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Introductio

Introduction

m Precision measurements of both the online and offline luminosity are a
critical component of the LHC physics programme.

m Online luminosity with accuracy of ~ 5% was achieved in Run 2:
required for operating the accelerator and the experiments (e.g. for
performance optimization, levelling, trigger optimization).

m Precise offline luminosity measurement is important for all analyses,
particularly for precision cross section measurements:

- For Z, W and top cross sections, a ~ 1% luminosity uncertainty
would be required to make it subleading among other well-controlled
systematics.
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# New for ICHEP 2020: Preliminary luminosity measurements for low-pileup pp collision datasets
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The Run 2 physics programme also included dedicated periods of low-pileup running at v/s = 5.02 and 13 TeV:

- 13 TeV: for precision W boson measurements, where high pileup degrades the detector resolution of W — v decays.

- 5.02 TeV: served as pp reference data with the same nucleon-nucleon collision energy as the Run 2 PbPb dataset
for the LHC heavy-ion programme (also useful for precision W/Z physics measurements).
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- 13 TeV: for precision W boson measurements, where high pileup degrades the detector resolution of W — v decays.

- 5.02 TeV: served as pp reference data with the same nucleon-nucleon collision energy as the Run 2 PbPb dataset
for the LHC heavy-ion programme (also useful for precision W/Z physics measurements).

/ of Toronto) ATLAS Luminosity July 29, 2020 1/21


https://doi.org/10.1140/epjc/s10052-020-7907-9

The Run 2 pp Datasets

Typical running conditions for physics:

- T —
. 2160
_ S UE ATLAS -
13 TeV hlgh 1”3 2140[Preliminary V5 =13 Tev =
é 120 [EILHC Delivered Pocoriod :ii’;“ E
Parameter 2015 2016 2017 2018 51 E' [JATLAS Recorded PPses: 130" ]
3100 E
Maximum number of colliding bunch pairs (n,) 2232 2208 2544/1909 2544 3 00; [Deood for Physics E
Bunch spacing (ns) 25 25 25/8b4e 25 g 80 3
Typical bunch population (1011 protons) 1.1 1.1 1.1/1.2 1.1 E 60 —
B (m) 08 04 0.3 0.3-0.25 T 4 =K
Peak luminosity Lpea (10°% cm?s™?) 5 13 16 19 ok i
Peak number of inelastic interactions/crossing ({&)peak) ~16 ~41 ~ 45/60 ~ 55 E. N £
Luminosity-weighted mean inelastic interactions/crossing 13 25 38 36 ,?5 ‘.,\5 W8 A6 AT AT B 4B ]
i i -t 320 30 g0 U g g yan T gl
Total delivered integrated luminosity (fb™") 4.0 38.5 50.2 63.4 Month in Year
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L [ ATLAS Online, 13 TeV  [Ldt=146.9 fo* ]
5.02TeV and 13 TeV low-u 3 500 205 =134
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& 400 2 2017902378
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E E otal: <> = ]
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k<] C |
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Mean Number of Interactions per Crossing
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Introduction Measuring Luminosity

Observed Event Rate

A detector measures the event rate
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Measuring Luminosity

Observed Event Rate

A detector measures the event rate

Visible cross section

The detector’s calibration constant
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The Luminosity Measurement and Calibration

Measuring Event Rates: ATLAS Luminometers

L R /Uvis

EMEC & FCal

LAr calorimeter gap currents

LUCID
Hit counting using Cherenkov light
from quartz windows of 2x16 PMTs

TILE Calorimeter
Scintillating-tile PMT currents

Track counting
Multiplicity of reconstructed charged particles
in the silicon layers of the Inner Detector

ATLAS Luminosity

LUCID

m Primary ATLAS luminometer throughout Run 2

m Bunch-by-bunch measurements, integrated over
“luminosity blocks” of typically 60 seconds

m Generally used a hit-counting algorithm of 2x4
PMTs for the baseline offline luminosity

4 sets of 4 Photomultipliers
Cherenkov medium: Quartz windows
Gain monitoring: Bi-207 sources

——
To ATLAS
IP, 17m

Carbon fiber support
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The Luminosity Measurement and Calibration

Absolute Luminosity Calibration: The vdM Scan Method
L=R/ oys

m The van der Meer (vdM) scan method is used for ATLAS's absolute
luminosity calibration.

Joey Carter (University of Toronto) ATLAS Luminosity July 29, 2020 5/21



The Luminosity Measurement and Calibratio

Absolute Luminosity Calibration: The vdM Scan Method
L=R/ oys

m The van der Meer (vdM) scan method is used for ATLAS's absolute
luminosity calibration.

m Principle of (factorisable) vdM formalism:

Ly = frnlnz/m(x,y)ﬁz(x,y) dxdy

= Per-bunch luminosity £, from bunch revolution frequency f., bunch populations
ny and no, and proton transverse-density distributions p1(x, y).
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The Luminosity Measurement and Calibration

Absolute Luminosity Calibration: The vdM Scan Method

L =R / Ouis SF— . -
2 X pos: bl b2
o L
. ) X
m The van der Meer (vdM) scan method is used for ATLAS's absolute < ¥ pos:
luminosity calibration. b
&
m Principle of (factorisable) vdM formalism: §
o
Time
£b=frnlnz/ﬁ1(X,)/)ﬁ2(X,Y)dXdy o g
iy ATLAS Preliminary o Signal
”8 November 2017 vdM R ::?znoa;t:;lge. subt. 5
= Per-bunch luminosity £, from bunch revolution frequency f,, bunch populations = Ei“s‘éj,"c"s"“l g e ]
n1 and no, and proton transverse-density distributions p12(x, y). < LUCID BHIOR s ™" T %e,
2 A LN

B Scan beam separation Ax, Ay in x and y planes, compute overlap
integral to extract convolved beam sizes > :
1 [ R(Ax) dAx frmna  isfr

Y= s p= — 2 = e o
Varm R(0) 27Xy Ovis " 20.4-0.3-0.2-0. 0102 0304 \

AX [mm] |

Scan curve fitted with Gaussian X j
polynomial to compute overlap integral.

- Try different fit functions (G*P4, double-G,
super-G), take difference as systematic.

ATLAS Luminosity July 29, 2020 5/21



The Luminosity Measurement and Calibration

Absolute Luminosity Calibration: The vdM Scan Method

L= R/ Ovis

m The van der Meer (vdM) scan method is used for ATLAS's absolute
luminosity calibration.

m Principle of (factorisable) vdM formalism:

Ly = frnlnz/m(x,y)ﬁz(x,y) dxdy

- Per-bunch luminosity £, from bunch revolution frequency f;, bunch populations

ny and no, and proton transverse-density distributions p1(x, y).

B Scan beam separation Ax, Ay in x and y planes, compute overlap
integral to extract convolved beam sizes > :

1 [ R(Ax) dAx

= RO)

_ femm st
2Ty, Oyis

’ b

m Calibration constant o,;s from visible interaction rate at peak of scan:

2T,
ning

. _,,max
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super-G), take difference as systematic.
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The Luminosity Measurement and Calibration

vdM Details and Uncertainties

o _ 5 M e o e
m Scan-to-scan variations: expect same o,s for different bunch 'g - ATLAS i \ -
. . L -l i
pairs and scan sets: take max difference between extreme scans £ g14 [ Preliminary :,;i*jo -
as uncertainty. 3 se5a [ pp, Vs =13 TeV, 2017 s ]
£ L T R —
- 1.2% in 2017 at 13 TeV, typically half that in other years. E 1943 [~ LUCID BiHitOR ::3 % _
@ C e n
m Length scale calibration: relation between nominal (i.e. 1783 [« scan | ,ﬁg‘vg b
. [ R e -
requested) and actual beam displacement at IP. 1032 [ = Scan Il R n
C . - 2o |
- Uncertainties of 0.3-0.4 %, dominated by orbit-drift corrections and g72 [ " ScanlV e §<> 7
magnetic-hysteresis effects. 161" SeanV {-;f J% =
I
’ . - I
Beam-beam effects (EM interactions between bunches) Y TR YT AT TR “F* “‘1*_‘0‘1‘ 02
Two main effects to correct for: Oy Normalised to the weighted mean
- Optical distortions (defocusing of one beam by the other), also called o N
“dynamic 3. m Non-factorization: p(x, y) # px(x)py(y)
- Non-linear distortion of the intended beam separation. - Correction applied from combined fits to the
X . i i beam-separation dependence of the luminosity
Treatment of these corrections is under review: correction on o,;s had and of the parameters of the 3D luminous
been overestimated by ~ 1% (until 2019): region, in both on- and off-axis vdM scans.

- Correction factor to oy typically < 1%,

= 13TeV dataset iginal ti +1.3-1.7%, d di S
eV datasets use original correction ( %, depending on scan) uncertainties of 0.9-0.5 %,

- 5TeV datasets use updated correction (+0.2 %)

of Toronto) ATLAS Luminosity July 29, 2020 6/21



The Luminosity Measurement and Calibration
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The Lumi urement and Calibr

From vdM to Physics: The Calibration Transfer

m LUCID overestimates luminosity by ~ 10 % in high-u

§
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. P E R
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ninosity Measurement and Ca

From vdM to Physics: The Calibration Transfer

m LUCID overestimates luminosity by ~ 10 % in high-u

H s . H “ H H " 6 ATLAS Preliminary E ? EATLAS Preliminary Ty
physics conditions: requires a “calibration transfer” to Lo orater 3§ rom s prsmnary
account for change in response between vdM and physics 2f- LHC Fil 6931, July 16, 2018 4 5L e
) ) i ER I S NN E
regimes: oo 5 ook 13%| [* win
- Low-u — high-u ZZj: )
- lIsolated bunches — trains (and 1 number of colliding bunches) .3 0995 3
- Zero crossing angle — nominal crossing angle L 099 FI6OTE (valt) FilGo2e (physics)
15 20 25 30 35 40 45 50 55 6 260 460 660 5601 012‘0014‘0016‘0018‘00
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ninosity Measurement and Ca

From vdM to Physics: The Calibration Transfer

m LUCID overestimates luminosity by ~ 10 % in high-u
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The Luminosity Measurement and Cali

From vdM to Physics: The Calibration Transfer

m LUCID overestimates luminosity by ~ 10 % in high-u
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m This correction assumes Tracks is linear with u: need to
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closely-following physics fill.
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The Lumi

Long-Term Stability

m Monitor LUCID throughout each data-taking year with respect to other luminosity algorithms.
m Assign “stability band” uncertainty to enclose bulk of points:
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Long-Term Stability

The Luminosity Measurement and Cali

m Monitor LUCID throughout each data-taking year with respect to other luminosity algorithms.

m Assign “stability band” uncertainty to enclose bulk of points:
- Largest stability uncertainty at 13 TeV high-u from 2017: 1.3%

(0.7% in 2015+16 and 0.8 % in 2018). —
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The Luminosity Measurement and Calibration

Long-Term Stability

m Monitor LUCID throughout each data-taking year with respect to other

m Assign “stability band” uncertainty to enclose bulk of points:
- Largest stability uncertainty at 13 TeV high-u from 2017: 1.3%

(0.7% in 2015+16 and 0.8 % in 2018).
-» Stability uncertainties in low-u datasets are smaller overall

(~0.4-1.0%), thanks to the data being taken over a short period
of time (1-2 weeks) and ideally close to vdM fill.
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The Luminosity Measurement and Calibration

Long-Term Stability

m Monitor LUCID throughout each data-taking year with respect to other

m Assign “stability band” uncertainty to enclose bulk of points:
- Largest stability uncertainty at 13 TeV high-u from 2017: 1.3%

(0.7 % in 2015416 and 0.8 % in 2018).
-» Stability uncertainties in low-u datasets are smaller overall

(~0.4-1.0 %), thanks to the data being taken over a short pérlod

of time (1-2 weeks) and ideally close to vdM fill.
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Final Uncertainties and Combination

Treat datasets with common CoM energy and running conditions from different years as a single combined dataset.

- Need to combine luminosity and uncertainties, accounting for inter-year correlations

13 TeV High-u 13 TeV Low-pu 5.02 TeV Low-pu

Data Sample 2015+16 2017 2018 Comb. \ 2017 2018 Comb. \ 2015 2017 Comb.
Integrated luminosity (fb~1) 36.2 44.3 58.5 139.0 0.1449 0.1902 0.3352 0.0251 0.2569 0.2820
Total uncertainty (fb™!) 0.8 1.0 1.2 2.4 0.0030 0.0029 0.0050 0.0005 0.0041 0.0043
Absolute vdM calibration 11 15 1.2 - 15 1.2 - 1.2 0.8 -
Calibration transfer 1.6 13 1.3 1.3 1.2 0.8 1.0 1.0 1.2 1.2
Afterglow and beam-halo subtraction 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Long-term stability 0.7 13 0.8 0.6 0.8 0.4 0.4 1.0 0.7 0.6
Tracking efficiency time-dependence 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Total uncertainty (%) 2.1 2.4 2.0 17 | 21 1.5 1.5 | 1.9 1.6 1.5

Total luminosity and uncertainty for the ATLAS Run 2 pp datasets:

13 TeV high-p 13 TeV low-u 5TeV low-u
Liot = 139167, 6L/L==417% Liot = 335pb™t, 6L£/L=+15% Liot = 282pb™t, 8L/L=+15%
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Outlook: How can we reduce 6L/L7?

The single largest uncertainty arises from the calibration transfer procedure. Possible avenue for improvement:

° F T 4
E 1010 ATLAS Preliminary u Isolated P
Dg [ Vs=13Tev A Firstin train ]
E‘ [ Track counting data 2018 ¥ First in subtrain ]
~ 1.005[ LHC Fill: 6854-b, (i~ 45 + 12btains i
2 [ Correlation between selections: 0.99 ~ ® 480 trains -
£ F [
» 1.000— [
s K M M .
oS e ‘ im]
E’ 0. 995j ™
i. :W W ,;.;}..W§ B

0.990 """ =
0.9850% , |\ttt i

0 20 40 60 80 100 120 140 160

Bunch position in train

Track counting

m The calibration transfer relies on the track-counting
luminosity being linear with w in a broad range of LHC
running conditions.

m Performance of a track-counting algorithm depends on the
choice of track-selection working points.

m Currently investigating other working points (e.g. changing
requirements on number of silicon hits).

- Provides a means to monitor the stability and internal
consistency of the track-counting measurements.
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Outlook: How can we reduce 6L/L7?
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Z boson counting

L. w/ LATLAS

m Z boson production rate at the LHC is sufficiently high that
counting Z — ££ (£ = e, ) events can act as a “luminometer.”

09
m Serves as an additional check on the stability of the primary 0.9 § gy
. 09
ATLAS luminosity measurement from LUCID. 00 DRMS
=l | | | | 19
O-94j05 " 53j06 23107 32108 51009~ 2I0 201
~ 1.04 .
3 3 gl o Ty "4 ATLAS Preliminal . . . Date in 2017
%1_035 g, .- 2 2018 5 =13 Tev v Calorimeter Activation
3 E T I T T 3 Preferred Algorithm = Lucid C12 X . . X X
= L08F Anchored at the end of Fil 6909 m Running with head-on collisions activates the calorimeter
51, k C 2016 sel. . . e s . . .
4511022 T . Tk o o eat) materials, leading to an artificially high luminosity
v EMEC measurement that gradually decays away (order of a few
1.015 Y v + Fcal
v A TILE_DS hOUI’S)
1.01 v TILE_D6 .

e

m Important to understand these activation effects for both
the calibration transfer and the long-term stability.

1000 2000 3000 4000
Incremental Luminosity Block

m Exploring both data-driven and simulation-based approaches
to model and correct for these effects.
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Summary

Summary

ATLAS Run 2 luminosity results to date:!

Year Dataset Uncert. Status

2015-18  pp v/s=13TeV high-u 1.7% Prelim. ATLAS-CONF-2019-021 &

2015+17 pp /s =5TeV low-u 1.5% .
- _ - o
2015+18  pp /5 = 13 TeV low- 1.5% Prelim. ATLAS-CONF-2020-023 ¢

2015 Pb+Pb 1.5% Final
2016 p+Pb 2.4% Final
2018 Pb+Pb 4.1% Prelim., update in progress

ATLAS Luminosity Posters at ICHEP

m P. Moder: Measuring luminosity with track counting in the ATLAS experiment &
m S. G. Fernandez: Measurements of Luminosity in ATLAS with Tile Calorimeter &

m M. O'Keefe: Luminosity Determination using Z — ¢£ Counting for Run-2 ATLAS Data &

L Analysis of high-B* datasets is ongoing.
July 29, 2020 12/21
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-021/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-023/
https://indico.cern.ch/event/868940/contributions/3813582/
https://indico.cern.ch/event/868940/contributions/3813589/
https://indico.cern.ch/event/868940/contributions/3813580/

Backup
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ATLAS Luminosity Public Results

Public Results TWiki: twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2 &

m Luminosity determination for low-pileup datasets at /s = 5 and 13 TeV using the ATLAS detector at the LHC @

- Preliminary (Summer 2020) Run 2 luminosity results for low-pileup datasets [ATLAS-CONF-2020-023]
m Luminosity determination in pp collisions at v/s = 13 TeV using the ATLAS detector at the LHC @
- Preliminary (Spring 2019) Run 2 luminosity results [ATLAS-CONF-2019-021]
m Luminosity determination in pp collisions at /s = 8 TeV using the ATLAS detector at the LHC &
- Final 2012 luminosity results [Eur. Phys. J. C 76 (2016) 653]
m Improved luminosity determination in pp collisions at v/s = 7 TeV using the ATLAS detector at the LHC &
- Final 2010 and 2011 luminosity results [Eur. Phys. J. C 73 (2013) 2518]

LHC Lumi Days Workshop, June 4=5 2019: indico.cern.ch/event/813285/ @ - ATLAS Presentations:
m R. Hawkings: Overview of ATLAS luminosity determination methodology in Run 2 @
m W. Kozanecki: Impact of orbit drifts & magnetic-hysteresis effects on vdM & length-scale calibrations &
m M. Dyndal: Non factorization in ATLAS & ALICE vdM scans &
m V. Lang: Long-term monitoring of delivered luminosity & calibration stability in ATLAS &
m R. Hawkings: Combination of luminosity uncertainties for the full Run-2 dataset: the ATLAS example &

Joey Carter (University of Toronto) ATLAS Luminosity July 29, 2020
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-023/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-021
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/DAPR-2013-01
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/DAPR-2011-01
https://indico.cern.ch/event/813285/
https://indico.cern.ch/event/813285/timetable/#3-overview-of-atlas-luminosity
https://indico.cern.ch/event/813285/timetable/#11-impact-of-orbit-drifts-magn
https://indico.cern.ch/event/813285/timetable/#13-non-factorization-in-atlas
https://indico.cern.ch/event/813285/timetable/#20-long-term-monitoring-of-del
https://indico.cern.ch/event/813285/timetable/#28-combination-of-luminosity-u

5 TeV and 13 TeV low-u Datasets

Dataset Date LHC fill(s) ~ Bunch config. B* Peak L Typical (u)
(m)  (em?sh)
Vs =5.02TeV 2017
- vdM scan 11 Nov 6380 22, isolated 3.1 4% 10% 0.75-1.0
- calibration transfer 13 Nov 6385 1828, 8bde 3.1 1.2 x 10% 1-4
- physics 12-20 Nov  6381-6399 512-1828, 8bde 3.1 0.5-1.3x10* 0.5-4
Vs =13TeV 2017
- vdM scan 28 Jul 6016 32, isolated 19 2.7 x 10%° 0.6
- calibration transfer 29 Jul 6019 591 25ns trains 0.4 8 x 10% 1 (level)
- physics 21-26 Nov  6404-6417 644-1866, 8bde 0.4 5 x 10% 2, 1 (level)
Vs =13TeV 2018
- vdM scan 30 Jun 6868 124, isolated 19 8 x 10*° 0.5
- calibration transfer 28 Jun 6860 2448, 25ns trains 0.3 7 x 10% 2 (level)
- physics 28 Jun + 6860 + 2448-2544, 0.3 7 x 10% 2 (level)
9-13 Jul 6909-6919  25ns trains
Joey Carter (University of Toronto) ATLAS Luminosity July 29, 2020
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vdM Detalls |

m Determining bunch populations n; and n»

- DC Current Transformers to obtain the total current in each beam.

- Fast Beam-Current Transformers to resolve the total current into the fractions in individual bunches.
m Orbit drifts during scans

- Measured using LHC arc and triplet (DOROS) Beam Position Monitors.

- Have observed drifts up to O(10 um) in the position of one or both beams during the course of a single
vdM scan.

m Beam position jitter
- Beam movement within one scan step.
- BPMs constrain possible movement within a scan step, input to simulated vdM scans.
m Emittance growth
- Accounts for possible variations of the horizontal and vertical beam emittances, and therefore the
convolved beam sizes ¥« and ¥, during the course of an x-y scan pair.

- Creates bias only if horizontal and vertical emittances grow at different rates (which they do).
- Uncertainty carried over from Run 1 analysis.

Joey Carter (University of Toronto) ATLAS Luminosity July 29, 2020 16/21
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vdM Details Il
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Eur. Phys. J. C 76 (2016) 653 &
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vdM Details 11

m Non-factorization

Vertical luminous width [mm]

- Clear signature of non-factorization: strong horizontal-separation dependence

- To estimate the correction to o,;s due to non-factorization effects, compute

of the vertical luminous size (from reconstructed vertices).
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vdM Details 11

m Non-factorization
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vdM Details |1

m Length scale calibration

- Relation between nominal (i.e. requested) and actual beam
displacement at IP.
- Displace both beams in same direction.
- Reconstruct luminous centroid position using vertices
reconstructed in ATLAS inner detector.
m Perform a mini-scan in beam-2 x-pos around fixed beam-1 x-pos
to find peak position.
- Fit linear relation between bump amplitude and luminous centroid
to find calibration.
- Repeat for each of beam-1 x, y and beam-2 x, y.
m Since Nov 2017, use same directions of movement as in vdM
scan, to get same hysteresis effect.

m Additional systematics from ID alignment

X-position of luminous centroid [um]

Data - Fit [um]

100]
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Beam-2 horizontal-bump amplitude [um]

- Assessed by considering “realistic” misalignment scenarios, giving a ~ 0.1 % uncertainty.
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Combination Methodology and Inter-Year Correlations

m Final uncertainty calculated using simple error propagation:
-» Total integrated luminosity is sum of all years: Lot = X, L;
- Variance of the total depends on covariance matrix V| encoding the errors on individual years:

OLtot OLtot OLtot B
8Ly ' 8L ' BLs ) =(1,1,1,...)

(O-Ltot)2 = GVLE;, where G = (

m Evaluation of the covariance matrix V;:
- Sum of individual sources with uncertainties o; in each year (many separate uncorrelated and correlated

sources): , ,
ocr 0 O o1 0102 0103
2 2
Vi=|0 o5 0 |+|0o01 05 o0003]|+---
2 2
0 0 o3 0301 0302 03
uncorrelated correlated

- Sources with both correlated and uncorrelated parts are broken into two separate contributions to ;.

- “Random” uncertainties taken as uncorrelated, e.g. scan-to-scan oyis consistency, long-term stability.

- “Systematic” uncertainties (and those obtained using the same methodology) taken as correlated—always
have the same bias, e.g. non-factorization, beam-beam effects, calibration transfer.
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Individual and Combined Dataset Uncertainties

13 TeV High-p 13TeV Low-p 5.02 TeV Low-u
Data Sample 2015+16 2017 2018 Comb. ‘ 2017 2018 Comb. ‘ 2015 2017 Comb.
Integrated luminosity (fb 1) 36.2 44.3 58.5 139.0 0.1449 0.1902 0.3352 0.0251 0.2569 0.2820
Total uncertainty (fb™*) 0.8 1.0 1.2 2.4 0.0030 0.0029 0.0050 0.0005 0.0041 0.0043
Uncertainty contributions (%):
DCCT calibration’ 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.4 0.2 0.2
FBCT bunch-by-bunch fractions 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
Ghost-charge correction® 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1
Satellite correction** 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Scan curve fit model™ 0.5 0.4 0.5 0.4 0.4 0.5 0.5 0.6 0.2 0.2
Background subtraction 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.0
Orbit-drift correction 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.2
Beam position jitter 0 0.3 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.1 0.1
Beam-beam effects” 0.3 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2
Emittance growth correction® 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2
Non-factorization effects” 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.3 0.3
Length-scale calibration 0.3 0.3 0.4 0.2 0.3 0.4 0.3 0.5 0.4 0.4
ID length scale” 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Bunch-by-bunch ois consistency 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.4 0.2 0.2
Scan-to-scan reproducibility 0.5 1.2 0.6 0.5 1.2 0.6 0.6 0.3 0.3 0.2
Reference specific luminosity 0.2 0.2 0.4 0.2 0.2 0.4 0.3 0.1 0.4 0.3
Subtotal for absolute vdM calibration 11 15 1.2 - 15 1.2 - 1.2 0.8 -
Calibration transfer'** 1.6 1.3 1.3 1.3 1.2 0.8 1.0 1.0 1.2 1.2
Afterglow and beam-halo subtraction” 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Long-term stability 0.7 1.3 0.8 0.6 0.8 0.4 0.4 1.0 0.7 0.6
Tracking efficiency time-dependence 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Total uncertainty (%) 2.1 2.4 2.0 17 | 21 15 15 | 19 16 15
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