
A VecGeom navigator plugin for Geant4

Sandro Wenzel1,∗, John Apostolakis1, and Gabriele Cosmo1

1CERN, Route de Meyrin, 1211 Geneva, Switzerland

Abstract. VecGeom is a geometry modeller library with hit-detection features
as needed by particle detector simulation at the LHC and beyond. It was in-
cubated by a Geant-R&D initiative and the motivation to combine the code of
Geant4 and ROOT/TGeo into a single, better maintainable piece of software
within the EU-AIDA program.
So far, VecGeom is mainly used by LHC experiments as a geometry primitive
library called from Geant4, where it was shown to provide 7 − 12% reduction
in CPU time due to its faster algorithms for complex primitives [1].
In this contribution, we discuss how VecGeom can be used as the navigating li-
brary in Geant4 in order to benefit from both its fast geometry primitives as well
as its vectorised navigation module. We investigate whether this integration pro-
vides the speed improvements expected, in addition to the gain obtained from
geometry primitives. We discuss and benchmark the application of a VecGeom-
navigator plugin to Geant4 for a simplified geometry and show paths towards
production usage.

1 Introduction

VecGeom [2] is a C++ geometry library for use in particle detector simulation. Its devel-
opment started as part of the GeantV R&D initiative [3, 4] with the original goal to provide
geometry kernels that are able to process multiple tracks/particles concurrently by utilizing
vector micro-parallelism, implementing the single instruction - multiple data (SIMD) princi-
ple [2, 5]. Early in the project, it was realised that providing such a new library also provides
a chance to review the existing geometry code used in HEP such as those provided by Geant4
[6] and ROOT/TGeo [7]. In this regard VecGeom joined forces with the USolids [8] project
already following similar geometry code modernisation efforts. In addition to providing vec-
tor interfaces for GeantV, VecGeom also offers traditional functionality for the use in Geant4.
In short, VecGeom provides improvements over other existing libraries in the form of: a) im-
proved and revised algorithms, b) strong separation of state and algorithm for use in highly
multithreaded environments, c) support for vectored input data, d) SIMD acceleration for
vectored input data as well as e) SIMD acceleration of navigation functions for scalar input
data in complex geometries [9] (including multi-union or tessellated solids [10]). Besides,
the VecGeom code base also compiles on CUDA supported GPUs which might be of interest
to those attempting to port detector simulation to GPU. The code base makes heavy use of
template kernels and uses the VecCore library [11, 12] in order to reduce the amount of code
for easier maintenance. Lastly, we would like to mention that VecGeom offers a geometry

∗e-mail: sandro.wenzel@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024



Figure 1. (Left:) Currently, Geant4 is able to dispatch to VecGeom only at the solid primitives level
and the Geant4 navigator does not know about this integration. VecGeom solids are hidden behind
facade classes looking like Geant4 native types. (Right:) Visualisation of the scheme in which TGeo
was integrated into Geant4 [13] as part of the VMC project: A special navigator class was hooked into
Geant4. Duplication of geometry and syncronisation of state is necessary due to different type system
of Geant4 and TGeo.

primitives specialisation mechanism: Algorithms can be specialised for specific topologies
of a shape primitive and a factory mechanism allows to create these specialised instances at
run-time, without any intervention from the user.

The present work is concerned with increasing the level of integration of VecGeom inside
Geant4. So far, with Geant4 v10.5, users can optionally use the VecGeom geometry primi-
tives (solids), instead of the ones provided natively by Geant4. As visualised in Fig. 1(left),
the integration of VecGeom solids is provided via special bridge/facade classes. This change
is transparent to the Geant4 geometry transport engine (G4Navigator) and user code. This
integration was tested by the CMS experiment at the LHC, showing significant positive im-
pact (7 − 12%) on the CPU performance [1]. However it exploits only a subset of VecGeom
features. Notably, improvements provided in the VecGeom navigation system, such as SIMD
accelerated hit-detection [9], are not yet utilised. This leaves room for further speedup of
Geant4-based detector simulation which is one of the key motivations of the present work. In
addition, some HEP experiments perform their Geant4 detector simulation through the Vir-
tual Monte Carlo (VMC) system [13, 14], and in this case typically the ROOT/TGeo geometry
is called by the Geant4 transport (see Fig. 1(right)). For this scenario there is currently no
VecGeom integration available at all and overcoming this limitation constitutes a secondary
goal of our investigations.

2 Review of the Navigation System

There are different ways to integrate VecGeom navigation in Geant4. One suitable path is
provided by the architecture of Fig. 1(right), similar to the approach used for the integration
of TGeo navigation in Geant4. Geant4 transport would talk to a special VecGeom aware
navigator, implementing the necessary interfaces defined in the G4Navigator base class. In
the following, we shortly review important aspects of the navigation system to explain why
VecGeom is expected to give further benefits compared to the ones already used. In analogy
to computer games (see Fig. 2), the navigator is responsible to determine the straight-line
hit-location of a particle (banana) with objects (houses) present in the current material (sky)
and the distance/step to this location. This is done by the interface called ComputeStep. Im-
portant other functions are estimating the isotropic distance ComputeSafety of the particle

2

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024



Sandro Wenzel; CHEP19 Adelaide, Track2 10

Cell / 
“Voxel”

BVH
Figure 2. Visualisation of typical acceleration structures, using an analogy to a 2D computer game.
(Left:) Hierarchy of bounding boxes, which can be constructed from the most elementary bounding
boxes. (Right:) A simple cell/grid structure in which each cell can store information about its local
neighourhood.

to any object in the scene and determining the current object in which the particle is con-
tained, given just its global coordinates (Locate). There are significant overlaps with tasks
in ray-tracing for instance.

In a brute force approach, these tasks get linearly more expensive with increasing the
number of objects in the current scene. This is why typically some form of accelerating
data structure, offering some form of in-memory lookup to beat linear search, is employed.
Using it, one can quickly rule out most of the objects, and then perform calculations only for
a remaining small number. One example of such data structures are simple grid-like space
partitions where each partition (or cell or voxel) keeps a number of candidate objects. Another
way involves structures constructed out of the bounding boxes of the objects contained in the
scene. Many different variations exist and the data structures can be composed or combined
at various levels to form a hierarchy. In a previous paper [9], we discussed a specific form of
bounding volume hierarchy (BVH) that can offer SIMD accelerated queries, a technique also
used by industry ray-tracers [15].

Different strategies are employed by the Geant4 native navigation system and the one in
VecGeom. In case of Geant4, the same optimisation structure, up to 3 levels deep within each
logical-volume, is employed for all the navigation tasks and the state of this structure is deeply
coupled to the navigator. This structure was heuristically chosen as a good compromise and
offers rather good performance, somewhat tunable by the user. VecGeom has a more flexible
and modular approach, offers a wider set of structure implementations which can individually
be selected per logical volume (per scene). The modularity brings the advantage of being
extensible. We have already interfaced VecGeom to external libraries such as Intel Embree
[15] which provides a very good performance for the most complex geometries (typically the
case in ray-tracing tasks). Configurability allows to select separate optimisation structures
for each task, potentially chosen according to the type of geometry. This way it can enable
substantial additional tuning potential. Detailed tuning can be computationally expensive but
it seems feasible to use GPUs for this task. Since detector geometries often evolve slowly,
expensive structures could be precalculated and made persistent instead of recomputing them
during each simulation run. In cases where geometries change often during a run, one can
envision default optimisation structures, as in Geant4, which can be used if tuned ones are
not available.

3

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024



Figure 3. Layout of the geometry test setup (2D cut and 3D view). We use a simple layered geometry
with configurable materials as a toy detector. One layer contains a variable number of sensor objects
(type configurable). Particle collisions take place at the origin.

3 Implementation Status

In this work we aim for a prototype integration of VecGeom’s navigation system into Geant4
with the goal to estimate the potential CPU saving opportunities for HEP simulations. The
target is to be able to run a generic Geant4 application on a user provided geometry taken
from a GDML [16] file. The application should be able to switch between using the na-
tive Geant4 system, the TGeo navigation or the VecGeom navigation for comparison and
benchmark reasons. We target creating the least possible user disturbance and minimal code
changes inside Geant4. Both were achieved by providing VecGeom navigation as a sub-class
of G4Navigator, which is already designed to be extensible and plugable. This approach
follows what was done for TGeo in the context of VMC, providing a fully self-contained new
navigator class G4VecGeomNavigator implementing all virtual functions of G4Navigator.
In practice, it turned out to be easier to take a somewhat refined approach in at first in-
stance. In this approach we make use of a mixed system which only partially overrides the
G4Navigator:

1. The ComputeSafety function is always dispatched to VecGeom.

2. The ComputeStep and Locate functions are dispatched to VecGeom only when
Geant4 uses the G4VoxelNavigation in its original implementation; this works by
implementing a sub-class of it, which dispatches to VecGeom.

In this way, we reuse existing logic to handle the navigation state needed by the Geant4 en-
gine. The caveat is that not all navigator queries coming from Geant4 transport are dispatched
to VecGeom. However we expect that in typical HEP geometries a large majority of the most
expensive queries are sent to VecGeom.

In order to drive and test the implementation, we have created a simple layered geom-
etry test case as shown in Fig. 3. The simulation complexity of this toy detector geometry
is tunable in distinct ways by either allowing to change the material composition (switching
between showering and pure tracking limit), by changing the number of sensor volumes as
well as by selecting their geometric form (tube, box, polycone, etc.). It is clear that this exam-
ple does not reach the complexity of realistic LHC detectors. Yet we chose it as a reasonably
challenging setup for validating our approach and getting first performance indications, while
being simple enough to obtain robust navigation as it avoids complicated corner cases. Our

4

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024



Figure 4. Distribution of step (left) and safety values (right) in mm returned to the Geant4 transport
engine from the Geant4, TGeo and the new VecGeom navigator implementation. The simulation was
asked to process a number of simple events in the test geometry with 600 sensors. All distributions are
fully consistent and agree in the total number of entries and their form. Note that the curves for safety
do not need to overlap strictly because safety may be underestimated.

validation is in the following way: we run the same simulation test (a modified application
from VMC) using this geometry with either G4 native, TGeo or VecGeom navigation on
a number of simple collisions emitted from a simple box generator (electrons only). The
simulation is instrumented to record the number of function calls to the navigation system
and to the geometry primitives. We also store and compare the values of returned distances
and safeties from calls to ComputeStep and ComputeSafety, respectively. We deem the
new navigator implementation as validated if the overall number of calls to the VecGeom
geometry library and the value distributions are consistent with the two other reference cases.
Figure 4 provides a validation example for the case of a geometry with 600 sensors made of
polycone solids embedded in a low-density gas.

4 Performance Benefits

We now discuss the performance benefits of the prototype VecGeom navigator described in
the previous section, using the same combination of geometry setup and generic application
as in the validation step. We measure the total time spent in simulating a fixed number
of events with charged primary particles for the various navigator implementations and as
a function of increasing geometry complexity, which we define here as the square root of
the total number of sensors. A uniform magnetic field is also enabled. For VecGeom we
employ a shallow bounding volume hierarchy acceleration structure for the ComputeStep
calls and a sparse but regular voxel structures for Locate and ComputeSafety functions
which was pre-calculated before the simulation. In the case of ComputeSafety, specialised
optimisation voxels store the list of the candidate objects for the safety search. There is a
very fast (hash) mapping from a Cartesian coordinate to its voxel. In addition, VecGeom was
configured with solid specialisation enabled; this allows it to dispatch to the best (template
specialised) implementation of a (placed) solid. In summary, the benchmark should use most
if not all of the features provided by VecGeom. When using Geant4 native navigation, two
different configurations are tested: the one still using the native Geant4 solids (currently the
default) and the one already using VecGeom geometry primitives. In addition, the following
technical specifications are used here: Benchmarks are run on an Intel Xeon CPU E5-2697

5

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024



Figure 5. Benchmark of Geant4 simulation in a large volume of thin gas filled with a varying number
of polycones, using different navigation options: Geant4 navigator with native solides (G4), Geant4
Navigator with VecGeom solids "G4 (VG Solids)", TGeo Navigator ("TGeoNav") and the VecGeom
Navigator ("VecGeomNav"). The x-axis is the square root of the number of volumes. Error bars are on
the order of the size of the symbols but are not included here.

v2 - Ubuntu 18.04 - server with task pinning and timings are the mean of 5 runs. GCC v7.2
is used as the compiler and the Geant4 version is 10.5.1.

Benchmark timings obtained when simulating 100K primary electrons in a low-density
material limit, in which physics processes are reduced, are shown in Fig. 5 and they give rise
to the following observations:

1. Navigation with the original Geant4 navigator benefits from using VecGeom solids in
the few percent range, in line with previous observations [1].

2. The newly developed VecGeom navigator provides an additional speedup of about
6% − 13%, depending on the complexity. The overall scaling (as a function of ge-
ometry complexity) appears to be improved with the VecGeom navigator.

3. There is a clear indication of even larger benefits with respect to the TGeo navigator,
which should be of interest to the VMC community.

We come to the same conclusions when repeating this benchmark in a dense material
limit, where physics processes are enhanced leading to production of many secondary parti-
cles. Overall, these first results are encouraging and should justify an effort to go beyond a
prototype stage.

5 Further Roadmap

Given these positive indications, there are some essential steps towards putting the system
into production. The immediate next steps should focus on testing the new navigator on
realistic detectors, coming up with a reliable and user-friendly workflow to calculate the

6

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024



acceleration structures, as well as iteratively pushing the boundaries of the integration. In
addition, we plan to work on an extension of the scheme to provide the VecGeom navigator
also to the VMC/TGeo community as this promises considerable CPU time savings. The
path towards this is straightforward and can be achieved by a slight variation of the scheme
discussed here. On a different note, it will be interesting to incorporate GPUs/accelerators to
speed up the initialisation of the in-memory acceleration structures. Typically, this task can
be highly parallelised and should be ideal for such architectures.

6 Summary

We presented a first implementation of a Geant4 geometry navigator that is interfacing the
VecGeom library at a considerably higher level than previously available. We demonstrated
in a prototype example that, due to this interfacing, the CPU time for detector simulation can
be reduced. This should be an interesting development for the ever increasing computing
needs for HEP experiments.

We would like to thank the VecGeom development team for their continued effort and contributions
to VecGeom, which provided the basis for the work presented here.

References

[1] K. Pedro, EPJ Web Conf. 214, 02036 (2019)
[2] J. Apostolakis, R. Brun, F. Carminati, A. Gheata, S. Wenzel, Journal of Physics: Con-

ference Series 513, 052038 (2014)
[3] J. Apostolakis, M. Bandieramonte, G. Bitzes, R. Brun, P. Canal, F. Carminati, J.C.D.F.

Licht, L. Duhem, V.D. Elvira, A. Gheata et al., Journal of Physics: Conference Series
608, 012003 (2015)

[4] G. Amadio, A. Ananya, J. Apostolakis, A. Arora, M. Bandieramonte, A. Bhattacharyya,
C. Bianchini, R. Brun, P. Canal, F. Carminati et al., Journal of Physics: Conference
Series 762, 012019 (2016)

[5] J. Apostolakis, M. Bandieramonte, G. Bitzes, R. Brun, P. Canal, F. Carminati,
G. Cosmo, J.C.D.F. Licht, L. Duhem, V.D. Elvira et al., Journal of Physics: Confer-
ence Series 608, 012023 (2015)

[6] S. Agostinelli, et al, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003)

[7] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal,
D. Casadei, O. Couet, V. Fine et al., Computer Physics Communications 180, 2499
(2009)

[8] M. Gayer, J. Apostolakis, G. Cosmo, A. Gheata, J.M. Guyader, T. Nikitina, Journal of
Physics: Conference Series 396, 052035 (2012)

[9] S. Wenzel, Y. Zhang, Accelerating navigation in the VecGeom geometry modeller, in
Journal of Physics: Conference Series (2017), ISSN 17426596

[10] Apostolakis, John, Cosmo, Gabriele, Gheata, Andrei, Gheata, Mihaela, Sehgal, Raman,
Wenzel, Sandro, EPJ Web Conf. 214, 02025 (2019)

[11] G. Amadio, P. Canal, D. Piparo, S. Wenzel, Journal of Physics: Conference Series 1085,
032034 (2018)

[12] The veccore library, https://gitlab.cern.ch/VecGeom/VecCore
[13] A. Gheata, M. Gheata, Journal of Physics: Conference Series 119, 042014 (2008)

7

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024

https://gitlab.cern.ch/VecGeom/VecCore


[14] I. Hřivnáčová, Journal of Physics: Conference Series 396, 022024 (2012)
[15] Embree - fast ray tracing kernels, https://embree.github.io/
[16] R. Chytracek, J. Mccormick, W. Pokorski, G. Santin, IEEE Transactions on Nuclear

Science 53, 2892 (2006)

8

EPJ Web of Conferences 245, 02024 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502024

https://embree.github.io/

	Introduction
	Review of the Navigation System
	Implementation Status
	Performance Benefits
	Further Roadmap
	Summary

