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NI The ATLAS Detector

* Silicon pixel detectors are at the core of the current and
planned upgrades of the ATLAS Pixel detector

25m

Tile calorimeters

= LAr hadronic end-cap and
forward calorimeters
Pixel detector \

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker
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R EEEEEEEEE—S—S———
N1 ATLAS Pixel Detector

e The ATLAS Pixel detector

consists of four barrel layers and
2 X 3 disks %

* The innermost barrel layer (the
Insertable B-Layer or IBL) 1s
located 3.3 cm from the LHC

beam line )

* By the end of 2017, the L
integrated fluences for the two
layers closest to the beam line | { Rz
Were: R = 33 25mm

« IBL: 6 X 10'* I MeV n,,/cm?
 B-Layer: 3 X 10'* 1 MeV n,,/cm?

R =0mm
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Days Since Start of Run 2

* Simulated 1 MeV n, fluence predictions made through the
ATLAS FLUKA geometry on the left

 Lifetime fluence predictions for the ATLAS Pixel Detector layers
are shown on the right (since the start of Run 2 on June 3, 2015)

* These simulations are used to check how much radiation damage
the sensors have been exposed to and can be compared to data
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I,
L Silicon Sensors
« The ATLAS Pixel Detector layers consist of n*-in-n planar

oxygenated silicon sensors pitch:
50 x [250 (IBL), 400] um?

n+ electrodes

Thickness:
O 200 (IBL), 250 um

Mip

(X) B-field

depletion
region

drift

Lorentz angle

diffusion

p* backside

On the IBL, there are n*-in-p 3D sensors that are 230 pm thick. They are excluded from this presentation because

they are outside of ATLAS tracking acceptance
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N1 Radiation Damage

* Radiation introduces traps in the bulk by displacing a silicon atom from
its lattice site, resulting in an interstitial and a vacancy (Frenkel pair)
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NI Part I

* Monitoring of radiation damage effects

»Use the Hamburg Model* to validate sensor
conditions data: fluence and depletion voltage

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012

*M. Moll, ‘Radiation damage in silicon particle detectors: Microscopic defects and macroscopic
properties’, PhD thesis: Hamburg U., 1999,
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http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis99-040
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Hamburg Model
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* The Hamburg Model simulates leakage current and depletion
voltage

-

\_

Depletion Voltage
ed?
Vdepl - |Neﬂ| ' Té()f

effective doping
concentration

~

/

/

time dependent and include annealing characterization

Other variables: V is the depleted volume, d is the sensor thickness, e is the charge of
the electron, € is the dielectric constant, and €, is the vacuum permittivity
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N1 Fluence Monitoring

* The measured (“Data”) and predicted (“Sim”) leakage current as
a function of integrated luminosity for IBL

* Leakage current 1s predicted using the Hamburg Model and by
fitting the data in the dashed region to determine the fluence-to-
luminosity factor, ®/Lint

IBL fluence at z = 0 [neg/cm?]
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N Fluence-to-luminosity
* Fluence-to-luminosity conversion factors (extracted from the
leakage current fits) as a function of z on IBL

 The conversion factors are

compared to those predicted 2z [ ATLAS £
¥ .F 3
» Pythia + FLUKA < °F 1008
° r o
* Pythia + Geant4 = s >l< >]< 5
: - : s [ —80 8§
* Two different minimum bias = - + )[( =
tunings are are also g | >[< *—60 H
. ” X 5 3 §
lnveStlgated $ _ Insertable B-layer (IBL) =
. @ | | Predicted by Pythia (A2) + FLUKA —40
* Differences between measured § 2 1 predicteaby pythia (a9) + FLUKA
: ] i |- [ Predicted by Pythia (A3) + Geant4
and predlcted CI)/Llnt arc mOSt 1__ Predicted by Pythia (A3) + Geant4 (n + p + monly) —20
llkely due to the partlcle E X Extracted from Hamburg Model + Leakage Currents

damage factors used in the N EUS PR F FS U
ﬂuence predictions Distance along stave [cm]

* ATLAS Collaboration, A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-
Landshoff diffractive model, ATL-PHYS-PUB-2016-017, https://cds.cern.ch/record/1474107
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 Calculated depletion voltage according to the Hamburg Model for

Depletion Voltage

IBL (on the left) and the B-Layer (on the right)

* Square points indicate measurements using cross talk scans

(accessible only before type inversion)

* Circular points indicate measurements of depletion voltage using

bias voltage scan

 Full depletion 1s well predicted by the Hamburg Model
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Part 11

* Modelling of radiation damage effects

»Use Technology Computer Aided Design
(TCAD) to implement a non-uniform electric
field and compute charge propagation inside
the sensor bulk

» Implements the Chiochia double trap model*
(one acceptor trap and one donor trap)

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012

*V. Chiochia et al., A Double junction model of irradiated silicon pixel sensors for LHC, NIMA 568 (2006) 51
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YL Digitizer Model

* A schematic of the digitizer model 1s shown here — start with
fluence and annealing input and produce induced charge at
the electrode as output
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N1 Electric Field

* The simulated electric field magnitude in the z direction along the
bulk depth of an ATLAS IBL sensor

* Simulation uses the Chiochia Radiation Model through TCAD
* The electric field 1s averaged over x and y

 The E field at various fluences 1s shown for the sensor biased at:
80 V (on the left) and 150 V (on the right)
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* The projected time - in the
absence of trapping — for an
electron or hole to drift from the
point of generation to the
collecting electrode (for electrons)
or back plane (for holes)

* Using E fields predicted by

Chiochia model through TCAD
simulation

Projected Time to Reach Electrode [ns]
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* An exponential distribution, with mean value 1/6®, 1s used to

set the random charge trapping time

* [ 1s the trapping constant and & is fluence
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NI Ramo Potential

* The Ramo potential is calculated . | shown at'y ?1 )
using TCAD to solve the Poisson = o  ATLAS Simiaton N ;
equation (V2¢y = p/€)* and from & _ i —— s
the geometry of the sensor B

140

* Here ¢y is the Ramo potential, p
is the charge density in the bulk,
and € 1s the dielectric constant

120 0.6

100 0.5

80 04

 Slice of the full three-dimensional
ATLAS IBL planar sensor Ramo
potential 1s shown
* The dashed vertical line (at 25

1 5 0 - l10l B I20I I 30 40 50 60 70
,um) 1nd1c§1teT the edge of the x position [um]
primary pixe

* Induced charge on the electrode 1s computed with the Ramo
potential and the charge trapping location:

Qinduced = —¢ [¢w(3_€end) - ¢w(3_€start)]

*Glenn Knoll, Radiation Detection and Measurement: 3rd edition Appendix D.
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Part 111

 Model validations

» Comparing simulations with data for: charge
collection efficiency and Lorentz angle

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012
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NI Charge Collection Efficiency

» Charge collection efficiency as a function of integrated luminosity
for 80 V, 150 V, and 350 V bias voltage

* The bias voltage was increased during data-taking, so the data
points are only available at increasing high-voltage values
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1 Lorentz Angle

* The change in the Lorentz angle (6,) from the unirradiated case as
a function of integrated luminosity

* Two TCAD radiation
. ] Fluence [10™ n ,/cm?]
models are considered: 10" 1

. . — 80 — T T I

Chiochia and Petasecca™ 3 E 70 bam s0v ' | ]
‘é 70 ;_ Stand-alone Simulation 80 V AnAS —:
 The Petasecca model = F° E
) ) s 60F Petasecca Model IBL planar E
predICtS d llnear < 505— Stand-alone Simulation 80 V —f
electric field profile 40F  Criochaods -osia s E
i : ]
* Due to the deformation 301 T .
of the E field, the 20F o o E
mobility and Lorentz 108 0 E
. : O A =

angle increase with - S ——
10 1

fluence Integrated Luminosity [fb ]

*M. Petasecca et. al., Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors,
IEEE Transactions on Nuclear Science 53 (2006) 2971
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NV :
= Conclusions

* The digitization model for the silicon sensors in ATLAS
Pixel Detector detector has been presented

* Fluence and depletion voltage predictions with the Hamburg
Model have been validated with data

 TCAD simulations with effective traps in the silicon bulk are
used to model the distortions 1n the electric field

* The impact of annealing 1s studied in the digitization
framework

* Validation of the digitization model through physical
observables (charge collection efficiency and Lorentz Angle)
has been presented
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EEEEEEEEE——————,
Hamburg Model: Leakage Current

* The Hamburg model is based on this relationship:

Al =Dy -V

* And by replacing a (the radiation damage coefficient) the equation

becomes:
n £ n O(T:) - t;
aqexp(—ZT(;,j))+a8—,Blog(Z %)

j=i j=i

n
Leak = ((Deq/Lint) XV- Z Lint,i :
i=1

 Where the variables are:

* @, 1s the fluence, Ly is the integrated luminosity, V is depleted volume of
the sensor, #;1s the time, and 7, = 1min

 a;=(1.23+0.06)x1017 A/cm

. 7—1 _ (1-2f?j(3)) x 1013 g1 x o(~1.1120.05) eV/kgT
* ay =7.07-107" A/em

* B =(329+0.18) x 107® A/em

Eeg (1 1
s om-eol E2 (1)
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2ug Hamburg Model: Depletion Voltage

Neﬂ‘(l) — NBon-removable(O) + Nlr)emovable(t) N N/:table([) i Ngeneﬁcial(t) i N/I:averse(t)’ (3)
%Nf)emovable(t) = —c¢(r)N§movable(t) removal of donors for n-type during irradiation, (4)
%N/“;able(r) = gcd(1) addition of stable acceptors during irradiation,  (5)
%Ngeneﬁdal(t) = gad(t) — kA(T)NRe“eﬁCial(t) beneficial annealing, 6)
%N&eve“e(t) = gy (t) — ky(T)NS ™ ()  reverse annealing — neutrals, (7)
%N () = ky(T)Ny "™ (t) reverse annealing — acceptors, (8)
Parameter | IBL [x107>cm™'] | B-layer [x10™>cm™'] | ROSE Coll. [x10~?cm™']

ZA 1.4+0.5 1.4+0.5 1.4 (n)
gy 6.0+1.6 6.0+1.6 2.3 (p), 4.8 (n)
gc 1.1+0.3 0.45+0.1 0.53 (p), 2.0 (n)

2 : : : :
Vieol = [Nogi| - ed where d is the sensor thickness, e is the charge of the electron, € is
P " 2ee’  the dielectric constant, and €, is the vacuum permittivity
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