
A gateway between GitLab CI and DIRAC

Chris Burr1,∗ and Ben Couturier1,∗∗

1CERN

Abstract. GitLab’s Continuous Integration has proven to be an efficient tool
to manage the lifecycle of experimental software. This has sparked interest in
uses that exceed simple unit tests, and therefore require more resources, such
as production data configuration and physics data analysis. The default GitLab
CI runner software is not appropriate for such tasks, and we show that it is
possible to use the GitLab API and modern container orchestration technologies
to build a custom CI runner that integrates with DIRAC, the middleware used
by the LHCb experiment to run its job on the Worldwide LHC Computing Grid.
This system allows for excellent utilisation of computing resources while also
providing additional flexibility for defining jobs and providing authentication.

1 Introduction

The LHCb experiment uses GitLab [1] to manage its physics software lifecycle. The first
use of this continuous integration system (GitLab CI) was to run unit tests. Very quickly it
became obvious that it could also be extended to validate the configuration for data production
jobs, or even to check and run user data analysis scripts. While standard GitLab CI runners
are appropriate to run unit tests or small test jobs, data analysis production jobs validation is
CPU intensive and exceeds the capacities of standard shared runners with run-times varying
from a few minutes to tens of hours. We therefore decided to develop a GitLab CI gateway
that would fulfil all use cases, and allow for more flexible use of resources (e.g. by running
the jobs on the Worldwide LHC Computing Grid [2] instead of dedicated hosts).

1.1 Motivations

As the use of GitLab CI was extended to Physics data analysis and to validate configurations
for data production, the standard GitLab runners software forced LHCb to dedicate resources
to this use case. We observed the following drawbacks:

• Managing similar CI configurations across multiple projects is error prone.

• Dedicated runners are idle most of the time, leading to the under-use of resources.

• Injecting credentials for merge requests (e.g. user’s Grid proxy) in the GitLab jobs in a
secure way is difficult.

∗e-mail: christopher.burr@cern.ch
∗∗e-mail: ben.couturier@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026



2 Base project and infrastructure

GitLab CI uses a simple REST interface to allow runners to register, request jobs and return
results. While this is not publicly documented, it can be easily reverse engineered. We there-
fore decided to develop a custom GitLab runner[3] to solve the issues encountered with the
standard software. As the LHCb middleware, DIRAC [4] (one of the main external packages
that should be integrated), is developed in Python [5], it was natural to develop this new tool
as a Python package.

A scalable way to manage the GitLab CI jobs was required, both at the software level
and at the infrastructure level. This needed to be capable of managing tasks with durations
varying from a minute up to many days. We decided to use the Celery [6] distributed task
management system, a Python tool that requires external software to manage the queues of
requests. Celery supports many messaging backends and we chose to deploy the RabbitMQ
[7] message queue system. The Red Hat Openshift [8] container platform was chosen in
order to have a scalable infrastructure to run the processes required by Celery.

A web frontend is also needed for users to register their GitLab project with the custom
GitLab runner. For this purpose, a Flask [9] application was developed and deployed. Figure
1 shows the overall architecture, the Celery processes being split in two parts: the Celery
Beat is the scheduling engine that allows triggering periodic tasks, and the Workers perform
the tasks of interacting with DIRAC and GitLab.

Figure 1: Overall system architecture

2.1 Runner registration

The first step to run GitLab CI jobs within the Gateway is to register it with the system.
This is a crucial step as the owner of a GitLab repository needs to be able to delegate his/her
credentials to the Gateway, in order for the service to request jobs.

Figure 2 shows the registration process. The user provided secret is registered in the
gateway using the web frontend. This is used to obtain a dedicated runner token that is stored
in a dedicated database. The frontend then triggers the polling of GitLab for jobs related to
this project by the Celery Beat.

2.2 GitLab CI job processing

Figure 3 details the interactions between components, in the case of jobs run on the WLCG
using LHCbDirac (i.e. the LHCb instance of DIRAC). The use of Celery on OpenShift, with

2

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026



Figure 2: GitLab runner project registration

Figure 3: GitLab CI job processing

RabbitMQ to manage the queues, makes the system resilient to being quickly restarted and
updated without the need to drain long running tasks out of the system.

GitLab presents a REST [10] application programming interface [11] that can be used
(with the appropriate credentials) to query the jobs to be run for a specific project, and to
publish back the results. Updates have to be provided on a regular basis or GitLab considers
the runner as dead, and therefore restarts the job. This API is the basis for the interaction
between the Gateway and the GitLab system.

The Gateway installs and runs python packages. It is therefore possible to install us-
ing standard Python tools (e.g. pip [12] ), and the use of the Python entry points package
mechanism [13] allows to decouple the Gateway from the code to be run.

The use of OpenShift (and of the underlying Kubernetes [14] container orchestrator) al-
lows to scale the project with the number of repositories registered: it is possible to increase
the size of the group of processes running each task (so-called "pods" in Kubernetes) to adapt
to the needs of the application.

3

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026



2.3 Integration with DIRAC

The GitLab CI gateway is generic, and can be integrated with many systems. The integration
with the LHCb instance of DIRAC is however a crucial use case for the experiment, as it is
the way to run jobs on the WLCG.

Running GitLab CI jobs on the Grid is possible because the LHCb software is deployed
on the CernVM file system [15] (CVMFS) which is easy to access from GitLab jobs but also
from all WLCG nodes. One issue requires caution, it is the one of user authentication and
authorisation.

Trust is required between the GitLab system, the team running the GitLab gateway and
the Grid team. Indeed, the Gateway has to trust the identity of the user submitting the job
fetched from GitLab itself. Special attention has to be taken to the security of the system, as
running jobs from any GitLab merge request (if this is possible publicly) would potentially
allow any user to run code from their branch. Two options are possible on the LHCbDirac
side: either running the jobs as a specific user or run the jobs on behalf of the user triggering
the CI job. The latter implies a mapping between the GitLab accounts and the Grid accounts
as well as the right to impersonate Grid users to start jobs on their behalf. This has not been
implemented yet as it implies discussion with the involved parties in order to limit and audit
the code.

2.4 GitLab CI gateway prototype

The current prototype allows testing running test productions on the Grid using LHCbDirac.
It allows a dynamic number of jobs to be launched, one per dataset processed whereas this
is not possible with the standard GitLab runner. This has been used to dynamically spawn
many hundreds of tasks from a single CI job. The status summary is reported to GitLab CI
and additional logs and output for each production are accessible via the web frontend as
shown in figures 4, 5 and 6.

Figure 4: Example production configuration validation job

4

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026



Figure 5: Job summary in the web frontend

Figure 6: Job log as visible in GitLab

3 Use cases for the Gateway

3.1 Automating ntuple production using LHCbDirac

In many cases, LHCb Data Analyses start with the extraction of the relevant quantities from
the LHCb dataset. This stage is performed manually by the analysts, who have to monitor
its progress and make sure it concludes successfully. Automation of this task is possible but
requires strong quality checks to avoid wasting Grid resources. This is where GitLab CI can
play a role, and a prototype[16] was developed that functions in the following manner:

• The LbAnalysisProductions.ci.pull_job(runner), pull jobs from a specific Git-
Lab repository(lhcb-datapkg/AnalysisProductions), in which each folder corre-
sponds to an analysis (e.g. Charm/d2hll_Run2). It then

– finds folders which have changed, these are “productions”
– iterates those folders to check which testing “steps” they define
– generates signed URLs so jobs can directly upload their output to S3

5

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026



– Return Nproductions · Nsteps monitoring tasks

• Use LbAnalysisProductions.ci.check_status to check the status in LHCbDirac and
update the log in GitLab CI every 30 seconds

A separate website is available to display detailed information about previous tests. It
provides a read only view of the database and gives access to signed URLs to retrieve files
from storage (using the Amazon S3 interface).

Combining the ease of use of GitLab and its capability to manage secure workflows to
update the analysis code, with the GitLab CI to LHCbDirac gateway provides LHCb with a
very powerful tool to manage ntuple extraction from the LHCb dataset in an organized and
efficient manner.

3.2 Deployment to CVMFS

The deployment of newly built/released software to CVMFS is also a
good candidate for the use of the GitLab Gateway: it is easy to write a
LbCVMFSDeployment.ci.pull_job(runnner), that has the credentials to pull jobs
from repositories like LHCbDirac, AnalysisProductions, LbEnv (or a deployment repository)
and trigger the installation on CVMFS. It should also be able to check for feedback and
report to GitLab. As LHCb refactors its CVMFS deployment installation, the plan is to
develop such a runner.

3.3 Analysis preservation workflows

Analysis preservation workflows can also profit from using the GitLab CI Gateway: such use
cases rely on having the credentials to access LHCb Grid data, and on being able to access
significant CPU resources to process their data.

Several physics groups within the LHCb experiment already use GitLab CI for some anal-
yses, with runners dedicated to their projects. The LHCb tutorials recommend automation
with workflow management systems such as Snakemake [17][18], which allow re-running
only part of the analysis of the data for which the input data or code has changed. Such
workflows however rely on a cache of intermediary artefacts that can be reused between exe-
cutions, to avoid re-computing everything from scratch.

Such a caching is not available at this stage but could be added to the system in a generic
fashion, saving the local files after each job (to a scalable storage such as the CERN EOS
or Ceph systems), and recovering them before the next one. We are investigating ways to
integrate this into the system.

4 Conclusion

The GitLab CI Gateway demonstrated that it is possible replace standard GitLab runners by
a custom one that allows integrating in a smoother manner with experiment resources. The
current system is appropriate for some use cases (e.g. the Production Configuration valida-
tion) while more features are needed to handle other use cases, such as Analysis preservation.
The system nonetheless proved its worth and its development will continue as the basis for
LHCb GitLab runners.

6

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026



References

[1] The gitlab devops platform, https://about.gitlab.com/
[2] The worldwide lhc computing grid, http://wlcg.web.cern.ch/
[3] Python api for running gitlab ci jobs, https://gitlab-runner-api.readthedocs.
io

[4] Dirac, the interware, http://diracgrid.org/
[5] The python programming language, https://www.python.org/
[6] The celery distributed task queue, http://www.celeryproject.org
[7] Rabbitmq messaging broker, https://www.rabbitmq.com
[8] The redhat openshift container platform, https://www.openshift.com
[9] Flask micro web framework, https://palletsprojects.com/p/flask/

[10] R.T. Fielding, Architectural styles and the design of network-based software architec-
tures (2000)

[11] The gitlab rest api, https://docs.gitlab.com/ee/api/
[12] Python package installer, https://pypi.org/project/pip/
[13] Python packages entry points specification, https://packaging.python.org/

specifications/entry-points/

[14] The kubernetes container orchestrator, https://kubernetes.io/
[15] The cernvm file system, https://cernvm.cern.ch/portal/filesystem
[16] Lhcb analysis productions, https://gitlab.cern.ch/lhcb-dpa/

analysis-productions/LbAnalysisProductions/

[17] The snakemake workflow management system, https://snakemake.readthedocs.
io/en/stable/

[18] Analysis automation with snakemake, https://lhcb.
github.io/starterkit-lessons/second-analysis-steps/
analysis-automation-snakemake.html

7

EPJ Web of Conferences 245, 05026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505026

https://about.gitlab.com/
http://wlcg.web.cern.ch/
https://gitlab-runner-api.readthedocs.io
https://gitlab-runner-api.readthedocs.io
http://diracgrid.org/
https://www.python.org/
http://www.celeryproject.org
https://www.rabbitmq.com
https://www.openshift.com
https://palletsprojects.com/p/flask/
https://docs.gitlab.com/ee/api/
https://pypi.org/project/pip/
https://packaging.python.org/specifications/entry-points/
https://packaging.python.org/specifications/entry-points/
https://kubernetes.io/
https://cernvm.cern.ch/portal/filesystem
https://gitlab.cern.ch/lhcb-dpa/analysis-productions/LbAnalysisProductions/
https://gitlab.cern.ch/lhcb-dpa/analysis-productions/LbAnalysisProductions/
https://snakemake.readthedocs.io/en/stable/
https://snakemake.readthedocs.io/en/stable/
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/analysis-automation-snakemake.html
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/analysis-automation-snakemake.html
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/analysis-automation-snakemake.html

	Introduction
	Motivations

	Base project and infrastructure
	Runner registration
	GitLab CI job processing
	Integration with DIRAC
	GitLab CI gateway prototype

	Use cases for the Gateway
	Automating ntuple production using LHCbDirac
	Deployment to CVMFS
	Analysis preservation workflows

	Conclusion

