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Abstract
Physical theories that depend on many parameters or are tested against data from many different experiments
pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall
into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods,
involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling
of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional
parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we
give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing
statistically sound inference, and recommendations of readily-available software tools and standards that can assist
in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations
for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be
reproduced with the code publicly available at Zenodo.
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1 Introduction
The search for new particles is underway in a wide range of high-energy, astrophysical and precision experiments.
These searches are made harder by the fact that theories for physics beyond the Standard Model almost always
contain unknown parameters that cannot be uniquely derived from the theory itself. For example, in particle
physics models of dark matter, these would be the dark matter mass and its couplings. Models usually make
a range of different experimental predictions depending on the assumed values of their unknown parameters.
Despite an ever-increasing wealth of experimental data, evidence for specific physics beyond the Standard Model
has not yet emerged, leading to the proposal of increasingly complicated models. This increases the number of
unknown parameters in the models, leading to high-dimensional parameter spaces. This problem is compounded
by additional calibration and nuisance parameters that are required as experiments become more complicated.
Unfortunately, high-dimensional parameter spaces, and the availability of relevant constraints from an increasing
number of experiments, expose flaws in the simplistic methods sometimes employed in phenomenology to assess
models. In this article, we recommend alternatives suitable for today’s models and data, consistent with established
statistical principles.

When assessing a model in light of data, physicists typically want answers to two questions: a) Is the model
favoured or allowed by the data? b) What values of the unknown parameters are favoured or allowed by the data?
In statistical language, these questions concern model testing and parameter estimation, respectively. Parameter
estimation allows us to understand what a model could predict, and design future experiments to test it. On the
theory side, it allows us to construct theories that contain the model and naturally accommodate the observations.
Model testing, on the other hand, allows us to test whether data indicate the presence of a new particle or new
phenomena.

Many analyses of particle physics models suffer from two key deficiencies. First, they overlay exclusion curves
from experiments and, second, they perform a random or grid scan of a high-dimensional parameter space. These
techniques are often combined to perform a crude hypothesis test. In this article, we recapitulate relevant statistical
principles, point out why both of these methods give unreliable results, and give concrete recommendations for
what should be done instead. Despite the prevalence of these problems, we stress that there is diversity in the depth
of statistical training in the physics community. Physicists contributed to major developments in statistical theory1, 2

and there are many statistically rigorous works in particle physics and related fields, including the famous Higgs
discovery,3, 4 and global fits of electroweak data.5 Our goal is to make clear recommendations that would help lift
all analyses closer to those standards, though we urge particular caution when testing hypotheses as unfortunately
there are no simple recipes. The examples that we use to illustrate our recommendations can be reproduced with
the code publicly available through Zenodo.6

Our discussion covers both Bayesian methods,7–12 in which one directly considers the plausibility of a model
and regions of its parameter space, and frequentist methods,13–16 in which one compares the observed data to data
that could have been observed in identical repeated experiments.* Our recommendations are agnostic about the
relative merits of the two sets of methods, and apply whether one is an adherent of either form, or neither. Both
approaches usually involve the so-called likelihood function,17 which tells us the probability of the observed data,
assuming a particular model and a particular combination of numerical values for its unknown parameters.

In the following discussions, we assume that a likelihood is available and consider inferences based on it. In
general, though, the likelihood alone is not enough in frequentist inference (as well as for reference priors and some
methods in Bayesian statistics that use simulation). One requires the so-called sampling distribution; this is similar
to the likelihood function, except that the data is not fixed to the observed data (see the likelihood principle18

for further discussion). There are, furthermore, situations in which the likelihood is intractable. In such cases,
likelihood-free techniques may be possible.19 In fact, in realistic applications in physics, the complete likelihood is
almost always intractable. Typically, however, we create summaries of the data by e.g. binning collider events into
histograms.

2 Problems of overlaying exclusion limits
Experimental searches for new phenomena are usually summarised by confidence regions, either for a particular
model’s parameters or for model-independent quantities more closely related to the experiment that can be
interpreted in any model. For example, experiments performing direct searches for dark matter20 publish confidence
regions for the mass and scattering cross section of the dark matter particle, rather than for any parameters included
in the Lagrangian of a specific dark matter model. To apply those results to a given dark matter model, the confidence

*We cite here introductory textbooks about statistics by and for scientists. Refs. 9, 15 are particularly concise.
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Figure 1. Confidence intervals in 100 pseudo-experiments, from the combination of five measurements (left) or
from the intersection of five individual confidence intervals (right). We show the true value of φs with a vertical
black line. Intervals that contain the true value are shown in blue; those that do not are shown in red. On the
right-hand side, grey bands indicate cases where no value can be found where the 95% intervals from all five
measurements overlap. Each bar originates from five pseudo-measurements, as shown zoomed-in to the side for a
few points.

regions must be transformed to the parameter space of the specific model of interest. This can sometimes modify
the statistical properties of the confidence regions, so care must be taken in performing the transformation.21–23

In the frequentist approach, if an experiment that measured a parameter were repeated over and over again,
each repeat would lead to a different confidence region for the measured parameter. The coverage is the fraction of
repeated experiments in which the resulting confidence region would contain the true parameter values.24 The
confidence level of a confidence region is the desired coverage.† For example: a 95% confidence region should
contain the true values in 95% of repeated experiments, and the rate at which we would wrongly exclude the true
parameter values is controlled to be 5%. Approximate confidence regions can often be found from the likelihood
function alone using asymptotic assumptions about the sampling distribution, e.g., Wilks’ theorem.29 However, it is
important to check carefully that the required assumptions hold.30

Confidence intervals may be constructed to be one- or two-tailed. By construction, in the absence of a new effect,
a 95% upper limit would exclude all effect sizes, including zero, at a rate of 5%. The fact that confidence intervals
may exclude effect sizes that the experiment had no power to discover was considered a problem in particle physics
and lead to the creation of CLs intervals.31 By construction, these intervals cannot exclude negligible effect sizes,
and thus over-cover.

The analogous construct in Bayesian statistics is the credible region. First, prior information about the parameters
and information from the observed data contained in the likelihood function are combined into the posterior using
Bayes’ theorem. Second, parameters that are not of interest are integrated over, resulting in a marginal posterior
distribution. A 95% credible region for the remaining parameters of interest is found from the marginal posterior by
defining a region containing 95% of the posterior probability. In general, credible regions only guarantee average
coverage: suppose we re-sampled model parameters and pseudo-data from the model and constructed 95% credible
regions. In 95% of such trials, the credible region would contain the sampled model parameters.15, 32 Whilst credible

†Note that for discrete observations25 or in the presence of nuisance parameters,26, 27 confidence regions are often defined to include the true
parameter values in at least e.g. 95% of repeated experiments,28 and that in some cases the nominal confidence level may not hold in practice.
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regions and confidence intervals are identical in some cases (e.g. in normal linear models), the fact that they in
general lead to different inferences remains a point of contention.33 For both credible regions and confidence
intervals, the level only stipulates the size of the region. One requires an ordering rule to decide which region of that
size is selected. For example, the Feldman-Cousins construction34 for confidence regions and the highest-posterior
density ordering rule for credible regions naturally switch from a one- to a two-tailed result.

When several experiments report confidence regions, requiring that the true value must lie within all of those
regions amounts to approximating the combined confidence region by the intersection of regions from the individual
experiments. This quickly loses accuracy as more experiments are applied in sequence, and leads to much greater
than nominal error rates. This is because by taking an intersection of n independent 95% confidence regions, a
parameter point has n chances to be excluded at a 5% error rate, giving an error rate of 1− 0.95n.35

This issue is illustrated in Figure 1 using the B-physics observable φs, which is a well-measured phase characteris-
ing CP-violation in Bs meson decays.36 We perform 10,000 pseudo-experiments.‡ Each pseudo-experiment consists
of a set of five independent Gaussian measurements of an assumed true Standard Model value of φs = −0.037
with statistical errors 0.078, 0.097, 0.037, 0.285, and 0.17, which are taken from real ATLAS, CMS and LHCb mea-
surements.§ We can then obtain the 95% confidence interval from the combination of the five measurements in
each experiment,¶ and compare it to the interval resulting from taking the intersection of the five 95% confidence
intervals from the individual measurements. We show the first 100 pseudo-experiments in Figure 1. As expected,
the 95% confidence interval from the combination contains the true value in 95% of simulated experiments. The
intersection of five individual 95% confidence intervals, on the other hand, contains the true value in only 78% of
simulations. Thus, overlaying regions leads to inflated error rates and can create a misleading impression about
the viable parameter space. Whilst this is a one-dimensional illustration, an identical issue would arise for the
intersection of higher-dimensional confidence regions. Clearly, rather than taking the intersection of reported
results, one should combine likelihood functions from multiple experiments. Good examples can be found in the
literature.38–44

In Figure 2 we again show the dangers of simply overlaying confidence regions. We construct several toy
two-dimensional likelihood functions (top), and find their 95% confidence regions (bottom left). In the bottom right
panel, we show the contours of the combined likelihood function (blue) and a combined 95% confidence region (red
contour). We see that the intersection of confidence regions (dashed black curve) can both exclude points that are
allowed by the combined confidence region, and allow points that should be excluded. It is often useful to plot
both the contours of the combined likelihood (bottom right panel) and the contours from the individual likelihoods
(bottom left panel), in order to better understand how each measurement or constraint contributes to the final
combined confidence region.

Recommendation: Rather than overlaying confidence regions, combine likelihood functions. Derive a likelihood
function for all the experimental data (this may be as simple as multiplying likelihood functions from independent
experiments), and use it to compute approximate joint confidence or credible regions in the native parameter space
of the model.

3 Problems of uniform random sampling and grid scanning
Parameter estimation generally involves integration of a posterior or maximisation of a likelihood function. This is
required to go from the full high-dimensional model to the one or two dimensions of interest or to compare different
models. In most cases this cannot be done analytically. The likelihood function, furthermore, may be problematic
in realistic settings. In particle physics,45 it is usually moderately high-dimensional, and often contains distinct
modes corresponding to different physical solutions, degeneracies in which several parameters can be adjusted
simultaneously without impacting the fit, and plateaus in which the model is unphysical and the likelihood is zero.
On top of that, only noisy estimates of the likelihood may be available, such as from Monte Carlo simulations of
collider searches for new particles, and derivatives of the likelihood function are usually unavailable.46 As even
single evaluations of the likelihood function can be computationally expensive, the challenge is then to perform
integration or maximisation in a high-dimensional parameter space using a tractable number of evaluations of the
likelihood function.

‡In a pseudo-experiment, we simulate the random nature of a real experimental measurement using a pseudo-random number generator on
a computer. Pseudo-experiments may be used to learn about the expected distributions of repeated measurements.

§See Eq. (91) and Table 22 in Ref. 36.
¶We used the standard weighted-mean approach to combine the results.37
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Figure 2. Starting from four individual likelihood functions (top; orange, blue, red and green, where lighter shades
indicate greater likelihood), we compare overlaid 95% contours (bottom left) versus a combination of the
likelihoods (bottom right; blue contours). The dashed black line in both bottom panels is the intersection of the limits
from the individual likelihoods. The red line in the bottom right panel is the resulting 95% contour of the product
of all likelihoods.

Random and grid scans are common strategies in the high-energy phenomenology literature. In random
scans, one evaluates the likelihood function at a number of randomly-chosen parameter points. Typically the
parameters are drawn from a uniform distribution in each parameter in a particular parametrisation of the model,
which introduces a dependency on the choice of parametrisation. In grid scans, one evaluates the likelihoods on
a uniformly spaced grid with a fixed number of points per dimension. It is then tempting to attribute statistical
meaning to the number or density of samples found by random or grid scans. However, such an interpretation is
very problematic, in particular when the scan is combined with the crude method described in Section 2, i.e. keeping
only points that make predictions that lie within the confidence regions reported by every single experiment. It is
worth noting that random scans often outperform grid scans: consider 100 likelihood evaluations in a two-parameter
model where the likelihood function depends much more strongly on the first parameter than on the second. A
random scan would try 100 different parameter values of the important parameter, whereas the grid scan would try
just 10. In a similar vein, quasi-random samples that cover the space more evenly than truly random samples can
out-perform truly random sampling.47 This is illustrated in Figure 3 with 256 samples in two-dimensions.

However, random, quasi-random and grid scans are all extremely inefficient in cases with even a few parameters.
The “curse of dimensionality”48 is one of the well-known problems: the number of samples required for a fixed res-
olution per dimension scales exponentially with dimension D: just 10 samples per dimension requires 10D samples.
This quickly becomes an impossible task in high-dimensional problems. Similarly, consider a D-dimensional model
in which the interesting or best-fitting region occupies a fraction ε of each dimension. A random scan would find
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Figure 3. Grid, random and quasi-random sampling with 256 samples in two dimensions when the likelihood
function is approximately one-dimensional. When the number of important parameters increases these methods
perform poorly, as shown in Figure 4.

points in that region with an efficiency of εD, i.e. random scans are exponentially inefficient. See Ref. 49 for further
discussion and examples.

These issues can be addressed by using more sophisticated algorithms that, for example, preferentially explore
areas of the parameter space where the likelihood is larger. Which algorithm is best suited for a given study depends
on the goal of the analysis. For Bayesian inference, it is common to draw samples from the posterior distribution
or compute an integral over the model’s parameter space, relevant for Bayesian model selection. See Ref. 50 for a
review of Bayesian computation. For frequentist inference, one might want to determine the global optimum and
obtain samples from any regions in which the likelihood function was moderate. This can be more challenging than
Bayesian computation. In particular, algorithms for Bayesian computation might not be appropriate optimizers. For
example, Markov chain Monte Carlo methods draw from the posterior. In high-dimensions, the bulk of the posterior
probability (the typical set) often lies well away from the maximum likelihood. This is another manifestation of the
curse of dimensionality.

In Figure 4 we illustrate one such algorithm that overcomes the deficiencies of random and grid sampling and
is suitable for frequentist inference. Here we assume that the logarithm of the likelihood function is given by a
four-dimensional Rosenbrock function51

−2lnL(x) = 2
3

∑
i=1

f (xi, xi+1), where f (a,b) = (1− a)2 + 100 (b− a2)2 . (1)

This is a challenging likelihood function with a global maximum at xi = 1 (i = 1,2,3,4). We show samples found
with −2lnL(x) ≤ 5.99. This constraint corresponds to the two-dimensional 95% confidence region, which in the
(x1, x2) plane has a banana-like shape (red contour). We find the points using uniform random sampling from
−5 to 5 for each parameter (orange dots), using a grid scan (yellow dots), and using an implementation of the
differential evolution algorithm52, 53 operating inside the same limits (blue dots). With only 2× 105 likelihood calls,
the differential evolution scan finds more than 11,500 points in the high-likelihood region,|| whereas in 107 tries the
random scan finds only 7 high-likelihood samples, and the grid scan just 10. The random and grid scans would
need over 1010 likelihood calls to obtain a similar number of high-likelihood points as obtained by differential
evolution in just 2× 105 evaluations. If likelihood calls are expensive and dominate the run-time, this could make
differential evolution about 105 times faster.

Recommendation: Use efficient algorithms to analyse parameter spaces, rather than grid or random scans. The
||We used a population size of 50 and stopped once the coefficient of variation of the fitness of the population dropped below 1%. See the

associated code for the complete settings.6
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Figure 4. Points found inside the 95% confidence region of the likelihood function, in a two-dimensional plane of
the four-dimensional Rosenbrock problem. Points are shown from scans using differential evolution (blue), random
sampling (orange) and grid sampling (yellow). For reference, we also show the actual 95% confidence level contour
of the likelihood function (red). Note that due to the projection of the four-dimensional space down to just two
dimensions, two of the points shown from the grid sampler actually consist of three points each in the full
four-dimensional space.

choice of algorithm should depend on the goal. Good examples for Bayesian analyses are Markov chain Monte
Carlo54, 55 and nested sampling.56 Good examples for maximizing and exploring the likelihood are simulated
annealing,57 differential evolution,52 genetic algorithms58 and local optimizers such as Nelder-Mead.59 These are
widely available in various public software packages.53, 60–66

4 Problems with model testing
Overlaying confidence regions and performing random scans are straightforward methods for “hypothesis tests” of
physical theories with many parameters or testable predictions. For example, it is tempting to say that a model
is excluded if a uniform random or grid scan finds no samples for which the experimental predictions lie inside
every 95% confidence region. This procedure is, however, prone to misinterpretation: just as in Section 2, it severely
under-estimates error rates, and, just as in Section 3, it easily misses solutions.

Testing and comparing individual models in a statistically defensible manner is challenging and contentious.
On the frequentist side, one can calculate a global p-value: the probability of obtaining data as extreme or more
extreme than observed, if the model in question is true. The p-value features in two distinct statistical approaches:67

first, the p-value may be interpreted as a measure of evidence against a model.68 See Refs. 69–73 for discussion of
this approach. Second, we may use the p-value to control the rate at which we would wrongly reject the model
when it was true.74 If we reject when p < α, we would wrongly reject at a rate α. In particle physics, we adopt the
5σ threshold, corresponding to α ' 10−7.75 When we compute p-values, we should take into account all the tests
that we might have performed. In the context of searches for new particles, this is known as the look-elsewhere
effect. Whilst calculations can be greatly simplified by using asymptotic formulae,76, 77 bear in mind that they may
not apply.30 Also, care must be taken to avoid common misinterpretations of the p-value.78, 79 For example, the
p-value is not the probability of the null hypothesis, or the probability that the observed data were produced by
chance alone, or the probability of the observed data given the null hypothesis, or the rate at which we would
wrongly reject the null hypothesis when it was true.

On the Bayesian side, one can perform Bayesian model comparison1, 80 to find any change brought about by data
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to the relative plausibility of two different models. The factor that updates the relative plausibility of two models is
called a Bayes factor. The Bayes factor is a ratio of integrals that may be challenging to compute in high-dimensional
models. Just as in Bayesian parameter inference, this requires constructing priors for the parameters of the two
models, permitting one to coherently incorporate prior information. In this setting, however, inferences may
be strongly prior dependent, even in cases with large data sets and where seemingly uninformative priors are
used.81, 82 This sensitivity can be particularly problematic in high-dimensional models. Unfortunately, there is no
unique notion of an uninformative prior representing a state of indifference about a parameter,83 though in special
cases symmetry considerations may help.84

Neither of these approaches is simple, either philosophically or computationally, and the task of model testing
and comparison is in general full of subtleties. For example, they depend differently on the amount of data collected
which leads to somewhat paradoxical differences between them.1, 85, 86 See Refs. 87–91 for recent discussions in other
scientific settings. It is worth noting that there are connections between model testing and parameter inference in
the case of nested models, i.e. when a model can be viewed as a subset of the parameter space of some larger, “full”
model. A hypothesis test of a nested model can be equivalent to whether it lies inside a confidence region in the
full model.92, 93 Similarly, the Bayes factor between nested models can be found from parameter inference in the
full model alone through the Savage-Dickey ratio.94 There are, furthermore, approaches beyond Bayesian model
comparison and frequentist model testing that we do not discuss here.

Recommendation: In Bayesian analyses, carefully consider the choice of priors, their potential impact particularly
in high-dimensions and check the prior sensitivity. In frequentist analyses, consider the look-elsewhere effect,
check the validity of any asymptotic formulae and take care to avoid common misinterpretations of the p-value. If
investigation of such subtleties fall outside the scope of the analysis, refrain from making strong statements on the
overall validity of the theory under study.

5 Summary
As first steps towards addressing the challenges posed by physical theories with many parameters and many
testable predictions, we make three recommendations: i) construct a composite likelihood that combines constraints
from individual experiments, ii) use adaptive sampling algorithms (ones that target the interesting regions) to
efficiently sample the parameter spaces, and iii) avoid strong statements on the viability of a theory unless a
proper model test has been performed. The second recommendation can be easily achieved through the use of
any one of a multitude of publicly-available implementations of efficient sampling algorithms (for examples see
Section 3). For the first recommendation, composite likelihoods are often relatively simple to construct, and can
be as straightforward as a product of Gaussians for multiple independent measurements. Even for cases where
constructing the composite likelihood is more complicated, software implementations are often publicly available
already.95–103

Given the central role of the likelihood function in analysing experimental data, it is in the interest of experimental
collaborations to make their likelihood functions (or a reasonable approximation) publicly available to truly harness
the full potential of their results when confronted with new theories. Even for large and complex datasets, e.g. those
from the Large Hadron Collider, there exist various recommended methods for achieving this goal.104–106

Our recommendations can be taken separately when only one of the challenges exists, or where addressing
them all is impractical. However, when confronted with both high-dimensional models and a multitude of relevant
experimental constraints, we recommend that they are used together to maximise the validity and efficiency of
analyses.
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