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A number of direct detection experiments are searching for electron excitations created by the scattering
of sub-GeV dark matter. We present an alternate formulation of dark matter-electron scattering in terms
of the dielectric response of a material. For dark matter which couples to electrons, this approach
automatically accounts for in-medium screening effects, which were not included in previous rate
calculations for semiconductor targets. We show that the screening effects appear for both scalar and vector
mediators. The result is a non-negligible reduction of reach for direct detection experiments which use
dielectric materials as targets. We also explore different determinations of the dielectric response, including
first-principles density functional theory (DFT) calculations and a data-driven analytic approximation using
a Mermin oscillator model.
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I. INTRODUCTION

An increasingly diverse set of underground direct detec-
tion experiments remains the most promising direct probe
of the nature of the dark matter (DM). In a set of pioneering
papers, Essig et al. [1–3] generalized the search for DM
beyond the traditional nuclear recoil paradigm, by showing
that it is feasible to search for electron recoils from
scattering of sub-GeV dark matter in noble liquids and
semiconductors. There have since been numerous studies
of DM scattering in these materials [4–15], as well as
proposals for other targets that are sensitive to electron
recoils [16–28]. Nowadays electron recoils are leveraged
by every major experimental collaboration, and they are or
will be a primary detection channel for experiments such
SENSEI [29], DAMIC [30], SuperCDMS [31] and LBECA
[32]. For semiconductor targets in particular, the full
calculation of the DM-electron scattering rate was first
performed in [3] through an explicit calculation of the
electronic wave functions with density functional theory
(DFT) methods. Their calculation was recently extended to
a broader range of semiconductors in [22,24], using a
similar procedure.

In this paper, we formulate a new approach to calculate
the DM-electron scattering rate in the broad class of
dielectric materials by expressing the rate in terms of the
dielectric response ϵðω;kÞ. As the dielectric response is
dominated by the electron response for energies ðωÞ above
the band gap, this gives an alternate way to understand DM-
electron scattering and leads to quantitatively different
scattering rates, as screening effects are automatically
included. Furthermore, the dielectric function is extensively
studied in both condensed matter theory and experiment.
Rewriting DM scattering in this way thus provides a more
direct translation between quantities of interest for con-
densed matter and dark matter physicists.
The dielectric response of a material determines the

energy loss function (ELF), which is defined as the
imaginary part of the inverse dielectric function

Im

�
−1

ϵðω;kÞ
�
: ð1Þ

This quantity describes the rate to lose momentum k and
energy ω for a charged particle passing through the
material.1 The ELF is closely related to the dynamic
structure factor Sðω;kÞ, which describes the rate to create
density fluctuations in the medium, independently on the
nature of the external probe. We can therefore directly
relate the ELF to the dark matter scattering rate. By writing
the scattering rate in terms of the ELF or Sðω;kÞ, we are
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1Note that we will use ϵðω;kÞ throughout to mean the
longitudinal dielectric function, and we work in the approxima-
tion that the dielectric function is a diagonal matrix in reciprocal
lattice space. For more details, see the Appendix A.
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moreover accounting for in-medium effects such as screen-
ing, as well possible collective excitations such as plasmons
[33,34]. The same ELF also plays an important role in the
Migdal effect, or inelastic DM-nucleus scattering, which
we studied in a companion paper [35]. (See also [36].)
For any scalar or vector mediator coupling to electrons,

we can treat DM as an external source which couples to
electron number density nðr; tÞ. In linear response theory,
perturbations of the electron number density in the medium
can be determined by the susceptibility

χðω;kÞ ¼ −
i
V

Z
∞

0

dteiωth½nkðtÞ; n−kð0Þ�i; ð2Þ

given here in Fourier space, with V the volume and k and
ω, respectively, the momentum and energy of the pertur-
bation. The expectation value in (2) includes the thermal
average. The fluctuation-dissipation theorem relates the
susceptibility to the dynamical structure factor, which
parametrizes the rate at which excitations are emitted or
absorbed by the system:

Imχðω;kÞ ¼ −
1

2
ð1 − e−βωÞSðω;kÞ: ð3Þ

Here the dynamic structure factor is defined as

Sðω;kÞ≡ 2π

V

X
i;f

e−βEi

Z
jhfjn−kjiij2δðωþ Ei − EfÞ; ð4Þ

with β ¼ 1=kBT and Z as the partition function of the
system. Equation (4) should remind the reader of Fermi’s
golden rule, and Sðω;kÞ is directly proportional to the
differential DM-electron scattering rate. Using the relation-
ship between the susceptibility and dielectric response

1

ϵðω;kÞ ¼ 1þ 4παem
k2

χðω;kÞ; ð5Þ

we can write the structure factor as [37]

Sðω;kÞ ¼ k2

2παem

1

1 − e−βω
Im

�
−1

ϵLðω;kÞ
�
: ð6Þ

This relation is well known in the condensed matter
literature, see e.g., [38].
In the remainder of this paperwe explore the consequences

of this relationship for dark matter electron scattering. The
main difference with previous works in the literature is
essentially that, writing the ELF as Imðϵðω;kÞÞ=jϵðω;kÞj2,
we see that a screening factor of 1=jϵðω;kÞj2 is included
inside the dynamic structure factor. Previous works studying
DM scattering in semiconductors [3,22,24] primarily con-
sidered the approximation jϵðω;kÞj2 ≈ 1. Since the DM
scattering rate is dominated by k≳ keV, this assumption is

not unreasonable, but with detailed calculations we find that
screening can affect the rate by a factor of a few in Si and Ge.
In addition, while the importance of accounting for screening
has been well understood for vector mediators, screening for
scalar-mediated scattering was only pointed out more
recently in Ref. [39] (see also Ref. [40] for discussion of
in-mediumeffects for scalars). In thiswork,we put scalar and
vectormediated scattering on the same footing and showhow
they lead to identical response functions. We also show how
scattering form factors discussed in the literature relate to the
dielectric response, and perform detailed calculations of the
screening effect in semiconductor targets relevant for current
low-threshold experiments.
In the following section, we show how the DM-electron

scattering rate relates to the dynamic structure factor or
ELF. In Sec. III, we discuss different ways to determine the
dielectric function and thus the ELF, including the details of
our DFT calculations for semiconductors. In Sec. IV we
present the implications for DM scattering in semiconduc-
tors and superconductors. We conclude in Sec. V.

II. DM-ELECTRON SCATTERING AS
DIELECTRIC RESPONSE

The most common models which predict dark matter-
electron scattering involve a scalar or vector mediator
which couple, respectively, to the electron number density
and the electron current. In the nonrelativistic limit, the
leading interactions of the mediator are the same for both
cases:

−L ⊃ gχϕχ̄χ þ geϕēe → gχϕnχ þ geϕn;

−L ⊃ gχVμχ̄γ
μχ þ geVμēγμe → gχV0nχ þ geV0n ð7Þ

since scattering via the 0th component of the vector
dominates. Here nχ and n are, respectively, DM and
electron number densities. This makes it manifest that in
the nonrelativistic limit the scalar and vector mediators
ought to give identical rates, up to the rescaling of the
coupling constants. Note that the vector here could re-
present a kinematically mixed dark photon in the inter-
action basis or another vector.
Given the similarity in these interactions, we can thus

consider a general mediator with coupling to electrons ge
and coupling to the DM gχ . We will write the mass of the
mediator as mV , although it could also be a scalar. The
coupling between the electron density perturbation nk and
the external potential to the DM is then given by

Hext ¼
Z

d3k
ð2πÞ3 nk ×

�
gχgeeik·x

k2 þm2
V

�
; ð8Þ

where the term in the parentheses represents the external
and thus unscreened potential due to the DM (where x is
DM position). In this picture, all in-medium corrections
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will be included in Sðω;kÞ, as the propagator itself receives
no corrections. In the particle physics literature the inter-
action term in (8) is often written in terms of the total
potential felt by the electrons, especially so in the context of
a kinetically mixed dark photon mediator. In this picture the
propagator receives a multiplicative correction of the form
1=ϵðω; kÞ, and one defines a different structure factor,
without the screening factor. The approaches are equiv-
alent. However by working with the external rather than the
total potential, the parallel between the scalar and the vector
mediator in (7) is more manifest.
Evaluating the Hamiltonian in (8) between initial and

final DM states of momentum pi and pf, respectively, as
well as initial and final electron fluid states jii; jfi, we find
the matrix element

M ¼ gχge
Vðk2 þm2

VÞ
hfjn−kjiiδpi−pf;k; ð9Þ

where in the continuum limit we can write the Kronecker
delta function as a Dirac delta function, δpi−pf;k ¼
ð2πÞ3=V × δðpi − pf − kÞ. We now use Fermi’s golden
rule, and sum over initial states jii weighted by e−βEi=Z, as
well as over final states. Inserting a factor of unity asR
dωδðωþ Ei − EfÞ, we obtain a DM scattering rate

R ¼ 1

ρT

ρχ
mχ

πσ̄e
μ2χe

Z
d3vfχðvÞ

d3k
ð2πÞ3 dω

× δ

�
ωþ k2

2mχ
− k · v

�
jFDMðkÞj2Sðω;kÞ; ð10Þ

where ρT is target density, μχe is DM-electron reduced
mass, and fχðvÞ is the DM velocity distribution. Here we
used the conventional definition of DM-electron scattering
cross section σ̄e in terms of couplings [3]:

σ̄e ¼
μ2χeg2eg2χ

πððαmeÞ2 þm2
VÞ2

: ð11Þ

and the DM-mediator form factor is defined as

FDMðkÞ ¼
m2

V þ α2m2
e

m2
V þ k2

: ð12Þ

Plugging in (6), we arrive at our master formula for the
scattering rate

R ¼ 1

ρT

ρχ
mχ

σ̄e
μ2χe

π

αem

Z
d3vfχðvÞ

Z
d3k
ð2πÞ3 k

2jFDMðkÞj2

×
Z

dω
2π

1

1 − e−βω
Im

�
−1

ϵLðω;kÞ
�
δ

�
ωþ k2

2mχ
− k · v

�
:

ð13Þ
To compare this form of the rate with previous works

in the literature, we use the Lindhard form for ϵðω;kÞ.

The Lindhard dielectric function, also known as the random
phase approximation (RPA), is the leading-order polariza-
tion due to electron-hole excitations. It is given by [41,42]

ϵRPAðω;kÞ ¼ 1 −
4παem
Vk2

X
p;p0;l;l0

jhp0;l0jeik·rjp;lij2

× lim
η→0

f0ðωp0;l0 Þ − f0ðωp;lÞ
ωp0;l0 − ωp;l − ω − iη

; ð14Þ

where we sum over states labeled by momentum p and
band l. There is also an implicit sum over spin states. The
thermal occupation of the electron state with energy ωp;l is
f0ðωp;lÞ ¼ 1=½expðβðωp;l − EFÞÞ þ 1�, where EF is the
Fermi energy. Using (14) in (6), we find

Sðω;kÞ ¼ 2π

VjϵRPAðω;kÞj2
X

p;p0l;l0
jhp;l0jeik·rjp;lij2

× f0ðωp;lÞð1 − f0ðωp0;l0 ÞÞδðωþ ωp;l − ωp0;l0 Þ:
ð15Þ

Here we recognize a rate to create single-electron excita-
tions, but with a screening factor of 1=jϵðω;kÞj2. Many
works have considered this screening effect for vector
mediators, by defining an effective coupling in the medium.
Here we show that it should apply to scalars too, and
include it inside the dynamic structure factor.
Our formulation of DM-electron scattering in terms of a

structure factor is then identical to that of Refs. [22,24]
when the dielectric function is computed in RPA, with the
only difference being the screening factor appearing in
Sðω;kÞ. Similarly, our results are equivalent to those of
Ref. [3] when the RPA dielectric function is used and
jϵðω;kÞj2 → 1. More explicitly, we find that the crystal
form factor of Ref. [3] is given by

jfcrystalðk;ωÞj2 ¼
k5Vcell

8π2α2emm2
e
ImðϵRPAðω;kÞÞ; ð16Þ

with Vcell the volume of the unit cell. The relationships
between the different conventions for DM-electron scatter-
ing are discussed in more detail in Appendix B.

III. DIELECTRIC RESPONSE

In this section, we discuss two approaches for determin-
ing ϵðω;kÞ: a data-driven analytic approximation, and DFT
calculations. The various calculations of ϵðω;kÞ are com-
pared with each other and with experimental data. Readers
who are interested primarily in the DM scattering reach can
proceed directly to Sec. IV.

A. Mermin oscillator model

A semianalytic approximation to ϵðω;kÞ is valuable to
quickly obtain results for many materials, as compared to
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numerically expensive DFT calculations. Direct measure-
ments of ϵðω;kÞ at several ω, k points are moreover often
available to anchor such a semianalytic description. To
fully make use of these measurements, a self-consistent
interpolation is however needed which preserves the
various sum rules and symmetries associated with
ϵðω;kÞ. For some materials the available data is also
restricted to the optical (k ¼ 0) limit, and a well-motivated
extrapolation to finite k is therefore desirable.
One of the simplest, analytic models of ϵðω;kÞ is the

Lindhard model for a homogeneous electron gas, for which
the dielectric function can be characterized entirely by
its Fermi velocity vF ¼ kF=me and plasma frequency
ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4παemne=me

p
, with ne the electron number density.

The dielectric function is also isotropic in k in this case,
and can be directly evaluated in (14) by inserting plane
wave states. The result is [41]

ϵLinðω; k;ωpÞ ¼ 1þ 3ω2
p

k2v2F

�
f1

�
ω

kvF
;

k
2mvF

�

þ if2

�
ω

kvF
;

k
2mvF

��
; ð17Þ

with

vF ¼
�

3πω2
p

4αemm2
e

�
1=3

;

f1ðu; zÞ ¼
1

2
þ 1

8z
½gðz − uÞ þ gðzþ uÞ�;

f2ðu; zÞ ¼
8<
:

π
2
u; zþ u < 1

π
8z ð1 − ðz − uÞ2Þ; jz − uj < 1 < zþ u

0; jz − uj > 1

;

gðxÞ ¼ ð1 − x2Þ log
���� 1þ x
1 − x

����; ð18Þ

where we have explicitly separated the results into its real
and imaginary parts. The main shortcoming of the Lindhard
model is that the plasmon peak has zero width, which is
certainly not the case in semiconductors such as Si and Ge.
This problem is addressed in the Mermin model [43]

ϵMerðk;ω;ωp;ΓÞ ¼ 1þ ð1þ iΓ=ωÞðϵLinðk;ωþ iΓÞ − 1Þ
1þ ðiΓ=ωÞ ϵLinðk;ωþiΓÞ−1

ϵLinðk;0Þ−1
;

ð19Þ

with Γ as the width of the plasmon pole. By construction
ϵMerðk;ω;ωp;0Þ¼ϵLinðk;ω;ωpÞ. ϵMer is moreover designed
such that the various sum rules on the dielectric function are
explicitly satisfied.
Both the Mermin and Lindhard models however apply to

a homogeneous electron gas, which is a far cry from a

realistic material. This is often addressed in a phenomeno-
logical way by modeling the material as a superposition of
many electron gas clouds with different densities. In other
words, one describes ELF as a linear combination of
Mermin dielectric functions. Here we follow the procedure
outlined in [44,45]

Im

�
−1

ϵðω; kÞ
�
¼

X
i

AiðkÞIm
�

−1
ϵMerðω; k;ωp;i;ΓiÞ

�

× θðω − ωedge;iÞ; ð20Þ

with

AiðkÞ¼Aið0Þ
R∞
0 dωωIm½ 1

ϵMerðω;0;ωp;i;ΓiÞ�θðω−ωedge;iÞR∞
0 dωωIm½ 1

ϵMerðω;k;ωp;i;ΓiÞ�θðω−ωedge;iÞ
; ð21Þ

where the ωp;i, Γi, ωedge;i and Aið0Þ are fitted to exper-
imental data. One can use as many Mermin oscillators as
needed to describe the experimental data. The real part of
1=ϵðω; kÞ can be obtained through a Kramers-Krönig
transformation. This approach also makes it possible to
include the semicore electrons in a phenomenological
manner [45], something which is computationally difficult
to do in first principles DFT calculations.
For our calculations we make use of the CHAPIDIF

package2 [46], with experimental inputs taken from
[47,48], all obtained in the optical ðk ¼ 0Þ limit. In
Fig. 1 we show ELF for Si and Ge, and compare with a
DFT calculation with the GPAW code (see next section). For
Si, we also compare with the finite-k data from Weissker
et al. [49], which is independent from the data used to fit to
the Mermin model. We find good agreement between all
three methods, except for the high-k, high-ω regime. Both
the DFT and Mermin oscillator methods suffer from
increased uncertainties in this regime: in the DFT calcu-
lation, higher values of ω require more bands to be
included, which increases the computational complexity.
With the Mermin oscillator method the uncertainties are
expected to grow the further one deviates from the optical
limit. This may be addressed by including finite-k data in
the fit. For our numerical calculations of the DM scattering
rate in semiconductors we will rely on the DFT method,
and reserve a more detailed comparison to Appendix C.

B. DFT calculations

As an alternative to the phenomenological approach of
the previous subsection, it is also possible to determine the
dielectric response of a material from first principles. In
contrast to the case of a homogeneous electron gas, in a
crystal, response functions are only invariant under lattice

2We thank Maarten Vos for providing us with a β version of the
code.
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periodicity, so that in momentum space the full dielectric
function is written as a matrix ϵGG0 ðqÞ where q is restricted
to the first Brillouin zone (1BZ) and G;G0 are reciprocal
lattice vectors. The dielectric function is then treated as a
matrix in reciprocal lattice vectors. Here, we provide an
overview of microphysical calculations of this dielectric
response in the framework of time-dependent density
functional theory (TDDFT), while additional details are
reviewed in Appendix A.
In the TDDFT approach, one maps the system of

interacting electrons in the presence of an external (time-
dependent) potential to a system of noninteracting electrons
in the presence of an effective potential. The latter is known
as the Kohn-Sham (KS) system [51] and is much simpler to
work with, since one has only to deal with effective single
electron wave functions. Quantities such as the suscep-
tibility χGG0 ðq;ωÞ and the polarizability PGG0 ðq;ωÞ can be
related to their counterparts computed in the simpler Kohn-
Sham system by requiring the change in charge density in
response to a small change in the external potential (in the
full system) and the effective potential (in the KS system) to
be the same.
We are ultimately interested in the microscopic dielectric

function, which is related to the polarizability by [52]

ϵGG0 ðq;ωÞ ¼ δGG0 −
4παem

jqþGjjqþG0jPGG0 ðq;ωÞ: ð22Þ

In the random phase approximation, the polarizability is
approximated with the KS susceptibility PGG0 ðq;ωÞ ≈
χKSG;G0 ðq;ωÞ (see Appendix A), and thus

ϵGG0 ðq;ωÞ ≃ δGG0 −
4παem

jqþGjjqþG0j χ
KS
GG0 ðq;ωÞ; ð23Þ

which, neglecting the off-diagonal pieces, is simply the
Lindhard dielectric function of Eq. (14) computed with KS
wave functions and extended to momenta k ¼ qþG
outside the 1BZ [see also Eq. (B1)]. By solving for the
susceptibility in the relatively simple KS system, one
arrives at an approximation for the full microscopic
dielectric function.
There exist several DFT tools to compute the KS

susceptibility, and hence the RPA dielectric response.
We use the public code GPAW [53,54] for this purpose
and focus on Si and Ge semiconductors. First, the KS wave
functions are computed. This is done at zero temperature,
using a plane wave basis with a cutoff of Ecut ¼ 500 eV,
corresponding to jkj≲ 22 keV. The Brillouin zone is
sampled using a gamma-centered Monkhorst-Pack grid
with 8 × 8 × 8 k points for Si, while for Ge we use a
12 × 12 × 12 grid. The finer grid for Ge was chosen to
improve convergence of the results with respect to the
grid spacing. Seventy bands are included for each spin.
The KS wave functions are computed using the TB09

FIG. 1. The ELF evaluated with GPAW and the Mermin oscillator method, as implemented in CHAPIDIF. When a measurement is
available, it is overlaid as well. For k ¼ 0 the Si and Ge data are taken from, respectively, [50,47]. At finite k for Si the measured ELF is
taken from the Weissker et al. dataset [49]. The Mermin oscillators were fit to optical (k ¼ 0) data [47,48]; the Weissker et al. data for
finite k values is independent and not included in this fit. The discrepancy at high ω is due to the fact the GPAW calculation only includes
the lowest 70 bands in computing the ELF, and hence does not capture the dielectric response for ω≳ 70 eV. Note that for DM with
maximum speed of ∼750 km=s, only the phase space with k≳ 4 keV × ω=ð10 eVÞ contributes to DM-electron scattering. The sharp
plasmon resonance in the first two columns therefore does not contribute to the scattering rate. Those panels are meant only as a
validation of our methods.
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exchange-correlation functional [55], and a scissor correc-
tion is applied to match the experimentally measured Si and
Ge band gaps at T ¼ 0. Note that the 3d electrons in Ge are
treated as part of the frozen core, in contrast to e.g., [3].
Next, the longitudinal dielectric matrix is computed in

the RPA using (23) for all q ∈ 1BZ sampled by the
Monkhorst-Pack grid. We will work in an approximation
where we neglect the directional dependence of the
response, as well as the off-diagonal components of the
dielectric matrix. To this end, we define an angular-
averaged dielectric function

ϵ̄ðω; kÞ≡ 1

NðkÞ
X
q;G

ϵGGðω;qÞδk;jqþGj ð24Þ

where NðkÞ≡P
q;G δk;jqþGj, the q sum runs over all 1BZ

points sampled by the Monkhorst-Pack grid and the G sum
over all reciprocal lattice vectors up to the plane wave
cutoff momentum. This quantity can then be used as an
approximation to the full dielectric function in the ELF,
Imð−1=ϵðω;kÞÞ≃Imð−1=ϵ̄ðω;kÞÞ. This approach neglects
so-called local field effects (LFEs), since the off-diagonal
components of the dielectric matrix are dropped altogether.
In practice, some information about the off-diagonal

components of the dielectric matrix can be included by
replacing ϵGG → 1=ðϵ−1GGÞ. This is known as the “inclusion
of LFEs” in the literature. Using this quantity in the ELF
results in a better fit to experiment (see e.g., [49] and
Fig. 1), since at low momentum transfer this procedure
amounts to averaging out the effects of the off-diagonal
components of the dielectric matrix [52]. Approximating
the loss function with ϵ̄ðω; kÞ with or without LFEs does
not make a substantial difference in the experimental
sensitivity to DM-electron scattering presented in the next
section. We include local field effects except where stated

otherwise, so that the loss function predicted by GPAW more
closely matches experimental results.
The results computed by GPAW for the ELF in Si and Ge

are illustrated in Fig. 1 for various values of k. We see that
generally the DFT results agree well with both experimen-
tal results (where available) and the Mermin approach
described in the previous subsection. The discrepancies at
large ω are due to the fact that GPAW only includes the
lowest 70 bands in computing the loss function, so does not
yield reliable results above ∼70 eV for Si and Ge.

IV. IMPLICATIONS FOR
DM-ELECTRON SCATTERING

To show the impact of screening, we now evaluate the
scattering rate in example dielectric materials. We will
consider the “massless mediator” limit where mV ≪ αme

with FDMðkÞ ¼ ðαmeÞ2=k2 and the “massive mediator”
limit where mV ≫ αme with FDMðkÞ ¼ 1. As discussed
before, the results here apply for both vector and scalar
mediators.
Our main results focus on Si and Ge semiconductors,

which are used in a number of direct detection experiments.
We use ϵðω;kÞ computed in the DFT framework as
described in the previous section, taking as our default
the RPA dielectric function including local field effects.
Again, there is only a small difference in rate whether
local field effects are included or not, and we show an
explicit comparison in Fig. 5 in Appendix B. The Mermin
oscillator determination of ϵðω;kÞ also gives comparable
results as long as we do not consider ω too close to the band
gap, which is reasonable for background-limited experi-
ments. The results with the Mermin oscillator method are
given in Appendix C. For the DM velocity distribution, we
assume the standard halo model with vesc ¼ 500 km=s,

FIG. 2. Effect of screening on differential rate spectrum in Si and Ge semiconductors, for an example DM mass of 10 MeVand cross
section σ̄e ¼ 10−38 cm2. The bottom panel shows the ratio of the unscreened rate over the screened rate.
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velocity dispersion v0 ¼ 220 km=s, and Earth velocity
ve ¼ 240 km=s.
Figure 2 shows the impact of screening on the differ-

ential rate spectrum, for an example DM mass of 10 MeV.
Here the unscreened rate (dashed lines) is obtained by
writing the ELF as Imðϵðω;kÞÞ=jϵðω;kÞj2 and taking
jϵðω;kÞj2 → 1. The screening effects are most noticeable
for lower energy deposition ω, since in that case there is a
larger contribution from lower momentum transfers where
the screening is largest. Scattering at large ω is dominated
by large k, with negligible screening. Similarly, we see that
the effect of screening is larger for the massless mediator
case, since the DM form factor FDMðkÞ enhances the rate
from lower k values.
We show the corresponding effect on the DM mass

and cross section in Fig. 3. The solid lines show the cross

section for scalar and vector mediators, accounting for
screening effects. We assume three events for a kg-year
exposure to match with the convention in the literature.
The threshold is set by the electron band gap. For
mχ ≳ 10 MeV, there is roughly a factor of (1.4) 2.5
suppression in the total rate for (massive) massless medi-
ators. The ratio becomes larger near threshold in mχ ,
since for those points the rate is restricted to ω near the
band gap, where screening is more important. The screen-
ing effect is therefore reduced somewhat with higher
thresholds in ω, as shown in Fig. 4. For instance, the
threshold to detect two electron-hole pairs is roughly
4.7 eV (3.6 eV) in Si (Ge). Setting this as the threshold,
we find a screening suppression instead of 2–2.1 for
massless mediators and mχ ≳ 10 MeV. For massive medi-
ators the dependence on the energy threshold is smaller.

FIG. 3. Comparison of cross section sensitivity. The solid lines show the cross section corresponding to three events for a kg-yr
exposure for scalar or vector mediated interactions, and account for screening. The dashed lines show the reach if the screening is not
included. Following the standard convention, we assume zero background down to single electron sensitivity for Si and Ge. For the Al
lines, we assume an energy range of 10 meV < ω < 1 eV, and also zero background. In the left panel, the unscreened Al reach is many
orders of magnitude stronger and is not shown on the plot.

FIG. 4. Ratio of the screened rate to the unscreened rate, for different thresholds corresponding to 1, 2 and 3 electrons. We use
Q ¼ 1þ bðω − EgÞ=εc where for Si Eg ¼ 1.11 eV, ε ¼ 3.6 eV and for Ge Eg ¼ 0.67 eV, ε ¼ 2.9 eV, following Ref. [3].
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The Oð1Þ screening effects we find for Si and Ge align
with our expectations for semiconductors with eV-scale
electron band gaps, and it is therefore interesting to compare
with a lower gap material where the screening is much
stronger. We also show in Fig. 3 the cross section for three
events per kg-year in a metal, taking Al as an example. Such
targets have been proposed to be used in their super-
conducting phase as low-threshold dark matter detectors
[16,17,26,56]. We thus consider sensitivity to electron
recoils in the energy range 10 meV—1 eV, such that the
material can still be approximated with the dielectric
response of a metal. Here we use the Mermin oscillator
method with the Al data from [48]. For ω > 10 meV, we
find that the rates are in good agreement with those obtained
with the Lindhard dielectric function for a free electron gas
in (17), takingωp ¼ 15 eV. Forω < 10 meV the agreement
between the methods is not as good, for reasons to be
understood further. Out of an abundance of caution we
therefore impose a ω > 10 meV threshold in Fig. 3. For
massive mediators, the screening strongly limits the sensi-
tivity to sub-MeV dark matter despite the lower thresholds.
For massless mediators, in the absence of screening there is
enhanced scatteringwith low k and lower thresholds, and the
unscreened reach ismany orders ofmagnitude belowwhat is
shown on the plot. Accounting for screening, we find that
there is still substantial reach to sub-MeV dark matter
scattering via a massless mediator. Thus, even with the
large screening, such a low gap target could be sensitive to
cosmologically interesting sub-MeV dark matter models
such as that of freeze-in through a kinetically mixed dark
photon [3,57,58].

V. CONCLUSIONS

By considering the linear response of a dielectric
material, we have shown that the differential DM-electron
scattering rate in a dielectric is proportional to the energy
loss function Im½−1=ϵðω; kÞ� [see (13)], which contains all
relevant many-body effects associated with the target
material. The ELF is moreover very well studied theoreti-
cally and experimentally in the materials science literature,
and thus provides a convenient way of mapping the detailed
properties of the target material onto sensitivity estimates or
limits for DM direct detection experiments. In particular,
we find that screening effects need to be accounted for, both
for scalar and vector mediators, which reduces the reach of
any direct detection experiment with a dielectric target. We
computed the ELF for Si and Ge using a first principles
DFT calculation and using a data-driven, phenomenologi-
cal model. Both methods broadly agree within their regime
of validity. Using these results, we can quantify the
importance of the screening effect in Si and Ge (see
Fig. 4). There are a number of possible future directions
to pursue, such as accounting for angular dependence in the
dielectric response for semiconductors, and applying our
methodology to a broader range of materials, including

others already proposed for the direct detection of electron
recoils.
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APPENDIX A: DIELECTRIC RESPONSE
IN A CRYSTAL

In our analysis we considered the scalar longitudinal
dielectric function. The more general quantity in a crystal is
a dielectric tensor that is a matrix both in spatial indices and
in reciprocal lattice vectors. For completeness, here we
introduce the dielectric tensor and detail the approxima-
tions made in the main text.
The dielectric tensor describes the electrical response of

a system to an external electric field, Eext. In terms of
microscopic quantities, the relationship between the exter-
nal and total electric fields is

Eiðω; rÞ ¼
X
j

Z
d3r0ϵ−1ij ðω; r; r0ÞEext

j ðω; r0Þ; ðA1Þ

which serves as the definition of ϵ−1ij ðω; r; r0Þ. The Latin
subscripts correspond to spatial indices. The fields can be
written in terms of their Fourier components

Eðω; rÞ ¼ 1ffiffiffiffi
V

p
X
q∈1BZ

X
G

Eðω;qþGÞeiðqþGÞ·r ðA2Þ

and similarly for Eext. In the above expression, q lies in the
1BZ and G, G0 are reciprocal lattice vectors. The dielectric
tensor can be Fourier transformed as

ϵijðω; r; r0Þ ¼
1

V

X
q∈1BZ

X
G;G0

eiðqþGÞ·r

× ϵ−1ij ðω;qþG;qþG0Þe−iðqþG0Þ·r0 ; ðA3Þ

where we have used the fact the microscopic electronic
response of a crystal is invariant under translations by a
lattice vector R, so ϵijðω; r; r0Þ ¼ ϵijðω; rþR; r0 þRÞ. In
Fourier space (A1) is then
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Eiðω;qþGÞ ¼
X
G0

ϵ−1ij ðω;qþG;qþG0Þ

× Eext
j ðω;qþG0Þ; ðA4Þ

where again q ∈ 1BZ.
In considering dark matter-electron scattering we are

primarily interested in the longitudinal response. The longi-
tudinal field is defined as ELðω;kÞ≡ k · Eðω;kÞ=jkj,
where k is a general momentum vector and not necessarily
confined to the 1BZ. The transverse field is ET ≡
E − ðk ·Eðω;kÞÞk=jkj2. The external field and dielectric
tensor can be similarly decomposed. The scalar dielectric
function is obtained by projecting both the total and external
electric fields onto their longitudinal components:

ELðω;qþGÞ≡X
G0

ϵ−1LLðω;qþG;qþG0Þ

× Eext
L ðω;qþG0Þ: ðA5Þ

In (A5) we have defined the (symmetrized3) longitudinal
dielectric function

ϵ−1LLðω;qþG;qþG0Þ≡ ðqi þGiÞðqj þG0
jÞ

jqþGjjqþG0j
× ϵ−1ij ðω;qþG;qþG0Þ; ðA6Þ

which describes the longitudinal response to a longitudinal
external field. One can also define the matrices ϵ−1LT;TL;TT to
describe the other components of the response, but for nearly
isotropic crystals and the energies of interest for dark matter
scattering, the purely longitudinal contribution dominates
both Eext and the response. For compactness, we denote
ϵ−1GG0 ðω;qÞ≡ ϵ−1LLðω;qþG;qþG0Þ.
The microscopic dielectric function can be computed

from the density response function χGG0 ðqÞ in density
functional theory, as described in Sec. III B. One can show
(see e.g., [52]) that the susceptibility in the full interacting
system is related to the KS susceptibility χKS via a Dyson
equation

χGG0 ðq;ωÞ ¼ χKSGG0 ðq;ωÞ þ
X
G1;G2

χKSGG1
ðq;ωÞ

×

�
4παem

jqþG1jjqþG2j
þ fxcG1G2

ðq;ωÞ
�

× χG2G0 ðq;ωÞ ðA7Þ

where fxc is a so-called exchange correlation kernel which
is defined such that the charge density of the KS system
exactly matches that of the full system. Exact knowledge of
fxc would require solving for the wave functions of the full
interacting system, however in TDDFT calculations one
typically approximates this term using simple physically
motivated models such as the “adiabatic local density
approximation,” or dropping it altogether. Setting fxc→0
in the expression above corresponds to the RPA which we
use throughout this study.
Furthermore, the susceptibility and polarizability are

related by a separate Dyson equation

χGG0 ðq;ωÞ ¼ PGG0 ðq;ωÞ þ
X
G1;G2

PGG1
ðq;ωÞ

×

�
4παem

jqþG1jjqþG2j
�
χG2G0 ðq;ωÞ: ðA8Þ

Comparing (A8) to (A7) with fxc → 0, we see that in the
RPA the polarizability of the full system is governed by the
same Dyson equation as the KS susceptibility, motivating
the approximation PG;G0 ðq;ωÞ ≈ χKSG;G0 ðq;ωÞ. This gives
the RPA dielectric function of Eq. (B1) (see below), and
reduces to that of Eq. (23) if the off-diagonal components
are neglected and one restricts the momentum transfer to lie
within the 1BZ.

APPENDIX B: Comparison with previous works

The dynamic structure factor can be directly related to
the DM scattering form factors appearing elsewhere in the
literature when the Lindhard dielectric function (or random
phase approximation) is used. In this section, we provide
some additional formulas to help translate the presentation
here in terms of ϵðω;kÞ to the results appearing in several
previous studies. We also provide some plots comparing
our results with those in Essig et al. [3] and Griffin
et al. [22].
In the main text, the Lindhard dielectric function given in

(14) was only valid for k within the 1BZ for a crystal. Here
we generalize to account for reciprocal lattice vectors and
split k ¼ qþG where q lies in the 1BZ. The Lindhard
dielectric function can be written as [42]

ϵRPAGG0 ðqÞ ¼ δGG0 −
4παem
V

2

jqþGjjqþG0j

× lim
η→0

X
p;p0;l;l0

f0ðωp0;l0 Þ − f0ðωp;lÞ
ωp0;l0 − ωp;l − ω − iη

η�GηG0δp0;pþq;

ðB1Þ

where the matrix elements above are defined by

ηG ≡ 1

Ω

Z
unit

d3ru�p0;l0 ðrÞup;lðrÞeiG·r; ðB2Þ

3Note that there exists an alternative definition of the longi-
tudinal dielectric function in the literature. If a factor of
jqþGj=jqþG0j is included on the right-hand side of (A5),
then one arrives at the “unsymmetrized longitudinal dielectric
function.” The G ¼ G0 elements of the symmetrized and un-
symmetrized quantities are the same, but the off-diagonal
components are not, so one should be careful to use a consistent
definition in considering local field effects.
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with p within the 1BZ and G;G0 reciprocal lattice vectors.
Here we have assumed that the real-space Bloch wave
function for an electron in band l can be written as

jp;li ¼ eip·rffiffiffiffi
V

p up;lðrÞ ¼
X
G

eiðpþGÞ·rffiffiffiffi
V

p ulðpþGÞ; ðB3Þ

where up;lðrÞ is periodic under r → rþR, withR a lattice
vector. In the second equality above, we have written the
wave function in terms of the momentum-space coefficients
ulðpþGÞ. The matrix element above can equivalently be
written in momentum space as

ηG ¼
X
GΔ

u�l0 ðp0 þGþGΔÞulðpþGΔÞ; ðB4Þ

≡f½lp;l0p0;G�; ðB5Þ

where in the last line we make contact with the notation of
Refs. [3,22].
To compute the ELF, the dielectric matrix must be treated

as a matrix in reciprocal lattice vectors and inverted to
obtain the inverse dielectric function. In order to compare
with results in the literature, we work in the approximation
that the off-diagonal elements can be neglected, and restrict
to G ¼ G0 in (B1). Then taking the imaginary part of the
dielectric function above gives

ImðϵRPAGG ðqÞÞ ¼ 4π2αem
Vk2

X
p;p0;l;l0

ðf0ðωp;lÞ − f0ðωp0;l0 ÞÞ

× δp0;pþqjf½lp;l0p0;G�j2δðωp0;l0 − ωp;l − ωÞ:
ðB6Þ

We use (6), take the continuum limit, and now explicitly
include a factor of 2 for the spin sum. (This was implicit in

FIG. 5. Comparison of the scattering reach with different calculations, assuming a 1e− threshold with negligible background and kg-
year exposure. The solid and dashed blue lines correspond to screened and unscreened rate obtained with our calculations of the
dielectric function using GPAW, including local field effects. The dotted blue line shows the result if we compute the unscreened rate with
the RPA dielectric function from GPAW without local field effects. This case is the one that corresponds closely to previous calculations,
and numerically we find very good agreement with Griffin et al. [22] and with QEDARK [3].
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equations in the main text.) We find that the structure factor
can be written as

Sðω;kÞ ¼ 2π

jϵRPAðω;kÞj2
X
l;l0

Z
2d3p
ð2πÞ3

d3p0

ð2πÞ3 jf½lp;l0p0;G�j2

×
X
G

ð2πÞ3δðpþk−G−p0Þδðωp0;l0 −ωp;l −ωÞ

× f0ðωp;lÞð1− f0ðωp0;l0 ÞÞ; ðB7Þ

where we introduce the sum over G to select out the piece
of the incident DM momentum k that brings it to the first
BZ. As noted before, this agrees with the definition of the
structure factor in Ref. [22] except for the 1=jϵðω;kÞj2
screening factor appearing here.
To connect with the definitions in Ref. [3], which

also averages over all directions in calculating the rate,
we replace the three-dimensional momentum delta func-
tion with a delta function averaged over the sphere,
δ3ðp − p0 þ k −GÞ → δðk − jp0 − pþGjÞ=ð4πk2Þ. From
this, we can immediately compare with the definition of the
isotropic crystal form factor appearing there, and obtain
(16) by neglecting the factor of ð1 − e−βωÞ in the low
temperature limit.
In Fig. 5 we show a comparison of various calculations

of the cross section reach, taking here vesc ¼ 600 km=s,
v0 ¼ 230 km=s, and ve ¼ 240 km=s for direct compari-
son. We show the screened and unscreened reach using
our default calculations of the dielectric function, which

account for local field effects, as discussed in Sec. III B.
There is a small difference in the rate if we use the RPA
dielectric function without local field effects (dotted light
blue). This unscreened rate corresponds to the calculation
of Refs. [3,22], and with which our results agree very well.
For Ge and scattering via massless mediators, there are
somewhat larger differences in the unscreened rate across
different calculations, which may be due to differences in
the various DFT calculations (choice of exchange-correla-
tion functionals, lattice constants, etc.).

APPENDIX C: Mermin oscillator results

In this Appendix we briefly present some results
obtained with the Mermin oscillator method (see
Sec. III A), and study how they compare with those
obtained with the DFT calculation (see Sec. III B). With
both methodologies, accessing the high-k regime is chal-
lenging, for different reasons. In the DFT calculation, an
increasingly large basis set of wave functions is needed,
which increases the computational cost of the calculation.
In the Mermin oscillator method, the high k regime
corresponds to a substantial extrapolation from the exper-
imental data, which was taken in the optical limit ðk ¼ 0Þ.
For k≳ 12 keV our numerical results with the Mermin
oscillator method in particular cease to be stable and we
therefore impose a cut of k < 12 keV on the phase space in
both calculations. We verified that the contribution of
the omitted part of the phase space is negligible in the

FIG. 6. Comparison of the differential scattering rate as obtained with a DFT calculation (GPAW) and with the Mermin oscillator
method (Mermin), for σ̄e ¼ 10−38 cm2 and a kg-year exposure. The vertical dashed line indicates the 2e− threshold.
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integrated rate, but it slightly affects the shape of dR=dω
for ω≳ 15 eV.
With this assumption, Fig. 6 shows the differential

scattering rate obtained with both methods. We find overall
good agreement, except for low and high ω. Poor agree-
ment at low ω is anticipated, since the Mermin oscillator
method models the semiconductor as a linear combination
of free electron gas systems, and is therefore expected to be
less reliable for ω near the band gap of the material. Once
we impose the 2e− threshold (dashed line), the agreement
between both methods is largely satisfactory. The substan-
tial deviations in the high ω regime are also straightforward
to understand. For kinematical reasons, this regime

corresponds to the higher k part of the phase space, which
is challenging for both methods as discussed above. Further
studies are needed to bring down the uncertainty in this
region. On the other hand, for experiments with a 2e−

threshold, this region provides a subdominant contribution
to the rate, and is likely only relevant in the event of a
discovery.
The integrated rate above the 2e− threshold is shown in

Fig. 7. For Si, both methods agree to within 10%, and for
Ge the agreement is within roughly 30% in most of the
mass range. The uncertainties increase for low masses, due
to the challenge of modeling the ELF accurately for ω close
to the band gap.
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