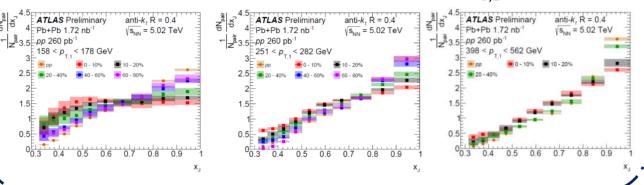

Sensitivity of jet quenching to the initial geometry in Pb+Pb collisions with ATLAS

Centrality

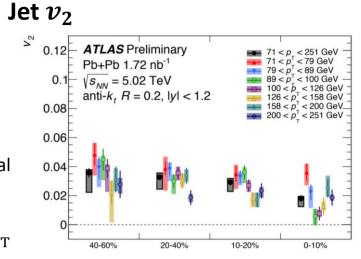
Motivation:

- Jets are known to lose energy while traversing the Quark Gluon Plasma in ways sensitive to the initial state geometry
- The transverse momentum balance of di-jet pairs in Pb+Pb can provide direct insight on the path-length dependence to energy loss
- Path-length dependent energy loss can cause higher jet yield inplane vs. out-of-plane, creating a positive v_2
- Jet $v_{n>2}$ can give insight into the role of initial state fluctuations

Di-jet Measurement[1]:

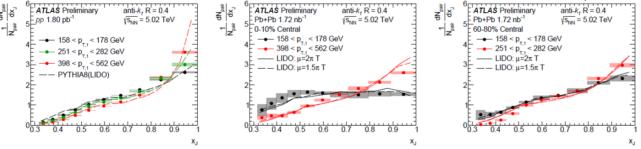

- Directly measure the two-dimensional leading, subleading transverse momentum ($p_{T,1}$, $p_{T,2}$) distribution of the leading di-jet pair with $\Delta \phi_{12} > 7\pi/8$ and both $|\eta_1|$ and $|\eta_2| < 2.1$
 - > Two dimensional Bayesian unfolding accounts for migration in both the leading and sub-leading jet p_T
- The unfolded $(p_{T,1}, p_{T,2})$ distribution projected to the di-jet momentum balance: $x_J = \frac{p_{T,2}}{p_{T,1}}$

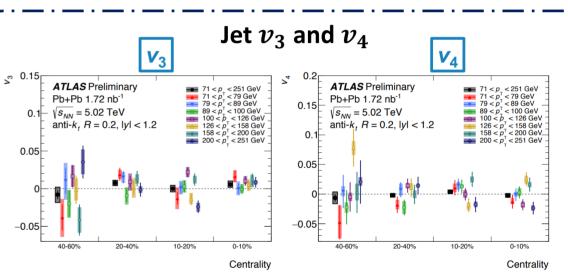
Jet v_n measurement[2]:


- Measure the R = 0.2 jet yield as a function of $\eta \Delta \phi_n = n | \Psi_n - \phi |$ in bins of centrality and jet p_T For n = 2, 3, 4
- Yields are unfolded in p_T and $\Delta \phi_n$, and fit to extract v_n

Di-jet Momentum Balance: Centrality Dependence

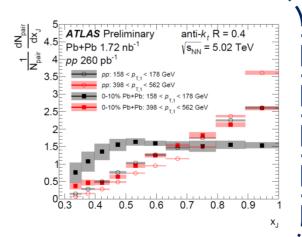
- $158 < p_{\rm T}^1 < 178$ GeV in central Pb+Pb is consistent with flat $x_I > 0.5$
- Peripheral Pb+Pb is consistent with pp above $p_{\rm T,1}$ = 251 GeV
- Central Pb+Pb has clear modification from pp out to $p_{\mathrm{T.1}} = 562~\mathrm{GeV}$




- Observe positive v_2 on the order of 3-4% for R=0.2 jets with $71 < p_{\rm T} < 251 \,{\rm GeV}$ in 40-60% events
 - Decreases to order 1% for 0-10% central events
- No observation of significant $p_{\rm T}$ dependence

Di-jet Momentum Balance: Theory Comparison

- > PYTHIA8 tune used in LIDO[3] over-predicts symmetric jets in pp collisions
- LIDO predictions observe agreement across both centrality and $p_{\rm T,1}$



No evidence for non-zero v_3 and v_4 in Pb+Pb collisions

Di-jet Momentum Balance:

- Significant modification in central Pb+Pb compared to pp collisions extends through $p_{T.1}$ = 562 GeV
- \triangleright New, high $p_{\rm T}$, information to constrain the role of fluctuations and path-length dependence in energy loss

Conclusions

- ATLAS sees significant modification of the momentum balance of di-jet pairs in Pb+Pb collisions compared to pp collisions for leading jet p_T up to 562 GeV, evidence of path-length dependent energy loss within the QGP.
- A strong non-zero v_2 is observed for R = 0.2 jets which decreases to ~1% for central Pb+Pb, and is independent of $p_{
 m T}$ between 71 and 251 GeV
- ATLAS first measurement of v_3 and v_4 are consistent with zero

[1] ATLAS-CONF-2020-017

[3] Phys. Rev. C **100** (2019) 064911

[2] ATLAS-CONF-2020-019