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Abstract We investigate the effect of longitudinal and

transverse calorimeter segmentation on event-by-event

software compensation for hadronic showers. To factor-

ize out sampling and electronics effects, events are sim-

ulated in which a single charged pion is shot at a ho-

mogenous lead glass calorimeter, split into longitudinal

and transverse segments of varying size. As an approxi-

mation of an optimal reconstruction, a neural network-

based energy regression is trained. The architecture is

based on blocks of convolutional kernels customized for

shower energy regression using local energy densities;

biases at the edges of the training dataset are mitigated

using a histogram technique. With this approximation,

we find that a longitudinal and transverse segment size

less than or equal to 0.5 and 1.3 nuclear interaction

lengths, respectively, is necessary to achieve an optimal

energy measurement. In addition, an intrinsic energy

resolution of 8%/
√

E for pion showers is observed.

Keywords Machine learning · calorimeters · hadronic

showers
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1 Introduction

Both existing high-energy physics experiments, such as

those at the CERN LHC, and future experiments at fu-

ture colliders, like the Future Circular Collider (FCC),

rely heavily on the performance of hadron calorime-

ters and their particle flow capabilities for measuring jet

and missing transverse momentum (pT) [1–9]. Hadron

calorimeters are currently characterized not only in terms
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of their intrinsic energy resolution, but by their imag-

ing capabilities, which allow for offline corrections us-

ing smart algorithms. Due to the diverse composition of

hadronic showers and the differences in the calorimeter

response, a correct energy measurement becomes chal-

lenging. In general, the components of hadronic showers

can be divided into electromagnetic (EM) and hadronic

parts. The hadronic part of the shower consists of par-

ticles such as neutrinos and neutrons which are par-

tially invisible to the detector. This can be affected by

the chosen active detector material, where, e.g., plas-

tic scintillators allow for neutron detection via strong

interaction with the atomic nucleus. The undetectable

particles in the hadronic shower result in an unequal de-

tector response; that is, e/h 6= 1, where e and h are the

calorimeter response to electromagnetic and hadronic

shower fractions, respectively.

Many hadronic calorimeters currently in use and

planned for future experiments are sampling calorime-

ters, which consist of alternating active and passive

absorber layers [10–13]. The sampling of the hadronic

shower allows for tuning of the hadronic and electro-

magnetic shower responses. In the past, the e/h ra-

tio has been adjusted closer to 1 by either suppress-

ing the electromagnetic response, e.g., by using high-

Z absorbers, or by enhancing the hadronic response,

using neutron-sensitive active materials. Calorimeters

that have a ratio e/h ∼ 1 are called “compensating”

calorimeters. These optimizations in the active and pas-

sive materials often require a decreased sampling frac-

tion (ratio of active/passive material), which itself de-

grades the calorimeter energy resolution by increasing

the stochastic term α of

σE

〈E〉 =
α

E
⊕ c. (1)
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The stochastic term is dominated by the sampling frac-

tion and frequency for sampling calorimeters, and ex-

presses the dependence of the calorimeter resolution on

the fluctuations of the number of particles within the

hadronic shower (following a Poisson distribution). The

constant term c expresses energy-dependent uncertain-

ties, like the fluctuations on the EM-to-hadronic shower

fraction, which is logarithmically increasing with en-

ergy, or energy losses due to particles escaping the de-

tector, caused by limited calorimeter sizes. The first can

be removed either by intrinsic compensation, or by an

event-by-event measurement of the EM fraction, which

is called software compensation.

Due to the cost and mechanical stability benefits, ab-

sorbers made of steel or lead are widely in use. These

materials have been found to require very small sam-

pling fractions in, e.g., scintillator-steel calorimeters in

order to achieve compensating behavior. Since such low

sampling fractions would degrade the performance, es-

pecially for particles at low energies (< 50 GeV), the

solution to correct for fluctuations in the electromag-

netic shower fraction is to use software compensation

techniques.

In order to allow algorithms to distinguish between the

dense electromagnetic shower core and other shower

parts, such as e.g. disappearing tracks, the granularity

of the calorimeter plays a key role. The first attempt

in so-called imaging calorimetry has been made by the

CALICE collaboration, which started a R&D program

of calorimeters for a future e–e+ linear collider [14,15],

where the calorimeter designs have been optimised for

particle flow algorithms [5]. These algorithms allow for

jet energy measurements using the best suited sub-

detector to reconstruct each jet sub-particle. The pro-

totypes of these calorimeters have been realised with

active layers made of silicon for the EM shower part

and scintillator or resistive plate chambers for the mea-

surement of hadronic showers. The active layers were

tested and interleaved within both steel and tungsten

absorber stacks [16, 17] and achieved such good results

in testbeams [18] that the CMS collaboration decided to

adopt this concept in a full silicon-tungsten/scintillator-

steel endcap calorimeter [12, 19]. The developments in,

e.g., silicon photomultiplier (SiPM) technologies have

been the key to measure the scintillation light produced

in calorimeter cell sizes of 3× 3× 0.5 cm3 [20]. The im-

pact of software compensation techniques on the per-

formance of particle flow algorithms has been studied

in a specific detector design [9], and proven to provide

a significant improvement to the jet energy measure-

ment by using a corrected calorimeter cluster which is

matched to tracks in the tracking system.

The next step towards a calorimeter design optimized

for the use of software compensation techniques is to

study the necessary granularity that allows an algo-

rithm to determine most accurately the hadronic shower

energy.

In this paper, we will discuss the performance of

a software compensation technique using a deep neural

network (DNN), with a specific focus on the dependence

on the transverse and longitudinal granularity. There-

fore, a homogenous model calorimeter has been studied

in full Geant4 simulations. The performance is eval-

uated in terms of energy resolution and linearity for

single charged pions. The goal is to determine the min-

imal granularity of a calorimeter needed to achieve the

best energy measurement using DNNs. As the choice of

granularity can influence the detector design and cost,

a measurement of the impact of this choice is neces-

sary in order to optimize the design. Here, the DNN

is utilised as a generic close-to-optimal reconstruction

algorithm that can be optimised to the granularity in

an automatised fashion.

2 Calorimeter and dataset

The studied calorimeter is a homogeneous lead tung-

state calorimeter, which follows the EM calorimeter

concept of the CMS experiment [21]. However, we do

not consider any passive absorber material, assuming

that the impact on the calorimeter performance of the

sampling fraction and the longitudinal and transverse

segmentation are uncorrelated. The dimensions are 1×
1×2.5 m3, which ensures complete shower containment

within the calorimeter volume and corresponds to 10 λ

and 200 X0 of total depth. The longitudinal and trans-

verse segmentation is increased from no segmentation

up to 30 × 30 segments in x and y, and from 1 to 60

segments in the lateral direction. A list of the configu-

rations can be found in Table 1.

The data set consists of approximately 5×106 charged

pion events, generated using the FTFP BERT physics

list of Geant4 10.04 patch 0. The training data set

comprises pions with energies sampled from a flat dis-

tribution between 1 and 110 GeV. The test data set

covers 11 discrete energies of 5 to 105 GeV in 10 GeV

steps. The Geant4 simulation has been performed in

the highest granularity, while for the tests and train-

ing of different segmentation configurations, the same

dataset has been used. For this purpose, the energy de-

posits in the cells have been merged corresponding to

the tested cell sizes. This method avoids inconsistencies

that are otherwise to be expected due to the different

number of surfaces and material borders through which

Geant4 propagates the particles.
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Stage
Longitudinal Depth of layers

segments in cm in λπ in X0

0 1 250 9.8 198
1 6 41.7 1.6 33
2 10 25 1.0 20
3 12 20.8 0.8 16
4 15 16.7 0.7 13
5 20 12.5 0.5 10
6 30 8.3 0.3 7
7 60 4.2 0.2 3

Stage
Transverse Size of cells
segments in cm2 in λn in X0

default 1× 1 100× 100 3.9× 3.9 79× 79
A 3× 3 33× 33 1.3× 1.3 26× 26
B 5× 5 20× 20 0.8× 0.8 16× 16
C 10× 10 10× 10 0.4× 0.4 8× 8
D 15× 15 6.7× 6.7 0.3× 0.3 5× 5
E 30× 30 3.3× 3.3 0.1× 0.1 3× 3

Table 1: Granularity configurations considered in this

analysis.

3 Neural network architecture and training

At the core of the neural network architecture used

here is a software compensation block that uses con-

volutional neural network (CNN) layers [22] to achieve

local identification of the subshowers, similar to the one

introduced in Ref. [13], which is used as a subblock in

the overall model. This subblock consists of 3 parallel

paths: in the first path, the energy of all cells within

the kernel range K is summed up and forwarded to the

next block, while this kernel is moved with a stride of

size K; the second path consists of a CNN layer with

the same kernel size and F = 16 filters; the third path

contains in total three subsequent CNN layers, out of

which the first two have kernel sizes (in x, y, and depth)

of Ka = (1, k, 3) and Kb = (k, 1, 3), with no stride

and 32 filters, each. Here, k is an adjustable parame-

ter depending on granularity, as described later. The

final layer of this path is a CNN layer with a kernel

size of K with a stride of K and F filters, such that the

output of all paths can be combined. This combination

is done by adding the output of the CNN layers of all

paths feature by feature. All layers use a tanh activa-

tion function. The weights of the layers in the third path

are initialised with a Gaussian distribution centred at 0

with a width of 10–3, and receive a small L2 regularisa-

tion of 10–5. This structure is optimised to derive small

corrections to the simple energy sum by detecting the

different shower shape of electromagnetic subshowers.

In the final model, the input is passed through a

batch normalisation layer [23], normalising all inputs

except for the per-cell energy. If less than 6 calorimeter

layers are present or the transverse granularity in either

direction is less than 6, the input is directly flattened

and passed to 3 dense layers, the first two of which con-

tain 128 and 64 nodes using ELU activation [24], be-

fore being finally passed to the energy prediction layer

with 1 node. In all other cases, the input is first passed

through a set of the subblocks described above before

being fed through the same structure with dense layers.

These subblocks adapt to the input: if the correspond-

ing granularity is less than 6× 6 cells in the transverse

directions, a stride of 1× 1 is used, and the input k for

the kernel size determination is set to k = 1. Otherwise,

a stride of 2× 2 and k = 3 are used in these directions.

The subblock is repeated until the dimensionality in x,

y, or depth is less than or equal to 6. At this point, the

output is fed to the three final dense layers.

The model is trained using the Adam optimiser [25]

using TensorFlow [26] and Keras [27] within the Deep-

JetCore framework [28]. The training consists of five

steps: the first four steps use a loss function Lcalo that

follows the expected calorimeter resolution:

Lcalo =
(Etrue – Epred)2

Etrue
. (2)

These steps are trained for 1, 19, 60, and 20 epochs with

learning rates of 10–4, 10–4, 10–5, and 10–5, and batch

sizes of 256, 512, 1280, and 1280. Between the third and

fourth step, the batch normalisation is frozen.

The mean and expectation value for Etrue differ at

the edges of the training sample. This typically leads

to edge effects, which introduce a bias towards higher

predicted values at the low edge, and towards lower

predicted values at the high edge.

To mitigate the effect, we freeze all layers except for

the last dense layers, and introduce a loss that follows

a χ2 distribution taking the difference of the average

predicted and truth energy in bins of Etrue, and ac-

counting for the number of samples in that bin. The

bin boundaries are randomly chosen for each batch to

avoid a global bias. Using this loss, the model is trained

for another 50 epochs with a learning rate of 10–5 and

a batch size of 1280.

4 Results

The energy resolution is evaluated as the ratio of the

width to the most probable value of the distribution of

the reconstructed energy. These distributions, as shown

for example in Figure 1a, follow a Gaussian function.

The standard deviation can thus be extracted from a

fit. This fit is limited within 2σ around the most prob-

able value μ, following the procedure widely used in

calorimeter performance studies. As a comparison and
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Fig. 1: Results for a scenario with 15 longitudinal layers

(stage 4) and no transverse segmentation. (a) Energy

distribution for 45 GeV pions. The width as computed

from the Gaussian fit (black line) and from the RMS

are shown. (b) Energy resolution as a function of the

particle energy. The resolution is computed two ways,

using the Gaussian fit (open circles) and using the RMS

(filled squares).

validation, the energy resolution has also been eval-

uated from the root mean square (RMS) and mean,

which is sensitive to the tails of the distribution. The

energy resolution over the full available energy range is

shown for stage 4, which corresponds to a granularity of

15 longitudinal layers, in Figure 1b. The points are fit-

ted following Equation 1, and the values of the stochas-

tic and constant term are shown in the legend. An over-

all 10–20% degradation in energy resolution from the

Gaussian fit to the RMS method is observed.

In the following, the energy resolutions obtained for

different granularities will refer to the results obtained

from the Gaussian fit.

The results, in terms of the stochastic term α and

constant term c for all studied longitudinal and trans-

verse granularities, are summarized in Table 2. The the-

ory of the different contributions to the energy resolu-

tion of hadronic showers [29] considers that the stochas-

tic term is in fact a sum of two major effects, α =

αint⊕αsampl, where the first intrinsic term is irreducible

and determined by the fluctuations of the initial energy

that is transformed into ionising shower particles, and

the second is the term due to the sampling fraction.

These losses are material dependent, due to material-

dependent nuclear binding energy losses, and have been

found to be on the order of 19%/11% in the ZEUS

uranium/lead-scintillator calorimeter prototypes [30].

We assume that the DNN is able to identify and re-

weight the electromagnetic and hadronic shower frac-

tions, due to the topological differences of EM and had-

ronic subshowers (λπ/X0 ∼ 27). Thus, we expect the

constant term to decrease. Table 2 shows the resulting

measured stochastic and constant terms (using both the

Gaussian fit and the RMS to obtain the resolution) for

three different sets of scenarios: first, the different longi-

tudinal granularities with no transverse segmentation,

the results for which are plotted in Figure 2; second,

longitudinal stage 0 with different transverse granular-

ities (Figure 3); and third, longitudinal stage 5 with

different transverse granularities (Figure 4). Overall, at

the finest granularities, we observe that the constant

term goes to zero, while the stochastic term decreases

by approximately 50% with respect to the scenario with

no segmentation, reaching a minimum of 8%, which can

be considered the intrinsic stochastic term αint.

The constant term is consistently removed as soon

as the first segmentation in transverse granularity into

3 × 3 cells is implemented. Figure 5 shows an event

display of a 35 GeV pion shower; the bottom shows the

impact of a 3× 3 transverse segmentation. We can see

that already at this stage, a significant enough energy

fraction of 9% (shown as Eout/Etot in the legend) is

found in the outer quadrants. In comparison, the same

shower is represented in 3D on the top, and visualises

the imaging power of the finest chosen granularity of

the homogeneous PbW calorimeter.

Figure 6 summarizes the energy resolution as a func-

tion of longitudinal and transverse granularity. We ob-

serve that the behavior of the resolution as a function of

granularity exhibits the same pattern regardless of the

incident particle energy. For the transverse granularity,

the resolution reaches an optimal value at a cell size of

≈ 1λπ, and finer segmentation does not yield any ap-
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stage stochastic term [%] constant term [%]
RMS Gauss RMS Gauss

0 20.5 17.3 3.0 2.6
1 19.7 15.9 2.2 2.0
2 17.8 14.0 1.8 1.5
3 17.2 13.6 1.7 1.3
4 16.0 12.9 1.5 1.1
5 15.4 12.1 1.3 0.8
6 14.6 11.6 1.1 0.6
7 13.0 10.9 1.0 0.5

0A 20.3 15.1 1.3 0
0B 20.0 14.6 1.2 0
0C 18.2 13.6 1.3 0
0D 18.6 13.6 1.1 0
0E 17.9 13.4 1.3 0

5A 11.4 8.6 0.6 0
5B 10.6 8.1 0.6 0
5C 11.0 8.1 0 0
5D 10.9 7.9 0 0
5E 10.9 7.9 0 0

Table 2: Summary of energy resolution fit results. The

top set shows the different longitudinal segmentation

scenarios with no transverse segmentation, while the

other two sets show two specific longitudinal stages

with different transverse segmentation scenarios, as de-

scribed in Table 1.

preciable further benefit. In the longitudinal direction,

the energy resolution continues to improve as the layer

size is decreased, reaching the minimum at the finest

granularity considered (≈ 0.2λπ or ≈ 3X0).

Figure 7 summarizes the fitted parameters α and c

in the energy resolution function in Equation 1, as a

function of longitudinal and transverse granularity. In

the transverse direction, we observe that the constant

term goes to zero at a cell size of ≈ 1λπ (25X0), and

further decrease in the cell size does not further im-

prove the stochastic term α. In the longitudinal case, a

layer width in the region 7–10 X0 appears to offer the

best balance between the obtained resolution and the

detector complexity.
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Fig. 2: Energy resolution (a) and linearity (b) for dif-

ferent longitudinal granularities and no transverse seg-

mentation. The curves correspond to the fit with Equa-

tion 1.

5 Conclusions

When calorimeters are designed for new high-energy

physics experiments, often the approach has been to

pick a technology before optimising the reconstruction

of jet particles. From the perspective of testing vari-

ous options, this not only requires significant computing

power due to the introduced details of signal processing

(digitisation) in the simulations, but also means that

the simulations are unable to answer basic questions

due to the high complexity. For example, a smaller cell

size improves the spatial and pointing resolution, which

should help the particle-flow algorithm to reconstruct

the jet. However, the signal height per cell decreases,

which introduces an energy loss due to a lower signal-

to-noise ratio. Thus, a high-level optimisation becomes

blind to the individual impact for each effect. Instead,

a different approach could be to first identify the nec-

essary input for reconstruction algorithms which allows
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Fig. 3: Energy resolution (a) and linearity (b) for dif-

ferent transverse granularities with 1 longitudinal layer

(stage 0). The curves show the fit to the form given in

Equation 1.

for optimal performance, before selecting the detector

technology.

Moving towards that approach, we have defined a

model calorimeter to identify the necessary cell granu-

larity for a DNN to perform an optimal energy recon-

struction. In this model, the impact of the sampling

fraction has been intentionally excluded. Even though

we are aware that the type of chosen active and pas-

sive material will impact the shower development, we

believe that this study can be used in order to design

a future hadronic calorimeter which allows for optimal

energy measurements using DNNs.

These studies suggest that a hadronic calorimeter

(with λπ/X0 ∼ 27) should feature cell sizes of at most

1 nuclear interaction length, and longitudinal layers

of 7–10 X0 thickness, in order to allow for an optimal

software compensation and thus to reach the intrin-

sic stochastic term of 8%. Following this approach, one

could imagine further study to determine the optimal
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Fig. 4: Energy resolution (a) and linearity (b) for differ-

ent transverse granularities with 20 longitudinal layers

(stage 5). The curves show the fit to the form given in

Equation 1.

cell and layer sizes as a function of the λπ/X0 ratio.

However, this exceeds the scope of this paper.
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pond, Rev. Mod. Phys. 88, 015003 (2016). DOI
10.1103/RevModPhys.88.015003
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