
AliECS: a New Experiment Control System for the ALICE
Experiment

Teo Mrnjavac1,∗, Konstantinos Alexopoulos1,∗∗, Vasco Chibante Barroso1,∗∗∗, and George
Raduta1,∗∗∗∗

1CERN, Geneva, Switzerland

Abstract. The ALICE Experiment at CERN’s Large Hadron Collider (LHC)
is undertaking a major upgrade during LHC Long Shutdown 2 in 2019-2021,
which includes a new computing system called O2 (Online-Offline). To en-
sure the efficient operation of the upgraded experiment and of its newly de-
signed computing system, a reliable, high performance, and automated experi-
ment control system is being developed. The ALICE Experiment Control Sys-
tem (AliECS) is a distributed system based on state of the art cluster manage-
ment and microservices that have recently emerged in the distributed computing
ecosystem. Such technologies will allow the ALICE collaboration to benefit
from a vibrant and innovating open source community. This communication
describes the AliECS architecture. It provides an in-depth overview of the sys-
tem’s components, features, and design elements, as well as its performance. It
also reports on the experience with AliECS as part of ALICE Run 3 detector
commissioning setups.

1 Introduction

1.1 The O2 Computing System

The ALICE experiment [1] is undergoing a major upgrade [2] that is being deployed during
the LHC’s Long Shutdown 2 (2019-2021) in preparation for the LHC Run 3. The new and
upgraded detectors will operate at a significantly increased data rate, and in order for the data
processing to keep up, a new computing system called O2 [3] is being designed, developed
and deployed.

In its production stage, the O2 computing system will consist of 100,000s processes,
deployed over roughly 1000 heterogeneous nodes, fulfilling roles including data readout,
processing, storage and auxiliary services. The system will read out 27 Tb/s of raw data and
record 800 Gb/s of reconstructed data.

The O2 computing system will be capable of two kinds of data-driven workflows: syn-
chronous operation, intended to be synchronous with the detector readout, and asynchronous
operation, which will take place at any time regardless of detector or beam conditions. Most

∗e-mail: teo.m@cern.ch
∗∗e-mail: kostas.alexopoulos@cern.ch
∗∗∗e-mail: vmcb@cern.ch
∗∗∗∗e-mail: george.raduta@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

nodes are expected to run dozens of processes of different kinds, including long running ser-
vices, WLCG-like (Worldwide LHC Computing Grid) environments for asynchronous pro-
cessing, and data-driven process workflows. Since synchronous workflows operate on data
coming from detector data links, they must run in the O2 facility at the LHC Point 2. Asyn-
chronous workflows do not have this constraint, so they can run at any time on WLCG nodes,
or on O2 facility resources when they are not needed for synchronous operation.

1.2 The O2/FLP Computing Cluster

The O2 data processing workflows will run on two typologies of computing nodes: FLPs
(First Level Processors) and EPNs (Event Processing Nodes). Each FLP is fitted with CRU
(Common Readout Unit) [4] or C-RORC (Common Readout Receiver Card) [5] hardware,
depending on the detector. These PCI-Express cards are capable of two way communication
with detector front end electronics. Unlike FLPs, which host the first portion of the data
flow, EPNs do not have physical links to detector hardware, and are instead configured as
homogeneous computing nodes, operating as a second level of data processing after FLPs.

While O2 is developed as a complete solution for the data processing needs of the ALICE
experiment during Run 3, the O2 computing system is split up in two separate computing
clusters due to significant differences in requirements between FLPs and EPNs. This partition
yields the O2/FLP computing cluster and the O2/EPN computing cluster, both deployed at the
LHC Point 2.

Figure 1. O2/FLP and O2/EPN cluster control with respect to the ALICE Run Control Centre.

The fundamental difference between these two kinds of nodes stems from the fact that
FLPs have direct fiber links to detector front end electronics, making them permanently bound
to a specific detector or detector component. Different FLPs may also have a variable number
of CRU or C-RORC cards, and different system specifications. FLPs are not interchangeable,
thus the O2/FLP cluster is inevitably a heterogeneous environment. On the other hand, EPNs
do not have direct links to detector front end electronics, and are largely interchangeable.

While the two computing clusters have their own specialised control mechanisms, the O2

system as a whole will be controlled via a single user interface, an ECS (Experiment Control
System) solution in the ALICE Run Control Centre (see Fig. 1).

2

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

1.3 Target Operational Improvements in an Experiment Control System for ALICE
Run 3

The goals and requirements of the ALICE experiment control system (AliECS) are derived
from experience in running the previous computing system during the LHC Runs 1 and 2 [6],
and are motivated by a desire for greater reliability, performance, maintainability, and op-
erational flexibility. Some specific operational goals refer to scenarios such as including or
excluding a detector from data taking, during which it is desirable to reduce the time spent
reconfiguring the data flow.

The O2 project also includes a redesign of user interfaces, in favor of next-generation
web-based GUIs with SSO (single sign-on) and a revamped look and feel. AliECS comes
with command line and graphical user interfaces, including shifter oriented GUIs which su-
persede those of the previous generation ECS. Finally, the O2 project is an opportunity to take
advantage of modern developments in computing; AliECS is built with the best practices of a
microservices distributed application paradigm, and harnessing the features of modern cluster
resource management solutions.

2 Requirements of an ECS solution for ALICE Run 3
The primary duty of a control mechanism for the ALICE O2 system is to launch, configure
and control a set of data-driven workflows inside a computer cluster. On top of this cluster
control role, AliECS is in charge of

1. managing the lifetime of thousands of processes in the O2/FLP cluster (while delegat-
ing control of O2/EPN processes to a specialized control mechanism for the O2/EPN
cluster),

2. minimizing the waste of beam time by reusing processes and avoiding time-consuming
process restart operations,

3. and interfacing with the LHC, the trigger system, the DCS (Detector Control Sys-
tem) [7] and other systems through common APIs.

3 AliECS design overview
Due to the tight coupling required between high-level experiment control and O2/FLP cluster
control, AliECS integrates both experiment control and O2/FLP cluster control into a single
system. Thus, AliECS provides in-depth control of every data-driven process running in the
O2/FLP cluster. An interface between the AliECS core and the O2/EPN control mechanism
is under development in order to achieve coarse-grained, high-level control of the O2/EPN
cluster.

AliECS is a distributed system in charge of the O2 facility with full knowledge and con-
trol over the resources of the O2/FLP cluster. It implements a distributed state machine to
represent the aggregated state of the constituent O2 processes of a data-driven workflow. Fur-
thermore, it allows reconfiguration and reuse of running O2 processes as often as possible to
avoid process restarts, and simultaneous operation of multiple workflows, with easy reallo-
cation of resources among workflows. Finally, it reacts promptly to inputs, handling events
from the user, the LHC, the trigger system, the DCS, and the cluster itself with a high degree
of autonomy.

The O2 project has chosen FairMQ [8] as the common message passing and data transport
framework for its data-driven processes. It has been developed in the context of FairRoot [9,
10], a simulation, reconstruction and analysis framework for particle physics experiments.
FairMQ provides the basic building blocks to implement complex data processing workflows,
including a message queue, a configuration mechanism, a state machine, and a plugin system.

3

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

3.1 Resource Management in the O2/FLP Facility

We implement AliECS as a distributed application, using Apache Mesos [11, 12] as toolkit.
This custom solution integrates a task scheduler component, a purpose-built distributed state
machine system, a multi-source stateful process configuration mechanism, and a control plu-
gin and library compatible with any data-driven O2 process.

Apache Mesos is a cluster resource management system, which facilitates the manage-
ment of O2/FLP components, resources and tasks inside the O2/FLP facility, effectively en-
abling the developer to program against the datacenter (i.e., the O2/FLP facility at LHC Point
2) as if it was a single pool of resources. Mesos is an open source project hosted by the
Apache Software Foundation, and used in deployments of 10,000s nodes.

For AliECS, benefits of using Mesos include knowledge of what runs where, resource
management (including port assignment), transport facilities for O2-specific control mes-
sages, task status tracking (e.g. an event is raised if a task dies unexpectedly), as well as
advanced features such as node attributes, resource overprovisioning, checkpointing, and oth-
ers.

3.2 AliECS Components

AliECS is under development as our solution for the problem of O2/FLP synchronous control
and ECS. The current implementation of AliECS (see Fig. 2) can be found on GitHub [13],
and it consists of

1. the AliECS core (which includes the Apache Mesos-facing scheduler component),
2. the AliECS executor,
3. the O2 control and configuration plugin for FairMQ devices (OCC plugin),
4. the O2 control and configuration library (OCC library),
5. the AliECS control and configuration command line utility (coconut),
6. the AliECS process execution and control utility for OCC library based O2 processes

(peanut),
7. and the web-based AliECS GUI.
AliECS interfaces with Consul [14], a key-value store that acts as the system’s config-

uration repository. The design also includes interfacing with information sources from the
LHC, the trigger system and the DCS. Once acquired by the AliECS core, configuration in-
formation is processed into an in-memory hierarchical key-value store, and then it is fed into
a template system in order to generate task deployment and configuration structures.

Most components of AliECS are written in Go [15], a statically typed general purpose
programming language in the tradition of C, which is particularly suitable for distributed
system development because of its advanced synchronization and threading facilities. The
OCC plugin is developed in C++17 and works with any FairMQ-based process. A non-
plugin library equivalent of the latter is also provided, for O2 processes which do not support
the FairMQ plugin system. The common idiom of inter-process communication in AliECS
is gRPC [16], an open source, cross-language RPC (Remote Procedure Call) system that is
widely used in the microservices community.

3.3 AliECS Concepts

The basic unit of scheduling in AliECS is a task. A task generally corresponds to a process,
more specifically a process that can receive and respond to OCC-compatible control mes-
sages. All AliECS workflows are collections of tasks, which together form a coherent data
processing chain.

4

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

AliECS GUI
AliECS CLI

gRPC

AliECS
core

(scheduler)

AliECS
executor

AliECS
executor

any
O² process

FairMQ-based
O² process

OCC plugin

Mesos

gRPC

LHC
detectors

trigger

OCC library

Scheduler API

Executor API

Mesos master

Mesos agent Mesos agent
Executor API

gRPC

configuration

gRPC
DIM DIP

O²/EPN
cluster control

Figure 2. The AliECS architecture. All control communications between core and executor instances
are piggybacked on Mesos messages. The OCC plugin hides the complexities of driving the state
machine of the controlled process.

Tasks are the leaves in a tree of roles. A role is a runtime subdivision of the complete
system, it represents a kind of operation along with its resources. Roles allow binding tasks
or groups of tasks to specific host attributes, detectors and configuration values. In memory,
a tree of O2 roles, along with their tasks and their configuration is a workflow. A workflow
aggregates the collective state of its constituent O2 roles. A running workflow, along with
associated detectors and other hardware and software resources required for experiment op-
eration constitutes an environment, which is the highest level of state machine control (see
Fig. 3).

Figure 3. The state machine of an AliECS environment. The same state machine is implemented by
each task. For FairMQ-based tasks the OCC plugin acts as a translation layer between the AliECS task
state machine and the underlying FairMQ state machine.

3.4 Configuration Management

AliECS is both a producer and consumer of configuration data in the O2/FLP cluster. There
are three kinds of configuration information that AliECS deals with:

1. the AliECS core configuration,
2. the AliECS workflow configuration,
3. and the O2 tasks configuration.
The AliECS core configuration is a flat list of read-only values that the AliECS core

acquires on startup. Typical values that come from this configuration mechanism are the
control port to use for incoming AliECS GUI or coconut connections and the URI of the
Mesos master API.

5

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

The AliECS workflow configuration is acquired by way of a configuration manager sub-
system that uses Git repositories as a backend for file storage and versioning. The AliECS
workflow configuration data consist of task descriptor files and workflow template files,
sourced from Git repositories. A task descriptor file is a YAML document that describes
how to launch and control a single task, such as an O2 data-driven process. A workflow
template file is a YAML document that describes the structure of a workflow of roles and
(ultimately) tasks. This structure directly expresses the control tree, which defines the layout
of the distributed state machine.

Workflow configuration is further complemented by AliECS runtime variables, which can
affect the loaded workflow and single tasks.

AliECS implements task configuration as a push operation associated with the
CONFIGURE transition, the payload of which includes communication channel configuration
(i.e. hosts and ports to connect or bind) as well as an optional key-value map of application-
specific configuration data.

3.5 O2 Process Control

Most O2 processes are also FairMQ devices, i.e., programs that make use of the FairMQ
library for its state machine and I/O facilities.

AliECS GUI
AliECS CLI

gRPCAliECS
 core

 (scheduler)

executor

FairMQ-based O² process

O² Control and Configuration FairMQ plugin
Mesos transport

gRPC
FairMQ transition event event

event

FairMQ
transitioner Transition response

Transition(srcState, event)

Build event response

Check conditions for transition

Request transition
(if event is CONFIGURE, also push properties)

Wait for and process device state changes

AliECS Environment state machine
AliECS Task state machine

FairMQ Device
state machine

AliECS FairMQ
states/transitions
translation and wrapping

direct
transitioner

Figure 4. The AliECS executor integrates modular components called transitioners which act as trans-
lation wrappers for the state machine of a specific controlled process. In the figure above the executor
has loaded the FairMQ transitioner, which drives the state machine of a FairMQ-based process.

FairMQ provides a plugin system that is capable of loading the purpose-built O2 control
and configuration plugin for FairMQ devices. This plugin enables any FairMQ device to
accept control commands from an AliECS executor (see Fig. 4). When the OCC plugin
receives a remote procedure call from the executor, it drives the state machine of the FairMQ
device and reports back. The OCC plugin is also capable of pushing configuration key-value
pairs as FairMQ properties to the FairMQ configuration map of the device.

4 AliECS in Run 3 detector commissioning

An Ansible-based [17] installation system for AliECS and other O2 components is being de-
veloped in order to facilitate the deployment in ALICE Run 3 detector commissioning setups
as well as in the O2/FLP cluster. This installation mechanism can be used via Foreman [18],
a server lifecycle management solution, or through a custom command line installer tool,
available for both single-node and multi-node deployments.

AliECS instances for detector commissioning tasks include setups for the ALICE Time
Projection Chamber [19], Inner Tracking System [20] and Muon Forward Tracker [21] subde-
tectors. As we performed these deployments we encountered the following major challenges:

6

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

1. AliECS is often deployed in an environment where ALICE detector teams already have
their own tooling and scripts, which complicates integration.

2. The IPC interfaces between AliECS and the DCS, and between AliECS and the trigger
system aren’t in place yet, which requires workarounds.

3. AliECS instances for detector teams need to be deployed either off-premises, or on-
premises but in differently configured network environments, which complicates au-
tomation and support intervention.

4. AliECS integrates with a multitude of O2 components, which makes integration testing
critical for successful releases.

We have promptly reacted to these challenges by collecting further requirements from
detector teams, and by more clearly communicating the potential integration points between
detector team tooling and AliECS components. We have extended and improved coconut,
which can easily be called within shell scripts to direct AliECS behavior, and we have en-
gaged to extend AliECS so it can also execute generic commands, as opposed to only stateful
OCC-compatible tasks.

We have further extended and refined our Foreman-based system configuration manage-
ment facilities, and we have developed a new Ansible-based multi-node installer system writ-
ten in Go, as a replacement for the previously used wrapper script. A high level testing
mechanism for the Ansible roles which install AliECS and other O2 components was also
developed, in order to spot integration issues as early as possible.

5 Conclusion

We propose a new, custom built, microservices oriented, integrated solution for ALICE ex-
periment control as well as for cluster control in the FLP facility of the O2 computing system.
We assert that the leap to O2 is an opportunity for a broad technical refresh by leveraging
modern cluster resource management and IPC technologies for a high performance, low la-
tency ECS.

By taking advantage of Apache Mesos, we gain resource management, control message
transport, events, and more, with the goal of achieving improved operational flexibility. On
top of this framework, we implement a distributed state machine mechanism, with an ex-
pressive configuration format and a modular process control stack for maximum compati-
bility in an inevitably heterogeneous context. We employ open source cross-platform and
cross-language technologies such as gRPC, Git and Consul to maximize interoperability and
minimize technical risks.

We aim to maximize the usage of LHC beam time while ensuring optimal resource allo-
cation in the new O2 facility for both synchronous and asynchronous data-driven workflows.
AliECS takes direct control over the O2/FLP facility, and interfaces with the O2/EPN cluster
control to gain high-level oversight of the whole data readout chain. With our design ap-
proach we aim to achieve substantial performance improvements and operational benefits in
mission critical use cases compared to the previous system.

References

[1] K. Aamodt et al. (ALICE), JINST 3.08, S08002 (2008)
[2] B. Abelev et al. (ALICE), Journal of Physics G: Nuclear and Particle Physics 41, 087001

(2014)
[3] J. Adam et al. (ALICE), Tech. Rep. CERN-LHCC-2015-006 / ALICE-TDR-019, CERN

(2015)

7

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

[4] J. Mitra, S. Khan, S. Mukherjee, R. Paul, Journal of Instrumentation 11, C03021 (2016)
[5] A. Borga, F. Costa, G. Crone, H. Engel, D. Eschweiler, D. Francis, B. Green, M. Joos,

U. Kebschull, T. Kiss et al., Journal of Instrumentation 10, C02022 (2015)
[6] F. Carena, W. Carena, S. Chapeland, V.C. Barroso, F. Costa, E. Dénes, R. Divià,

U. Fuchs, A. Grigore, T. Kiss et al., Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
741, 130 (2014)

[7] P. Chochula et al., Proceedings of the 16th International Conference on Accelerator and
Large Experimental Control Systems pp. 323–327 (2018)

[8] FairMQ C++ Message Queuing Library and Framework, https://github.com/

FairRootGroup/FairMQ, accessed: 2019-09-26
[9] M. Al-Turany, D. Bertini, R. Karabowicz, D. Kresan, P. Malzacher, T. Stockmanns,

F. Uhlig, Journal of Physics: Conference Series 396, 022001 (2012)
[10] M. Al-Turany, P. Buncic, P. Hristov, T. Kollegger, C. Kouzinopoulos, A. Lebedev,

V. Lindenstruth, A. Manafov, M. Richter, A. Rybalchenko et al., Journal of Physics:
Conference Series 664, 072001 (2015)

[11] Apache Mesos, http://mesos.apache.org/, accessed: 2019-09-26
[12] D. Berzano, G. Eulisse, C. Grigoraş, K. Napoli, Journal of Physics: Conference Series

898, 082043 (2017)
[13] The O2 Control System, https://github.com/AliceO2Group/Control, accessed: 2019-09-

26
[14] Consul by HashiCorp, https://www.consul.io/, accessed: 2019-09-26
[15] The Go Programming Language, https://golang.org/, accessed: 2019-09-26
[16] gRPC A high performance, open-source universal RPC framework, https://grpc.io/, ac-

cessed: 2019-09-26
[17] Red Hat Ansible, https://www.ansible.com/, accessed: 2019-09-19
[18] Foreman, https://theforeman.org/, accessed: 2019-09-19
[19] J. Adam et al. (ALICE), Tech. Rep. CERN-LHCC-2013-020 / ALICE-TDR-016, CERN

(2013)
[20] B. Abelev et al. (ALICE), Tech. Rep. CERN-LHCC-2013-024 / ALICE-TDR-017,

CERN (2014)
[21] J. Adam et al. (ALICE), Tech. Rep. CERN-LHCC-2015-001 / ALICE-TDR-018, CERN

(2015)

8

EPJ Web of Conferences 245, 01033 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501033

