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Charged lepton pairs are produced copiously in high-energy hadron collisions via electroweak gauge 
boson exchange, and are one of the most precisely measured final states in proton-proton collisions at the 
Large Hadron Collider (LHC). We propose that measurements of lepton angular distributions can be used 
to improve the accuracy of theoretical predictions for Higgs boson production cross sections at the LHC. 
To this end, we exploit the sensitivity of the lepton angular coefficient associated with the longitudinal 
Z-boson polarization to the parton density function (PDF) for gluons resolved from the incoming protons, 
in order to constrain the Higgs boson cross section from gluon fusion processes. By a detailed numerical 
analysis using the open-source platform xFitter, we find that high-statistics determinations of the 
longitudinally polarized angular coefficient at the LHC Run III and high-luminosity HL-LHC improve the 
PDF systematic uncertainties of the Higgs boson cross section predictions by 50% over a broad range of 
Higgs boson rapidities.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Introduction

Precision studies in the Higgs sector of the Standard Model 
(SM) are central to current [1] and forthcoming [2] physics pro-
grams at the Large Hadron Collider (LHC), and provide a portal 
to searches for beyond-Standard-Model (BSM) physics. The dom-
inant mechanism for the production of Higgs bosons in proton-
proton collisions at the LHC is given by the fusion of two glu-
ons resolved from the incoming protons. With the very high ac-
curacy reached in perturbative Quantum Chromodynamics (QCD) 
calculations of gluon-initiated production cross sections, currently 
of next-to-next-to-next-to-leading order (N3LO) [3–5] in the QCD 
coupling αs , the theoretical systematic uncertainties affecting the 
predictions for gluon fusion processes receives essential contri-
butions from the non-perturbative gluon parton density function 

* Corresponding author.
E-mail addresses: simone.amoroso@desy.de (S. Amoroso), 

fiaschi@uni-muenster.de (J. Fiaschi), francesco.giuli@roma2.infn.it (F. Giuli), 
alexander.glazov@desy.de (A. Glazov), hautmann@thphys.ox.ac.uk (F. Hautmann), 
oleksandr.zenaiev@cern.ch (O. Zenaiev).
https://doi.org/10.1016/j.physletb.2021.136613
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
(PDF), as well as the sea-quark densities coupled to gluons through 
initial-state QCD evolution. See e.g. [2], where the PDF contribution 
is estimated to be about 30 % of the total uncertainty, including αs
and scale variations.

The primary source of knowledge of the gluon PDF is given 
at present, in global fits to hadron collider data [6–12], by deep 
inelastic scattering (DIS) experimental measurements at high en-
ergy. Future DIS experiments [13,14] are proposed to extend the 
range and accuracy of our current knowledge of the gluon PDF. It is 
hoped that substantial progress can also come from measurements 
at the LHC itself, particularly in the forthcoming high-luminosity 
phase HL-LHC [15]. Gluon PDF determinations are considered from 
open [16,17] and bound-state [18] charm and bottom quark pro-
duction, light-quark jets [19] and top quark production [20].

In this work we take color-singlet hadro-production (unlike the 
above cases, in which the Born-approximation final state contains 
colored particles) and, similarly to the case of DIS, investigate the 
sensitivity to the gluon PDF via O(αs) contributions, guided by 
criteria of perturbative stability and experimental precision.

We consider Drell-Yan (DY) charged lepton-pair production [21]
via electroweak vector boson exchange. Let us map the DY cross 
section in the boson invariant mass M , rapidity Y and transverse 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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momentum pT , and in the lepton polar and azimuthal angles 
θ and φ, defined in the Collins-Soper reference frame [22] (see 
e.g. the DY cross section parameterization in [23]). The DY cross 
section summed over the electroweak boson polarizations has the 
angular distribution 1 + cos2 θ and is sensitive to the gluon PDF 
for finite pT . However, in the pT region where the cross section is 
the largest, it is affected by large perturbative corrections to all or-
ders in αs (see e.g. [24], and references therein). Let us turn to 
contributions of the single electroweak-boson polarizations. The 
diagonal elements of the polarization density matrix [22,25–27]
in the helicity basis yield (besides the unpolarized cross section, 
proportional to the trace of the density matrix) the forward-
backward asymmetry and the longitudinally polarized cross sec-
tion, associated respectively with angular distributions cos θ and 
(3 cos2 θ − 1)/2. The former is parity-violating and dominated by 
flavor non-singlet PDFs [28–34]. The latter is parity-conserving and 
sensitive to flavor singlet PDFs. Off-diagonal density matrix ele-
ments can be accessed by measuring, besides θ , the lepton’s az-
imuthal angle φ, and yield six additional contributions besides the 
previous three, leading to nine linearly independent polarized cross 
sections, which correspond to the first nine terms in the expansion 
over spherical harmonics.

In order to constrain the Higgs boson production cross section 
from gluon fusion, we will focus on the ratio of the longitudinal 
electroweak boson cross section to the unpolarized cross section, 
defining the angular coefficient

A0(s, M, Y , pT ) = 2dσ (L)/dMdY dpT

dσ/dMdY dpT
. (1)

The coefficient A0 is perturbatively stable, as illustrated by the 
smallness of its next-to-leading-order (NLO) [35–40] and next-to-
next-to-leading-order (NNLO) [41] radiative corrections for finite 
pT , and precisely measured at the LHC [23,42], following ear-
lier measurements at the Tevatron [43] and fixed-target experi-
ments [44–48]. We will comment later on the extension of the 
analysis to other polarized contributions besides the longitudinal 
cross section.

We now proceed as follows. First, we discuss the general prop-
erties of the angular coefficient (1) illustrating the physics potential 
of precision measurements of DY angular distributions at the LHC 
Run III and HL-LHC. Next, we focus on its application to the pro-
filing of the gluon distribution using the open-source fit platform
xFitter [49], and compute the resulting Higgs boson cross sec-
tion and PDF uncertainty at 

√
s = 13 TeV.

Longitudinally polarized angular coefficient

The longitudinally polarized coefficient A0 in Eq. (1) vanishes 
in the parton model and receives leading-order (LO) perturbative 
QCD contributions at O(αs). We evaluate A0 at LO and NLO (i.e., 
through O(α2

s )) using the MadGraph5_aMC@NLO [50] program 
for Z + 1 parton pp production. In Fig. 11 we show results for 
A0 at the energy 

√
s = 13 TeV versus the boson pT for three dis-

tinct kinematic regions: two of them at central rapidity |Y | < 1
with invariant mass M close to the Z boson mass M Z as well 
as between the J/ψ and ϒ resonances, corresponding to ATLAS 
and CMS kinematics; and one with 2 < |Y | < 4.5 and M close to 
M Z , corresponding to LHCb kinematics. We also show separately 
the contributions to A0 from the initial-state partonic channels qq̄
and qg (qq and gg channels are present at NLO, but they are sup-
pressed by relative order αs).

1 While no cut is applied on the parton pT , a cut on the Z -boson pT of 11.4 GeV 
is used for calculations in the Z -boson mass region. This is lowered to 1 GeV for 
the low-mass region.
2

Fig. 1. The angular coefficient A0 and its qq̄, qg contributions for √s = 13 TeV as 
functions of the boson pT based on CT18nnlo PDF set. The results are plotted in 
different regions of the boson invariant mass M and rapidity Y : the Z -boson peak 
region, 80 GeV < M < 100 GeV, for |Y | < 1.0 (NLO, top); low-mass region between 
the J/� and ϒ resonances, 4 GeV < M < 8 GeV, for |Y | < 1.0 (LO, center); Z -boson 
peak region, 80 GeV < M < 100 GeV for LHCb kinematics (NLO, bottom).

The coefficient A0 as well as its qq̄ and qg components rise 
monotonically from 0 at pT = 0 to 1 for pT � M . The gluonic 
channel qg dominates over the fermionic channel qq̄, for the low 
mass region in particular. The weight of the qq̄ contribution in-
creases for the Z pole region and reaches its largest value for the 
LHCb phase space. This can be understood since the range in lon-
gitudinal momentum fraction x probed for the PDFs is changing 
from low to high x. The location of A0 measured in experimen-
tal data with respect to the predicted qq̄ and qg contributions can 
constrain the q̄/g ratio.

The main sensitivity to the gluon distribution arises from the 
A0 region with the largest slope in pT , i.e., around the turn-over 
point ∂2 A0/∂ p2

T = 0. Fig. 1 illustrates that the position of this turn-
over point varies strongly with a power-like dependence on the 
lepton-pair invariant mass, so that the mass provides a powerful 
handle on the pT scales probed in the initial state distribution. 
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Near the Z -boson peak the turn-over occurs at pT of the order 
of several ten to 100 GeV, while at low masses, between the J/�
and ϒ meson resonances, it is at pT of the order of a few GeV. 
This behavior is to be contrasted with the case of dσ/dpT , which 
peaks at low pT , with the position of the peak depending only 
very mildly on the invariant mass [22,24]. Thus, we will use the 
longitudinally polarized angular distribution near the electroweak 
boson mass scale in order to constrain the gluon PDF in the re-
gion relevant [51] for Higgs boson production (as will be described 
next). On the other hand, the above observations on the meson 
resonance region suggest that the angular distribution in this re-
gion can provide sensitivity to the pT dependent PDFs [24,52–54]
(which we leave to future investigations).

New features therefore arise in the extraction of non-perturba-
tive QCD contributions owing to the vector boson polarization. In 
what follows, we carry out a detailed analysis for collinear distri-
butions.

Gluon profiling and Higgs cross section

To analyze the impact of high-precision A0 measurements 
on the Higgs boson production cross section, we implement the 
NLO MadGraph5_aMC@NLO A0 calculation into the fit platform
xFitter [49]. First, we validate our implementation by per-
forming NLO fits to the 

√
s = 8 TeV ATLAS measurements [23]

of A0, and verifying that good χ2 values are obtained for all 
the PDF sets considered, namely CT18nnlo [6], NNPDF3.1nnlo [7], 
ABMP16nnlo [8], HERAPDF2.0nnlo [11] and MSHT20nnlo [12]. 
Next, we generate A0 pseudodata for Z pT > 11.4 GeV at 

√
s =

13 TeV for two projected luminosity scenarios of 300 fb−1 (the 
designed integrated luminosity at the end of the LHC Run III) 
and 3 ab−1 (the designed integrated luminosity at the end of the 
HL-LHC stage [15]), and apply the profiling technique [55,56] to 
evaluate the PDF uncertainties. To do this, we extrapolate the sta-
tistical uncertainties for the two projected integrated luminosities, 
and estimate the systematic uncertainties assuming a 0.1% system-
atic uncertainties in the lepton momentum scale.2 We perform the 
analysis in the mass region 80 GeV < M < 100 GeV around the Z -
boson peak and rapidity region |Y | < 3.5. The results are reported 
in Fig. 2.

We find that, in accord with the earlier discussion, the largest 
reduction of uncertainties from the high-luminosity A0 profiling 
occurs for the gluon density (top two panels in Fig. 2), and for the 
u and d sea-quark densities coupled to gluons through QCD evo-
lution (bottom two panels in Fig. 2). All panels in Fig. 2 show the 
range 10−3 � x � 10−1 where the reduction is most pronounced. 
We find that the largest sensitivity comes from transverse mo-
menta in the mid range pT ∼ 50 GeV, and the sensitivity dies out 
for pT � 100 GeV. The current-to-300 fb−1 gain dominates the 300 
fb−1 to 3 ab−1 gain, similarly to other earlier profiling examples 
(see detailed discussions in [28] for valence quarks and in [57] for 
gluons).

We have also verified the perturbative stability of our results, 
by repeating the profiling with a variation of the perturbative 
factorization and renormalization scales at NLO in the pseudo-
data. The central value for the resulting gluon distribution function 
stays within one standard deviation band of the profiled PDF un-
certainty. Given that existing NNLO predictions have significantly 
reduced scale uncertainty [41], we expect that the effect of higher-
order corrections will have only a small impact on the profiled 
PDFs, and this uncertainty is neglected in the following.

2 Note that PDF uncertainties are large in the ATLAS 8 TeV A0 measurements [23]
extrapolated in rapidity Y , but they are small for the measurements [23] in bins of 
Y .
3

The effect of the longitudinally polarized coefficient on the 
Q 2 = 104 GeV2 gluon PDF near x ∼ 10−2 will influence the Higgs 
boson cross section. To study this, we compute SM Higgs boson 
production in the gluon fusion mode for 

√
s = 13 TeV pp colli-

sions, using the MCFM code [58,59] at NLO in QCD perturbation 
theory. We evaluate PDF uncertainties on the Higgs cross section 
including constraints from A0 profiling. The results are given in 
Fig. 3 versus the Higgs boson rapidity yH . We see that in the re-
gion −2 � yH � 2 the uncertainty is reduced by about 30–40% in 
the Run III scenario, and a further reduction to about 50% takes 
place in the HL-LHC scenario.

We next perform a higher-order N3LO calculation for the Higgs 
boson total cross section using the code ggHiggs [60,61]. In 
Fig. 4, we report the result for the cross section and its uncer-
tainty in the cases of the current CT18nnlo [6], NNPDF3.1nnlo [7]
and MSHT20nnlo [12] global sets as well as projected sets, based 
on complete LHC data sample [62]. The PDF4LHC15scen1/2 sets, 
which are PDF projections including HL-LHC pseudodata, also show 
a smaller, but not negligible, reduction in uncertainties. Notwith-
standing the numerical differences, the behavior is qualitatively 
similar for the different sets, and provides further support at N3LO 
to the picture given in Fig. 3 for the NLO Higgs boson rapidity cross 
section.

The results above for the Higgs boson production cross section 
have been obtained using the DY angular coefficient for longi-
tudinal electroweak boson polarization in the mass region near 
the Z -boson mass (top panel in Fig. 1). We stress that the same 
approach, extended to mass regions away from the Z peak, has 
the potential to provide complementary physics information. For 
instance, high-mass DY angular distributions allow the region of 
larger x momentum fractions to be accessed and will be relevant 
for associated Higgs boson production with a gauge/Higgs boson or 
heavy-flavor quarks. Conversely, we have noted earlier that mea-
surements of A0 at low masses (center panel in Fig. 1) may be 
used to probe pT dependent gluon PDF effects, and this will im-
pact the Higgs boson pT spectrum for low transverse momenta. 
The extension to low masses can further provide a handle on the 
small-x regime [61,63] of Higgs boson production relevant to the 
highest energy frontier.

We have so far exploited the sensitivity of the longitudinal elec-
troweak boson polarization to the gluon PDF and singled out A0 as 
a perturbatively stable observable, which can be built via diagonal 
elements of the polarization density matrix and is measurable via 
the lepton polar angle θ . This can be generalized as further sen-
sitivity may arise from off-diagonal density matrix elements via 
longitudinal-transverse interferences, such as the parity-conserving 
A1 and parity-violating A3 coefficients [23], which can be accessed 
by measuring also the lepton azimuthal angle φ. These coefficients 
are generally smaller than A0 and with a milder pT dependence, 
but provide a more pronounced Y rapidity dependence. Moreover, 
starting at order α2

s one may investigate additional handles from 
violation of the Lam-Tung relation [25], A2 �= A0, and from the T -
odd coefficients A5, A6, A7 [23].

Conclusion

We have proposed the systematic use of electroweak gauge 
boson polarization in charged lepton-pair hadro-production to 
investigate gluon-initiated processes and the associated non-
perturbative QCD contributions.

We have illustrated this by studying the implications of pre-
cise measurements of the angular coefficient A0 near the Z -boson 
mass scale on the theoretical predictions for the Higgs boson pro-
duction cross section, exploiting the coupling of the longitudinal 
polarization to the gluon PDF through radiative contributions in 
αs .
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Fig. 2. Original CT18nnlo [6] (red) and profiled distributions using A0 pseudodata corresponding to integrated luminosities of 300 fb−1 (blue) and 3 ab−1 (green) for 80 GeV 
< M < 100 GeV and |Y | < 3.5. Results for gluon (xg), gluon/Sea (xg/�), u-type (xū) and d-type (xd̄) sea-quark densities are shown for Q 2 = 104 GeV2. Bands represent PDF 
uncertainties, shown at the 68% CL.
Fig. 3. Ratio of PDF uncertainties for the gluon-gluon fusion SM Higgs boson cross-
section in pp collisions at √s =13 TeV as a function of the Higgs rapidity. The red 
band shows the uncertainties of the CT18nnlo PDF set [6], reduced to 68% CL cov-
erage. The blue and green bands show the uncertainties of the CT18nnlo including 
constraints from the A0 measurement and assuming 300 fb−1 and 3 ab−1, respec-
tively.

Our results open a new area of phenomenological studies on 
connections between the gauge and Higgs sectors of the SM, as 
further aspects may be investigated via generalization to the full 
structure of lepton angular distributions, including polarization in-
terferences, and to mass regions far away from the Z -boson peak.
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Fig. 4. The gluon-gluon fusion Higgs boson production cross-section at N3LO for 
different PDFs, showing the uncertainty from PDFs and their expected reduction 
including constraints from the A0 measurement assuming 300 fb−1 and 3 ab−1, 
respectively.
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