
Optimizing Provisioning of LCG Software Stacks with
Kubernetes

Richard Bachmann1,2,∗, Gerardo Ganis1,∗∗, and Dmitri Konstantinov3,Ivan
Razumov3,Johannes Martin Heinz4,

1CERN, Experimental Physics Department, 1211 Geneva 23, Switzerland
2NTNU, Department of Computer Science, NO-7491 Trondheim, Norway
3NRC Kurchatov Institute - IHEP, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
4Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany

Abstract. The building, testing and deployment of coherent large software
stacks is very challenging, in particular when they consist of the diverse set of
packages required by the LHC∗∗∗ experiments, the CERN Beams department
and data analysis services such as SWAN. These software stacks comprise a
large number of packages (Monte Carlo generators, machine learning tools,
Python modules, HEP∗∗∗∗ specific software), all available for several compilers,
operating systems and hardware architectures. Along with several releases per
year, development builds are provided each night to allow for quick updates
and testing of development versions of packages such as ROOT, Geant4, etc. It
also provides the possibility to test new compilers and new configurations.

Timely provisioning of these development and release stacks requires a
large amount of computing resources. A dedicated infrastructure, based on
the Jenkins continuous integration system, has been developed to this purpose.
Resources are taken from the CERN OpenStack cloud; Puppet configurations
are used to control the environment on virtual machines, which are either
used directly as resource nodes or as hosts for Docker containers. Containers
are used more and more to optimize the usage of our resources and ensure
a consistent build environment while providing quick access to new Linux
flavours and specific configurations.

In order to add build resources on demand more easily, we investigated
the integration of a CERN provided Kubernetes cluster into the existing infras-
tructure. In this contribution we present the status of this prototype, focusing
on the new challenges faced, such as the integration of these ephemeral build
nodes into CERN’s IT infrastructure, job priority control, and debugging of job
failures.

∗e-mail: richard.bachmann@cern.ch
∗∗e-mail: gerardo.ganis@cern.ch
∗∗∗Large Hadron Collider
∗∗∗∗High Energy Physics

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030



1 Introduction
The Software Process Integration (SPI) team, which is part of CERN’s Experimental Physics
- Software group, provides a comprehensive collection of software for scientific computing.
This collection is known as the LCG1 software stacks[1]. A sizable amount of time and
computing resources are used to maintain, update and expand these stacks. This, combined
with a growing scope, creates a need to make the process more efficient. Data collected
from the current build system indicates that a significant portion of the available computing
resources, such as CPU time, memory and storage, is not actively utilized. An example of the
observed CPU use can be seen figure 1. The ongoing deployment of Kubernetes[2] at CERN
presents an opportunity to resolve this issue.

In this paper we present the results of our investigations of ways to use Kubernetes in
order to provide the LCG software stacks. This paper is organized as follows: In this section
we summarize the main aspects of the LCG software stacks and the Kubernetes system. In
section 2 the requirements for the new system are laid out. Section 3 lists approaches and
tools for building this system with Kubernetes, as well as their perceived advantages and
disadvantages. Finally section 4 presents the project’s current status and future work.

Figure 1. The average CPU utilization of build nodes active during the nightly build process. After the
initial peak most of the compute resources go unused, and could be made available to other processes
or user groups.

1.1 The LCG Software stacks

The LCG software stacks contain almost 450 packages compiled with several compilers, and
made available for multiple operating systems, Python versions and hardware architectures.
Among these packages are Monte Carlo generators, machine learning tools, Python modules
and HEP-specific software. Along with several releases per year, about 30 development
builds are provided each night to allow for quick updates and testing of new versions of
ROOT[3], Geant4[4], etc. The system also provides the possibility to test new compilers
and configurations. The two experiments ATLAS[5] and LHCb[6], as well as the SWAN[7]
platform and the Beams Department[8] are the largest users at CERN. Additionally, the stacks
have a number of users outside the listed projects and even outside of the HEP community.

1LHC Computing Grid

2

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030



1.1.1 Build process

Figure 2 outlines the different stages of the build, testing and distribution process which
creates the LCG stacks. The process is currently automated using a Jenkins[9] continuous
integration server 2. This server delegates most of the computation work to a number of
different build workers, most of which are virtual machines. These virtual machines, in
turn, are provided by the CERN OpenStack[11] cloud. The work of transitioning to a fully
containerized workflow is already well underway, and the majority of the builds now run in
containers.

A standard build interacts with a number of external services in order to make the output
available to users. Among these are:

• Kerberos[12], which provides the means of secure authentication.

• EOS[13], a disk-based low-latency storage service.

• CVMFS[14], the primary distribution platform.

• CDASH[15], which displays data about the overall health of the system.

Configure Build Upload to EOS Deploy to CVMFS Test

Figure 2. A typical workflow of an LCG stack build pipeline contains these steps.

1.2 Kubernetes

Kubernetes is an open-source container orchestration system, designed to enhance service
scalability by replicating individual components. It features a detailed REST API, which is
used to interact with the system. Kubernetes operates on pods, which function as the smallest
schedulable unit. A pod is a group of one or more co-scheduled containers with shared storage
and networking. These are scheduled to run on worker nodes, which can be either physical
or virtual machines. In general, pods can be launched on any available node which fulfills
a set of requirements, such as the amount of available resources. This makes the process of
adding computing power to the whole system as simple as adding new nodes to the cluster.

2 Vision for a new build infrastructure

The Kubernetes-based build system will have to work in unison with existing systems, in
addition to following new design principles. The most important top level requirement is
for it to function with Jenkins as the controlling interface and agent, since Jenkins is used to
operate all existing build processes. This means that it must allow for Jenkins to trigger build
jobs, manage and supply configuration options and credentials, and also view the result of
each job. If possible, rewrites of existing scripts should be kept to a minimum.

In order to execute the build jobs, as shown in figure 2, the solution must be able to run the
project’s CMake[16]-based build system LCGCMake[1] and supply it with the environment
variables which define each build. The resulting artifacts must then be uploaded to EOS and
deployed to CVMFS, which requires credentials and further configuration options. Both the
build- and test-stage interact with CDash, which is used to monitor the status of the builds.

2In time Gitlab CI/CD [10] may replace Jenkins as the main tool for running the build processes, but the investi-
gation of this possibility will be conducted independently of this project.

3

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030



Furthermore it is seen as desirable to build the solution as a combination of purpose-
specific components. Ideally each stage seen in figure 2 should be an independent container
which can be replaced without affecting the others. In order to achieve this, the solution
should follow Redhat’s Principles of Container-based Application Design[17] to the degree
which other constraints allow. Containers of the same stage should also be prevented from
affecting each other, ensuring that each job is executed independently.

Figure 3. Interactions of the Kubernetes solution with different system components. The Configure
step is at the time of writing not complex enough to warrant a separate pod, but this may change in the
future.

2.1 Kubernetes as a batch system

Kubernetes is traditionally known as a platform for running long-lived services in a scalable
and fault tolerant manner. The LCG stack use case differs from this model, as build jobs are
ephemeral, usually lasting only a handful of hours. However, Kubernetes offers a number of
mechanisms which are of particular interest for the realization of the project:

• The Kubernetes batch job is a concept which wraps a pod in additional logic, granting the
ability to control job timeout, number of required completions, etc.[18]. These are designed
for short-lived actions, not too different from the LCG stack build jobs.

• Kubernetes’ secret objects allow for the secure management of credentials, access tokens
and similar sensitive resources [19]. In the absence of a Jenkins client running on the pod,
this system can be used to supply pods with sensitive data without having to include it
in the container image or pod definition. A mechanism for synchronizing the Kubernetes
secrets with the Jenkins secrets will still have to be created.

• Auto-scaling allows Kubernetes clusters to adapt to varying workloads and sudden peaks
of resource demand. Different ways of scaling exist, but cluster auto-scaling is of partic-
ular interest for this use case. This feature, which is implemented on Kubernetes and the
underlying provider OpenStack, allows for the automatic spawning and deletion of worker
nodes based on demand. Nodes are added to the cluster when the sum of required resources
exceeds what currently exists in the cluster. Likewise, nodes can be deleted when resources

4

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030



go unused for a period of time. Worker nodes are returned to a shared resource pool when
deleted, allowing others to make use of them. At this point in time other internal projects,
as well as the ROOT and Geant4 development teams, share this resource pool. In the fu-
ture, both pool size and demand may increase with the maturation of Kubernetes use at
CERN. With the adoption of auto-scaling computing resources, a noticeable flattening of
the graph in figure 1 is expected.

2.1.1 Known limitations

• The LCG Stacks are currently built for a set of x86_64 Linux platforms, as well as MacOS
and ARM64. Of these only x86_64 Linux is officially supported. For now MacOS and
ARM64 would therefore have to be built as before.

• Managed Kubernetes clusters are at the time of writing not offered, which means that its
operation and maintenance represents an additional burden for the SPI team. This might,
however, change in the future.

3 Evaluation and comparison of potential solutions

3.1 JenkinsCI Kubernetes Plugin

The first prototype was developed using the Jenkins plugin for Kubernetes[20]. While ini-
tially promising it proved to lack development in certain areas which are needed for this use
case. For instance, the container statement, which allows for the execution of commands
within specific containers, was marked as an alpha feature at the time of testing and did not
function as expected. The fact that the plugin requires all scripts to be rewritten to Jenkins’
pipeline syntax represents another major roadblock.

3.2 Working with the Kubernetes API

As each Kubernetes cluster exposes an intricate and powerful API to the web it can be used
as a more direct way to interact with its resources. To manage the complexity of the needed
requests two methods of interaction have been evaluated:

3.2.1 Scripted kubectl

Kubectl[21] is the primary command-line tool used to interact with clusters. It is used primar-
ily for development and manual operations on a cluster. Nonetheless kubectl can also be used
in scripts to perform the desired actions in an automated fashion. Such a solution, however,
would require a complete rewrite of the existing scripts. These rewrites would also carry an
additional burden of introduced complexity, making the code difficult to maintain.

3.2.2 REST API Wrapper

Instead of making the jobs directly interact with the cluster, an intermediate system could be
introduced between these components. This system can take the shape of a feature-reduced
API exposed to Jenkins, a set of project-specific logic and system to communicate with the
cluster. An in-house developed prototype based on this concept, called Lodesman[22], was
created, but has been put aside in favour of a more mature platform. The latter is described
in section 4.

5

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030



3.3 Others

In addition to the approaches mentioned so far, the technologies shown in table 1 were briefly
examined to see whether or not they fulfill the group’s requirements. Note that HTCondor is
a system which is unrelated to Kubernetes.

System Assessment
HTCondor[23] Running jobs may be terminated, resulting in loss of build artifacts. The

average build size makes this highly undesirable. Queued jobs may have
unpredictable long wait times, which some users counter by reserving
resources in advance. The former is incompatible with the regularity ex-
pected by users who rely on the builds for their own pipelines, the latter
results in inefficiencies similar to, or worse, than what is experienced
now.

Kube-batch[24] Different focus: AI/ML, BigData, HPC. Does not solve Jenkins integra-
tion.

Jenkins-x[25] Focused on microservice development. The opinionated approach
could be limiting.

Table 1. Other technologies which were briefly explored. These are deemed to be less desirable than
the approaches presented so far.

4 Status and future work

At the time of writing the possibility of using Argo[26] to implement the pipelines is being
explored. For the purpose of this project Argo provides two particularly useful toolsets:
Workflows[27] and Events[28].

• Workflows describe an ordered list of process steps, which can be used to describe the
builds similarly to what is shown in figure 3. Individual workflow stages and their inter-
actions can be specified using YAML files. Each stage represents an individual pod. Argo
extends workflow YAML syntax with parameters, loops and more, allowing the expression
of certain logic without having to resort to developing custom applications for this purpose.

• The Events dependency manager provides functionality for webhooks and logic systems
which can trigger these workflows. This can be used to create an interface for Jenkins.

A prototype has been set up: It is able to perform a standard nightly build, producing the
desired artifacts and uploading a report to the monitoring tool CDash.

The technical challenges we currently face mostly concern the movement of data between
pods, due to the large size of build artifacts. Argo handles the transfer of control of persistent
volumes[29] by use of persistent volume claims (PVC). Persistent volumes are abstractions
of physical storage, which can be mounted within the file system of pods. Claims can be
used to dynamically provision volumes from OpenStack, but a system for the management
of the PVCs still has to be found. The number of PVCs should scale to the number of needed
concurrent workflows and must be constrained by a potentially varying storage quota. A
system for long term storage of specific files, such as logs, has to be integrated as well.

The interface with external storage is also being actively worked on. We are at this point
in time evaluating the solutions provided by CERN IT for the purpose of interfacing with
EOS and CVMFS storage systems via CSI drivers[30]. As a potential alternative to EOS we
are also considering OpenStack object storage using the S3 protocol, which has the advantage
of already being integrated in Argo.

6

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030



References

[1] J. C. Villanueva. “Building, testing and distributing common software for the LHC
experiments”. In: EPJ WoC 214.05020 (2019).

[2] Kubernetes. Kubernetes. 2019. url: https: / /kubernetes. io /docs /concepts /overview /

what-is-kubernetes/ (visited on 01/15/2019).

[3] R. Brun & F. Rademakers. “ROOT - An Object Oriented Data Analysis Framework”.
In: Nucl. Inst. & Meth. in Phys. Res. A 389 (1997), pp. 81–86. url: https://root.cern.
ch/.

[4] S. Agostinell et al. “GEANT4-a simulation toolkit”. In: Nucl. Inst. & Meth. in Phys.
Res. A 506 (July 2003), p. 250.

[5] G. Aad et al. “The ATLAS experiment at the CERN large hadron collider”. In: Journal
of Instrumentation 3 (Aug. 2008), S08003.

[6] The LHCb experiment. CERN. 2019. url: http:// lhcb.web.cern.ch/ lhcb/ (visited on
02/11/2019).

[7] D. Piparo et al. “SWAN: a Service for Interactive Analysis in the Cloud”. In: Future
Gener. Comput. Syst. 78 (2018), pp. 1071–1078.

[8] The Beams Department. CERN. 2019. url: https: / /beams.web.cern.ch/ (visited on
02/11/2019).

[9] Jenkins open source automation server. 2019. url: https://jenkins.io/doc/#what- is-
jenkins (visited on 12/18/2019).

[10] Gitlab CI/CD. 2020. url: https://docs.gitlab.com/ee/ci/ (visited on 07/02/2020).

[11] CERN OpenStack service. CERN. 2019. url: https://clouddocs.web.cern.ch/ (visited
on 12/17/2019).

[12] Kerberos. 2019. url: https://web.mit.edu/kerberos/#what_is (visited on 01/15/2019).

[13] EOS storage. 2019. url: https : / / eos - docs . web . cern . ch / eos - docs/ (visited on
01/15/2019).

[14] Jakob Blomer et al. “New directions in the CernVM file system”. In: Journal of Physics:
Conference Series 898 (Oct. 2017), p. 062031.

[15] CDash testing server. Kitware. 2019. url: https : / / www . cdash . org/ (visited on
12/18/2019).

[16] CMake build process management system. 2020. url: https : / /cmake.org /overview/

(visited on 07/08/2020).

[17] Bilgin Ibryam. Principles of Container-based Application Design. Redhat. 2017. url:
https : / /www.redhat . com /cms /managed- files /cl - cloud - native - container- design -
whitepaper-f8808kc-201710-v3-en.pdf (visited on 01/15/2019).

[18] Kubernetes batch jobs. Kubernetes. 2019. url: https://kubernetes.io/docs/concepts/

workloads/controllers/jobs-run-to-completion/ (visited on 01/15/2019).

[19] Kubernetes secrets. Kubernetes. 2019. url: https : / / kubernetes . io / docs / concepts /

configuration/secret/ (visited on 01/15/2019).

[20] Kubernetes Continuous Deploy Plugin. Jenkins. 2019. url: https : / / github . com /

jenkinsci/kubernetes-plugin (visited on 12/18/2019).

[21] Kubectl. Kubernetes. 2019. url: https : / / kubernetes . io / docs / reference / kubectl /

overview/ (visited on 01/15/2019).

7

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://root.cern.ch/
https://root.cern.ch/
http://lhcb.web.cern.ch/lhcb/
https://beams.web.cern.ch/
https://jenkins.io/doc/#what-is-jenkins
https://jenkins.io/doc/#what-is-jenkins
https://docs.gitlab.com/ee/ci/
https://clouddocs.web.cern.ch/
https://web.mit.edu/kerberos/#what_is
https://eos-docs.web.cern.ch/eos-docs/
https://www.cdash.org/
https://cmake.org/overview/
https://www.redhat.com/cms/managed-files/cl-cloud-native-container-design-whitepaper-f8808kc-201710-v3-en.pdf
https://www.redhat.com/cms/managed-files/cl-cloud-native-container-design-whitepaper-f8808kc-201710-v3-en.pdf
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/jenkinsci/kubernetes-plugin
https://github.com/jenkinsci/kubernetes-plugin
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/


[22] Lodesman project repository. 2019. url: https: / /gitlab.cern.ch /rbachman / lodesman
(visited on 01/15/2019).

[23] HTCondor. 2019. url: https://research.cs.wisc.edu/htcondor/description.html (visited
on 01/15/2019).

[24] kube-batch. 2019. url: https: / /github.com /kubernetes- sigs /kube- batch (visited on
12/18/2019).

[25] Jenkins X. 2019. url: https://jenkins-x.io/docs/overview/ (visited on 12/18/2019).

[26] Argo project. 2019. url: https://argoproj.github.io/ (visited on 03/09/2020).

[27] Argo Workflows. 2019. url: https://argoproj.github.io/argo/ (visited on 03/09/2020).

[28] Argo Events. 2019. url: https: / /argoproj.github.io /projects /argo- events (visited on
03/09/2020).

[29] Kubernetes Persistent Volumes. Kubernetes. 2019. url: https : / /kubernetes . io /docs /

concepts/storage/persistent-volumes/ (visited on 02/10/2019).

[30] Container Storage Interface. Kubernetes. 2019. url: https : / /kubernetes- csi .github.
io / docs / #kubernetes - container - storage - interface - csi - documentation (visited on
02/11/2019).

8

EPJ Web of Conferences 245, 05030 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505030

https://gitlab.cern.ch/rbachman/lodesman
https://research.cs.wisc.edu/htcondor/description.html
https://github.com/kubernetes-sigs/kube-batch
https://jenkins-x.io/docs/overview/
https://argoproj.github.io/
https://argoproj.github.io/argo/
https://argoproj.github.io/projects/argo-events
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes-csi.github.io/docs/#kubernetes-container-storage-interface-csi-documentation
https://kubernetes-csi.github.io/docs/#kubernetes-container-storage-interface-csi-documentation

	Introduction
	The LCG Software stacks
	Build process

	Kubernetes

	Vision for a new build infrastructure
	Kubernetes as a batch system
	Known limitations


	Evaluation and comparison of potential solutions
	JenkinsCI Kubernetes Plugin
	Working with the Kubernetes API
	Scripted kubectl
	REST API Wrapper

	Others

	Status and future work

