(2S)K+

signal decays allow for a precise determination of the ratios of the branching fractions:

BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π−

BB+→χc1(3872)K+ × Bχc1(3872)→J/ψπ+π−
= (3.56± 0.67± 0.11)× 10−2 ,

BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π−

BB+→ψ(2S)K+ × Bψ(2S)→J/ψπ+π−
= (1.31± 0.25± 0.04)× 10−3 ,

BB+→χc1(3872)K+ × Bχc1(3872)→J/ψπ+π−

BB+→ψ(2S)K+ × Bψ(2S)→J/ψπ+π−
= (3.69± 0.07± 0.06)× 10−2 .

4 Conclusion

A study of b-meson decays B+→ J/ψπ+π−K+ and B0
s→ J/ψπ+π−K+K− is made using

the Run 1 and Run 2 data, collected with the LHCb detector [1, 7]. The reported
results include the observation of the non-zero width of the χc1(3872) state; the most
precise measurement of the masses of the χc1(3872) and ψ2(3823) states; the most precise
measurement of several ratios of branching fractions of the B+ and B0

s mesons decays;
the most precise single measurement of the B0

s meson mass and the observation of a new
structure, denoted as the X(4740) state, in the J/ψφ mass spectrum.
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