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1 Introduction

The production of charged leptons via an electroweak (EW) gauge boson in hadronic
collisions, known as Drell-Yan-like W/Z production, is among the most important processes
at the LHC [1–4] owing to its clean experimental signature and high cross section. Both
luminosity monitoring and detector calibration are possible using Drell-Yan-like processes,
the former by using the total cross section and the latter by performing measurements of the
mass and width of the Z boson. On the theoretical side, the Drell-Yan (DY) production of
lepton pairs is among the best understood processes, and in combination with the distinct
experimental signature it is possible to use them to constrain parton distribution functions
(PDFs) [5] via the W charge asymmetry and the Z rapidity distribution. Furthermore, DY
production can be used to measure EW precision observables such as the W-boson mass [6]
or the effective weak mixing angle sin2 θlepteff [7].

There is ongoing effort to produce precise theoretical DY cross-section predictions in
order to achieve or even surpass the accuracy of these measurements. Electroweak correc-
tions have been calculated including fixed-order contributions up to next-to-leading order
(NLO) [8–20] and leading higher-order effects from multiple photon emissions or of universal
origin [16, 18, 19, 21, 22]. Fixed-order QCD calculations for inclusive and differential ob-
servables are available up to next-to-next-to-leading (NNLO) order [23–30] supplemented
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by threshold effects that have been studied up to next-to-next-to-next-to-leading order
(N3LO) accuracy [31, 32] and by resummed large logarithms occurring due to soft-gluon
emissions at small transverse momentum [33–42]. Recently N3LO QCD corrections to in-
clusive DY-like W production have been calculated in ref. [43]. A review on QCD and EW
higher-order corrections to various observables in DY-like W/Z production can be found
in ref. [44].

A natural next step is the calculation of mixed QCD×EW NNLO O(αsα) corrections
which are assumed to be the largest unknown fixed-order part. Given the complexity of the
full calculation, several approximations were applied to get a handle on these corrections.
The so-called pole approximation (PA) [45, 46] (see also [47] and references therein for the
general concept) is based on a systematic expansion of the cross section about the W/Z
resonance, allowing for a split of the O(αsα) corrections into well-defined, gauge-invariant
parts and a classification of these parts according to their impact on the production and
decay subprocesses. To be precise, in the PA the corrections are split into factorizable and
non-factorizable contributions, where the former incorporate radiative corrections to the
production or decay mode and the latter non-factorizable corrections originate from con-
tributions including soft photon exchange between production and decay. In refs. [45, 46]
these subsets were calculated (and implemented in the program Rady, which is the basis
of the NLO corrections discussed in refs. [11, 18, 19]) except for the “initial-initial” factor-
izable contributions, which contain double-real and two-loop corrections involving only the
initial state and are expected to be small. In contrast to the narrow-width approximation
(NWA), which treats the intermediate W/Z bosons as stable, the PA describes off-shell
effects of the W/Z bosons in the vicinity of the resonance. Using the NWA, in ref. [48]
the QCD×QED corrections to the total DY-like Z-production cross section were obtained
by an abelianisation procedure of the known QCD NNLO results. Inclusive results for
the mixed QCD-EW corrections to on-shell Z production were calculated in [49, 50] and
fully differential results in refs. [51–53]. The two-loop formfactor for Z-boson production
in quark-antiquark annihilation was calculated in ref. [54].1

Since physics beyond the SM might also show up in the tails of invariant-mass or
transverse-momentum distributions outside the resonance regions, it is important to pro-
vide information about the size of O(αsα) corrections beyond the PA or NWA. To this end,
first technical steps have been made. In ref. [57] results for the two-loop integrals needed
for DY-like W/Z-boson production were given in terms of iterated integrals, and recently it
has been shown that it is indeed possible to write the needed integrals in terms of multiple
polylogarithms [58, 59]. A first step towards the full O(αsα) corrections to off-shell DY
processes is the calculation of the gauge-invariant O(Nfαsα) two-loop corrections to single
W/Z-boson production which are enhanced by the number of fermion flavours Nf in the
Standard Model (SM) and result from diagrams including closed fermion loops and addi-

1Unfortunately most of the known O(αsα) corrections to EW precision physics at e+e− colliders (see,
e.g., ref. [55] and references therein) cannot be directly taken over to differential predictions at hadron
colliders because of the different kinematics and the fact that real emission effects were treated inclusively
(as, e.g., in the QCD×QED corrections calculated in ref. [56]). Nevertheless, those results often allow for
valuable cross checks of calculations for hadron colliders as well.
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tional gluon exchange or radiation. The necessary genuine two-loop O(αsα) corrections to
the vector-boson self-energies were first calculated in refs. [60–65] a long time ago.

In this paper, we present first results of an evaluation of the O(Nfαsα) corrections
to DY-like W/Z-boson production including a reevaluation of the occurring two-loop self-
energies by reducing the two-loop integrals with current standard methods [66, 67] to a set
of master integrals suitable for numerical evaluation. The master integrals in D = 4 − 2ε
dimensions are solved by deriving differential equations in Henn’s canonical form [68, 69]
and subsequent integration to obtain the results as a Laurent expansion in ε in terms
of generalized polylogarithms up to weight three. Furthermore, besides the corrections
containing one-particle-irreducible two-loop (sub)diagrams the O(Nfαsα) corrections con-
tain reducible contributions which either involve a product of two one-loop subdiagrams
or one-loop subdiagrams with an additional possibly unresolved QCD parton in the fi-
nal state. We evaluate the O(Nfαsα) corrections to single W/Z-boson production in a
fully differential manner and study their effect on the (transverse) invariant-mass and
transverse-momentum spectra of the W and Z boson, respectively. The calculation of vir-
tual corrections of O(Nfαsα) involves the issue of extending a gauge-invariant scheme for
treating the W/Z resonance to this order. To solve this problem, we describe the general-
ization of the complex-mass scheme [70] (see also ref. [47]), which is a standard method for
a gauge-invariant treatment of resonances at NLO, for the application to W/Z resonances
at O(αsα). Note that the consideration of Nf -enhanced O(αsα) corrections is already
sufficient for this step, since absorptive parts in the W/Z propagators necessarily involves
closed fermion loops.

The paper is organized as follows: in section 2 we briefly summarize the properties
of the O(Nfαsα) corrections, give explicit results of the O(αsα) contributions to the EW
gauge-boson self-energies in terms of two-loop master integrals and discuss their renormal-
ization and the generalization of the complex-mass scheme needed at O(Nfαsα). Further-
more, we describe the reduction of the occurring two-loop diagrams to master integrals
and the calculation of the integrals. The explicit results of the master integrals and the
transformations needed to obtain Henn’s canonical form of the differential equations are
provided in appendix A. We discuss the phenomenological impact of O(Nfαsα) correc-
tions on transverse-momentum and invariant-mass distributions in section 3, and section 4
provides a short summary.

2 Details of the calculation

2.1 Survey of diagrams and structure of the calculation

We consider the two types of DY-like pp scattering processes

pp → W± → `+ν`/ν̄``
− +X, (2.1)

pp → γ/Z → `+`− +X, (2.2)

with `± denoting either e± or µ±. At leading order (LO), the charged-current process is
entirely due to qq̄′ annihilation, but the neutral-current process receives contributions from
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V Nfαsα
1PI

V ′ VNfαsα
1PI

V Nfαsα
1PI

Figure 1. One-particle-irreducible virtual-virtual (vv-1PI) two-loop contributions to DY-like pro-
cesses at O(Nfαsα). In the first diagram the two-loop O(Nfαsα) self-energy insertions are shown,
whereas the second and third diagrams show the finite gauge-boson fermion counterterms described
in section 2.3.

both qq̄ annihilation and γγ scattering. The γγ channel [16, 18–20, 71], however, delivers
only a small fraction to the neutral-current cross section and does not develop a Z-boson
resonance. Already the NLO EW corrections to this channel turn out to be phenomeno-
logically irrelevant [19], so that we do not include the γγ channel in our calculation of
O(Nfαsα) corrections in the following, but restrict our calculation to qq̄(′) annihilation.

NNLO corrections generically receive contributions from

1. “virtual-virtual” (vv-1PI) contributions involving one-particle-irreducible (1PI) two-
loop (sub)diagrams,

2. “virtual-virtual” (vv-red) contributions induced by diagrams containing reducible
loop parts of the type (one-loop)×(one-loop),

3. “real-virtual” (rv) contributions resulting from one-loop diagrams with one extra
emission of a possibly unresolved particle (gluon, quark, photon), and

4. “real-real” (rr) contributions induced by tree-level diagrams with two extra emissions
of possibly unresolved particles.

Our focus on NNLO corrections of the order O(Nfαsα) that are enhanced by the numberNf

of fermion flavours in the SM and on 2→ 2 scattering processes with four massless external
fermions restricts the possible contributions to those categories considerably. In order to
produce the enhancement factor Nf in loops, a closed fermion loop has to be present either
in a one- or two-loop subdiagram. For the considered process class f̄1f2 → f̄3f4 with fi
denoting the external massless fermions, those fermion loops only occur in gauge-boson
self-energies.2 This restricts the set of 1PI two-loop diagrams to the self-energy insertions
shown in figure 1. To those EW self-energies, only contributions from closed quark loops
contribute at O(Nfαsα). The vv-red contributions are diagrammatically illustrated in
figure 2; they combine the closed fermions loops (with either quarks or leptons in the loop)
in the EW gauge-boson propagators with the NLO QCD loop diagrams in all possible ways.
The rv contributions similarly combine the closed fermions loops in the EW gauge-boson
propagators with the real NLO QCD corrections. Figure 3 shows some of the corresponding
diagrams for the gluon-emission channel, while their crossed counterparts from qg scattering
are not depicted explicitly. Note that at O(Nfαsα) there are no rr corrections with double

2Genuine vertex corrections induced by closed fermion loops occur at O(Nfα2
s ) and O(Nfα2), but not

at O(Nfαsα) owing to colour conservation.
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(a) Reducible virtual-virtual contributions within one diagram.

V
αs

V
Nfα

V ′ V
αs

V ′
Nfα

V
αs

V ′
Nfα

(b) Interference diagrams of type reducible virtual-virtual.

Figure 2. Different types of reducible virtual-virtual (vv-red) diagrams contributing at O(Nfαsα)
to DY-like processes, where the relative orders of the loop corrections are indicated in the vertex
blobs.

g

V
Nfα

g

V
Nfα

V ′
g

V
Nfα

Figure 3. Different types of real-virtual (rv) diagrams contributing at O(Nfαsα) to DY-like
processes, where the relative orders of the loop corrections are indicated in the vertex blobs.

real emission. Such contributions arise from g→ qq̄ and γ/Z→ ff̄ splittings at O(Nfα
2
s )

and O(Nfα
2), respectively, but at O(Nfαsα) the corresponding contributions combine a

gluon and a photon/Z splitting for a single spinor chain and, thus, vanish due to colour
conservation.

In the following we describe in some detail the calculation and results of the two-loop
contributions to the self-energies and the corresponding complex renormalization within the
complex-mass scheme, which is employed for the gauge-invariant description of the gauge-
boson resonances. The evaluation of the matrix elements including those self-energies as
well as the evaluation of the reducible vv and rv contributions proceeds fully analogously to
the NLO QCD and EW calculations. Since there are no double-unresolved infrared-singular
rr contributions, but only infrared singularities of NLO QCD type, we simply employ
standard NLO QCD subtraction techniques to combine the vv-red and rv corrections; the
vv-1PI corrections do not involve infrared singularities.

In total, we have performed two completely independent calculations, leading to two
independent implementations, the results of which are in mutual numerical agreement. The
first calculation builds on the Fortran program Rady, which is the basis for the NLO EW
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and QCD calculations described in refs. [11, 18, 19]. In order to generalize Rady to the
calculation of O(Nfαsα) corrections, we just had to dress all ingredients of the NLO QCD
calculation with the EW gauge-boson self-energy contributions of O(α) and to add the
relevant two-loop contributions to the EW gauge-boson self-energy corrections. Infrared
singularities are handled with standard QCD dipole subtraction [72]. The graphs and am-
plitudes for the two-loop self-energies were generated with FeynArts [73, 74] and further
algebraically reduced with inhouse Mathematica routines and KIRA [67, 75]. The gen-
uine two-loop corrections of O(Nfαsα) contain Goncharov Polylogarithms (GPLs) [76, 77]
up to weight three. In the first calculation the numerical evaluation of the necessary GPLs
was performed in two steps. In the first step the GPLs were reduced by hand to Harmonic
Polylogarithms (HPLs) [78] following the methods introduced in ref. [79] and in the second
step the HPLs were evaluated using the Fortran program CHAPLIN [80]. The second,
independent calculation of the corrected cross sections employs antenna subtraction [81] to
handle infrared singularities present in the reducible vv-red and rv O(Nfαsα) corrections,
which were obtained analogously to the first calculation by dressing the NLO QCD calcula-
tion with EW gauge-boson self-energies of O(α). The two-loop self-energies were generated
with QGraf [82] and algebraically reduced to scalar integrals via Matad [83] and Feyn-
Calc [84, 85]. The reduction to master integrals was again performed with KIRA to get
the final result in Mathematica. The GPLs contained in the genuine two-loop O(Nfαsα)
corrections were evaluated using the C++ library GiNaC [86].

2.2 Electroweak gauge-boson self-energies at O(αsα)

As explained above, the only 1PI two-loop building blocks required for the O(Nfαsα)
corrections are the EW gauge-boson self-energies at this order. More precisely, only the
transverse parts ΣV ′V

T (k2) (V ′V = γγ, γZ,ZZ,WW) of those self-energies are needed, where
k2 denotes the virtuality of the gauge bosons V, V ′. For the precise relation between the
two-point vertex functions ΓV ′V and the self-energies ΣV ′V we follow the conventions of
ref. [47] (identifying ΣWW ≡ ΣW and defining MA = 0),

ΓV ′Vµν (−k, k) = −gµν(k2 −M2
V )δV ′V −

(
gµν −

kµkν
k2

)
ΣV ′V

T (k2)− kµkν
k2 ΣV ′V

L (k2). (2.3)

In the following, only the transverse self-energy parts ΣV ′V
T will be considered, because

the longitudinal parts ΣV ′V
L are not relevant in our calculation. By definition, we do not

include tadpole contributions in ΣV ′V
T , since tadpoles fully cancel in the considered on-shell

renormalization scheme, i.e. our results on ΣV ′V
T correspond to the “parameter-renormalized

tadpole scheme” (PRTS) as defined in refs. [47, 87]. We decompose the O(αsα) contribution
ΣV ′V

T,(αsα)(k
2) to the self-energies according to

ΣV ′V
T,(αsα)(k

2) = ΣV ′V
T,(αsα),1PI(k

2) + ΣV ′V
T,(αsα),δm(k2), (2.4)

where ΣV ′V
T,(αsα),1PI comprises all genuine irreducible two-loop diagrams, as shown in figure 4,

and ΣV ′V
T,(αsα),δm represents all fermion loops with insertions of the quark-mass counterterms.

In D = 4−2ε dimensions, with µ denoting the arbitrary reference mass scale of dimensional
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V ′
Nfαsα
1PI

V
=

V ′ V
g +

V ′ V
g +

V ′ V
g

V ′
Nfαsα
δm

V
= V ′ Vδmq +

V ′ V

δmq

Figure 4. Diagrams contributing to the EW gauge-boson self-energies at O(Nfαsα), which all
involve closed quark loops. In the first line the contributions to ΣV ′V

T,1PI and in the second line the
contributions to ΣV ′V

T,δm are shown.

q1

q2 + p q1 + q2 + p

q2 q1 + q2

p p

Figure 5. Two-loop sunset topology, corresponding to the self-energy integral Sabcde defined in
eq. (2.6).

regularization, the mass renormalization constants δmq in the on-shell scheme (see figure 4)
is given by

δmq = −mq
CFαs

4π
3− 2ε
1− 2ε

(4πµ2

m2
q

)εΓ(1 + ε)
ε

, (2.5)

where CF = 4
3 denotes the quadratic Casimir factor of the fundamental representation of

SU(3). Note that no other one-loop counterterm insertions in one-loop diagrams are rele-
vant at O(Nfαsα), because the only other potentially relevant renormalization constants
of O(αs) are the quark-field renormalization constants, but their contributions to ΣV ′V

T,(αsα)
fully cancel.

The gauge-boson self-energies are first expressed in terms of the two-loop two-point
integrals

Sabcde(p2,m2
1,m

2
2) =

(
(2πµ)2ε

iπ2

)2 ∫
dDq1

∫
dDq2

1
(q2

1)a (q2
2 −m2

1)b

× 1
[(q2 + p)2 −m2

2]c [(q1 + q2)2 −m2
1]d [(q1 + q2 + p)2 −m2

2]e
, (2.6)

where a graphical representation of these integrals is shown in figure 5. The prefactor in
this definition is chosen in such a way that reducible integrals decompose into the product
of the standard one-loop integrals defined in refs. [47, 87]. The integral functions Sabcde
obey some obvious symmetries, which are exploited in the formulas below,

Sabcde(p2,m2
1,m

2
2) = Sadebc(p2,m2

1,m
2
2) = Sacbed(p2,m2

2,m
2
1) = Saedcb(p2,m2

2,m
2
1). (2.7)
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m1 m1

S02020

m2 m2

S00202

m1 m2

S00220

m2

m1
m1

S01120

m2

m2
m1

S01102

m2 m2

m1 m1

S01111

m2

m1

0

S10110

m2

m1

0

m1

S11110

m2

m1

0
m2

S11101

Figure 6. Set of master integrals Sabcde(p2,m2
1,m

2
2) for m1 6= m2. Dotted lines represent a squared

propagator.

Using Laporta’s algorithm [66] as implemented in the program KIRA [67, 75], we reduce
the occurring two-loop integrals in terms of the minimal set of master integrals illustrated
in figure 6.

For the transverse parts of the self-energies of the neutral EW gauge bosons we explic-
itly get

ΣAA
T,(αsα),1PI(s) = αsα

π2
N2

c − 1
2

∑
q

Q2
q s f1(s,m2

q), (2.8)

ΣAZ
T,(αsα),1PI(s) = αsα

π2
N2

c − 1
2

∑
q

(−Qq)vq s f1(s,m2
q), (2.9)

ΣZZ
T,(αsα),1PI(s) = αsα

π2
N2

c − 1
2

∑
q

[
(v2
q + a2

q) s f1(s,m2
q) + a2

qm
2
q f2(s,m2

q)
]
, (2.10)

ΣAA
T,(αsα),δm(s) = αsα

π2
N2

c − 1
2

∑
q

Q2
qm

2
q f3(s,m2

q), (2.11)

ΣAZ
T,(αsα),δm(s) = αsα

π2
N2

c − 1
2

∑
q

(−Qq)vqm2
q f3(s,m2

q), (2.12)

ΣZZ
T,(αsα),δm(s) = αsα

π2
N2

c − 1
2

∑
q

m2
q

[
(v2
q + a2

q) f3(s,m2
q) + a2

q f4(s,m2
q)
]
, (2.13)

where (N2
c −1)/2 = NcCF = 4 originates from the SU(Nc) colour algebra with Nc = 3. The

sums
∑
q extend over all quark flavours q ∈ {u, d, c, s, t, b} with relative electric charges
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Qq and third components I3
w,q = ±1

2 of the weak isospin, and the vector and axial-vector
couplings of quark q to the Z boson are denoted as

vq =
I3

w,q − 2s2
wQq

2swcw
, aq =

I3
w,q

2swcw
. (2.14)

Keeping the full dependence on D = 4− 2ε in order to facilitate the later specialization to
specific mass patterns, the auxiliary functions fk (k = 1, . . . , 4) are given by

f1(s,m2) = 1− ε
2s S10110 + 1− ε

2(3− 2ε)ε

[
2− 3ε+ 2ε2 + 4(1− ε)(1 + 2ε)m

2

s

]
S11110

+ 1
4ε

[
−(1− ε)(2− ε+ 2ε2)

3− 2ε − 2m2

(3− 2ε)s + 2(1− 2ε)m2

4m2 − s

]
S01111

+ m2

εs

[
2− 6ε+ 7ε2 − 2ε3

3− 2ε − 2(2− 3ε+ 2ε2)m2

4m2 − s

]
S01120

+ m2

2εs

[
− 2− 3ε+ 2ε2

(1− 2ε)(3− 2ε) + 4(1− ε)m2

4m2 − s

]
S02020, (2.15)

f2(s,m2) = (1− 2ε)
(3− 2ε)s S10110 + 1

3− 2ε

[
−6− 9ε+ 2ε2

ε
+ 4(1− 2ε)m2

s

]
S11110

+ 1
ε

[
(1− ε)(3− 3ε+ 2ε2)

3− 2ε − 2(1− 2ε)m2

4m2 − s

]
S01111

− 2m2
[

2
(3− 2ε)s −

2− 3ε+ 2ε2

ε(4m2 − s)

]
S01120

+m2
[ 1

(3− 2ε)(1− ε)s −
2(1− ε)
ε(4m2 − s)

]
S02020, (2.16)

f3(s,m2) = −(3− 2ε)
[

ε

1− 2ε + 2m2

4m2 − s

]
S01120 + 2(3− 2ε)m2

(1− 2ε)(4m2 − s)S02020, (2.17)

f4(s,m2) = (3− 2ε)
[

1
1− 2ε + 2m2

4m2 − s

]
S01120 −

2(3− 2ε)m2

(1− 2ε)(4m2 − s) S02020, (2.18)

with suppressed arguments of the integral functions Sabcde(s,m2,m2). The O(αsα) contri-
butions to the transverse part of the W-boson self-energy is given by

ΣW
T,(αsα),1PI(s) = αsα

2π2s2
w

N2
c − 1
2

3∑
j=1

[
sf5(s,m2

dj ,m
2
uj ) + (mdj ↔ muj )

]
, (2.19)

ΣW
T,(αsα),δm(s) = αsα

2π2s2
w

N2
c − 1
2

3∑
j=1

[
m2
ujf6(s,m2

dj ,m
2
uj ) + (mdj ↔ muj )

]
, (2.20)

where the sums
∑
j extend over the three generations of up-type and down-type quarks uj
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and dj , respectively. The auxiliary function fk (k = 5, 6) are given by

f5(s,m2
1,m

2
2) =

[
1− ε+ (1− 2ε)(m2

1 +m2
2)

2(3− 2ε)s

]
S10110

8s

+ 1
16(3− 2ε)ε

[
(2− 3ε+ 2ε2)

(
2(1− ε)− (1− 2ε)m

2
1
s
− m4

1
s2

)

− (2− 3ε)(1− 2ε)2m
2
2
s

+ 4(1− 2ε2)m
2
1m

2
2

s2 − (2− 5ε+ 6ε2)m
4
2

s2

]
S11101

− 1
16ε

[
(1− ε)(2− ε+ 2ε2)

3− 2ε + (1− 2ε)(1− ε2)
3− 2ε

m2
1 +m2

2
s

+ 4(1− 2ε)m
2
1m

2
2

λ

]
S01111

+ m2
2

8εs

[
2(2− 6ε+ 7ε2 − 2ε3)

3− 2ε − (2− 3ε+ 2ε2)m2
1

(3− 2ε)s + (2− 7ε+ 2ε2)m2
2

(3− 2ε)s

− 2(2− 3ε+ 2ε2)m2
1(m2

1 −m2
2 − s)

λ

]
S01102

+ m2
1m

2
2

8εs2

[
(1− 2ε)(2− ε)
(3− 2ε)(1− ε) + 2(1− ε)s(m2

1 +m2
2 − s)

λ

]
S00220

− m2
2

16εs

[
(2− 17ε+ 26ε2 − 8ε3)m2

2 + (2− 3ε+ 2ε2)(m2
1 + 2(1− ε)s)

(1− 2ε)(3− 2ε)(1− ε)s

+ 8(1− ε)m2
1m

2
2

λ

]
S00202, (2.21)

f6(s,m2
1,m

2
2) = 3− 2ε

4

{[
(1− 2ε)s−m2

1 +m2
2

2(1− 2ε)s + m2
1(s−m2

1 +m2
2)

λ

]
S01102

+ m2
1

1− 2ε

[
1

2(1− ε)s + m2
1 +m2

2 − s
λ

]
S00220

− m2
2

1− 2ε

[
1

2(1− ε)s + 2m2
1

λ

]
S00202

}
(2.22)

with the Källen function
λ = (s−m2

1 −m2
2)2 − 4m2

1m
2
2 (2.23)

and the arguments of the integral functions given by Sabcde(s,m2
1,m

2
2). Note that the

interchange (mdj ↔ muj ) of the up- and down-type quark masses in (2.19) and (2.20) also
concerns the arguments of the integral functions; this change of arguments can, however,
be achieved by rearranging labels in Sabcde using (2.7).

For massless fermions, only the functions f1 and f5 are relevant and given by

f1(s, 0) = 4f5(s, 0, 0) =
(

4πµ2

−s− i0

)2ε

Γ(1 + ε)2
[ 1

8ε + 55
48 − ζ3 +O(ε)

]
(2.24)

to the relevant order in ε.
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In addition to the self-energies ΣV ′V
T (s) for non-vanishing s, we in particular need

the W-boson self-energy at zero-momentum transfer in the application of the Gµ input-
parameter scheme below. In this limit the two-mass two-loop tadpole integrals Tabc, defined
by

Tabc(m2
1,m

2
2) =

(
(2πµ)2ε

iπ2

)2 ∫
dDq1

∫
dDq2

1
(q2

1)a (q2
2 −m2

1)b[(q1 + q2)2 −m2
2]c
, (2.25)

are needed in addition. They obey the following symmetry relations

Tabc(m2
1,m

2
2) = Tacb(m2

2,m
2
1). (2.26)

Since the numerical evaluation of ΣW
T,(αsα)(0) is somewhat non-trivial in the above repre-

sentation, we here give an explicit form for ΣW
T,(αsα)(0) suitable for a numerical evaluation,

which was obtained by explicitly expanding the master integrals about s = 0 with the help
of the differential equations used to calculate them (see appendix A),

ΣW
T,(αsα),1PI(0) = αsα

2π2s2
w

N2
c − 1
2

3∑
j=1

[
f7(m2

dj ,m
2
uj ) + (mdj ↔ muj )

]
, (2.27)

ΣW
T,(αsα),δm(0) = αsα

2π2s2
w

N2
c − 1
2

3∑
j=1

[
m2
ujf8(m2

dj ,m
2
uj ) + (mdj ↔ muj )

]
. (2.28)

The auxiliary functions fk (k = 7, 8) are given by

f7(m2
1,m

2
2) = m4

2
4(2− ε)

[
m2

2
(1− ε)λ0

+ (3− 2ε)(1− ε)
(1− 2ε)(m2

1 −m2
2)

]
S00202

− m2
1m

4
2

4(2− ε)(1− ε)λ0
S00220 + 1− ε

8(2− ε)T111(m2
1,m

2
2), (2.29)

f8(m2
1,m

2
2) = (3− 2ε)m2

2
4(2− ε)(1− 2ε)λ0

{[
(1− ε)m2

2 − (2− ε)m2
1

]
S00202 +m2

1 S00220
}
, (2.30)

where λ0 is obtained by evaluating λ in (2.23) at s = 0,

λ0 = (m2
1 −m2

2)2, (2.31)

and the integrals Sabcde have the arguments Sabcde(0,m2
1,m

2
2). Note that the appearing

master integrals S02020 and S00202 are actually products of one-loop tadpole integrals and
can be expressed in terms of Tabc via

S00202(s,m2
1,m

2
2) = S00202(0,m2

1,m
2
2) = T022(m2

2,m
2
2),

S00220(s,m2
1,m

2
2) = S00220(0,m2

1,m
2
2) = T022(m2

1,m
2
2). (2.32)

The limits of the functions fk(m2
1,m

2
2) (k = 7, 8) in which one of the two quark masses van-

ishes can be obtained by simply evaluating (2.29) and (2.30) with the corresponding mass
set to zero. In the case in which both quark masses are zero the whole contribution of the
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corresponding massless quark generations to ΣW
T,(αsα)(0) vanishes because of dimensional

reasons.
The O(Nfαsα) corrections to the EW gauge-boson self-energies have been calculated

some time ago in refs. [60–65]. We have compared our results with the ones given in ref. [60]
and find full analytical agreement in the case of vanishing quark masses. For non-vanishing
quark masses we find numerical agreement for ΣV ′V

T,(αsα)(k
2) with those results.3

2.3 Renormalization and complex-mass scheme

In our calculation of O(Nfαsα) corrections we employ straightforward generalizations of
the on-shell renormalization schemes and their complexified versions used in the NLO
EW calculations for DY-like processes described in refs. [11, 18, 19]. At NLO the real
formulations and their complex generalizations are described in refs. [47, 87] and refs. [47,
70], respectively.

Since the reducible vv and rv contributions only involve one-loop subdiagrams, their
calculation does not require any generalization beyond NLO. The only generalization to
NNLO concerns the calculation of the counterterms required in the gauge-boson two-point
functions and in the gauge-boson-fermion vertices for the EW gauge bosons. However,
owing to our restriction to the Nf -enhanced O(αsα) corrections, all relevant contributions
to the needed counterterms originate from the contributions to the EW gauge-boson self-
energies ΣV ′V

T considered above. In detail, we need the O(Nfαsα) contributions to the
following renormalization constants in the complex-mass scheme [47, 70]: the gauge-boson
mass renormalization constants δµ2

W, δµ2
Z, the gauge-boson field renormalization constants

δZV ′V , the renormalization constants δcw for the weak mixing angle, and the charge renor-
malization constant δZe.

The W- and Z-boson mass parameters µ2
V (V = W,Z) are defined as the locations of

the poles in the complex k2 plane of the W/Z propagators and are decomposed into real
and imaginary parts according to

µ2
V = M2

V − iMV ΓV , V = W,Z, (2.33)

where the real mass and width parameters MV and ΓV deviate from their counterparts
MV,OS and ΓV,OS in the real on-shell (OS) scheme at the two-loop level. In good approxi-
mation, the connection is [47]

MV = MV,OS√
1 + Γ2

V,OS/M
2
V,OS

, ΓV = ΓV,OS√
1 + Γ2

V,OS/M
2
V,OS

. (2.34)

3For s < 0, our results agree with the ones in ref. [60] without modification. In order to get numerical
agreement also in the region s > 0 we had to modify the functions F (x) and G(x) in eq. (4.5) of ref. [60]
when evaluating them with squared arguments F (xaxb), G(xaxb) in eq. (4.3) and likewise F (x2), G(x2)
in eq. (5.1). The modifications leading to a correct analytic continuation of the results in ref. [60] to the
region s > 0 explicitly read

F (xaxb) = 6 Li3(xaxb)− 4 Li2(xaxb) [ln(xa) + ln(xb)]− [ln(xa) + ln(xb)]2 ln(1− xaxb),

G(xaxb) = 2 Li2(xaxb) + 2[ln(xa) + ln(xb)] ln(1− xaxb) + xaxb
1− xaxb

[ln(xa) + ln(xb)]2.
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Since the on-shell mass and field renormalization of the EW gauge bosons is simply based
on some momentum subtraction for the vertex two-point function, the perturbative contri-
butions to the renormalization constants δµ2

V and δZV ′V are in one-to-one correspondence
with the corresponding orders in the required self-energies ΣV ′V

T . Denoting again the order
of the contributions by some subscript “(αsα)” for O(αsα), we therefore get

δµ2
W,(αsα) = ΣW

T,(αsα)(µ
2
W), δµ2

Z,(αsα) = ΣZZ
T,(αsα)(µ

2
Z), (2.35)

δZW,(αsα) = −Σ′WT,(αsα)(µ
2
W),

δZZA,(αsα) = 2
µ2

Z
ΣAZ

T,(αsα)(0), δZAZ,(αsα) = − 2
µ2

Z
ΣAZ

T,(αsα)(µ
2
Z),

δZZZ,(αsα) = −Σ′ZZT,(αsα)(µ
2
Z), δZAA,(αsα) = −Σ′AAT,(αsα)(0), (2.36)

where Σ′V ′V (k2) ≡ (∂ΣV ′V /∂k2)(k2). In quantities, in which the distinction between
O(Nfαsα) and O(αsα) is not necessary, we simply write (αsα) as subscript.

In order to avoid the evaluation of self-energies with complex k2, we follow the “sim-
plified version” of the complex-mass scheme based on Taylor expanding Σ′V ′V (µ2

V ) about
the real part M2

V of µ2
V up to the relevant order. This leads to

δµ2
W,(αsα) = ΣW

T,(αsα)(M
2
W) + (µ2

W −M2
W)Σ′WT,(αsα)(M

2
W),

δµ2
Z,(αsα) = ΣZZ

T,(αsα)(M
2
Z) + (µ2

Z −M2
Z)Σ′ZZT,(αsα)(M

2
Z), (2.37)

δZW,(αsα) = −Σ′WT,(αsα)(M
2
W), δZZA,(αsα) = 2

µ2
Z

ΣAZ
T,(αsα)(0),

δZAZ,(αsα) = − 2
M2

Z
ΣAZ

T,(αsα)(M
2
Z) +

(
µ2

Z
M2

Z
− 1

)
δZZA,(αsα),

δZZZ,(αsα) = −Σ′ZZT,(αsα)(M
2
Z). (2.38)

Note that some care is required in order to catch all the relevant terms in the evaluation
of δµ2

V above. Firstly, there is no O(αs) contribution to ΣV ′V
T at NLO, and ΓV counts

as O(α), so that no additional terms of O(αsα) arise from higher terms in the Taylor
expansion (2.37) of ΣV ′V

T at NLO. Secondly, we do not need to include any extra term like
cW

T as introduced in refs. [47, 70] that occurs at NLO EW as a consequence that k2 = M2
W

is rather a branch point than a pole of the W propagator, because this subtlety arises
from an infrared singularity in on-shell diagrams with photon exchange of the W boson.
However, atO(αsα), the self-energies ΣV ′V

T do not involve infrared singularities, i.e. ΣW
T,(αsα)

is analytic at k2 = µ2
W, and no extra terms occur.

The renormalization constants δcw and δsw for the (complex) cosine and sine of the
weak mixing angle are fixed by the condition that the identity

c2
w = 1− s2

w = µ2
W
µ2

Z
(2.39)

holds both for bare and renormalized quantities. Again, since ΣV ′V
T does not receive O(αs)

contributions, we get for the contributions to δcw and δsw at O(αsα)

δsw,(αsα)
sw

= −c
2
w
s2

w

δcw,(αsα)
cw

= − c2
w

2s2
w

(
δµ2

W,(αsα)
µ2

W
−
δµ2

Z,(αsα)
µ2

Z

)
. (2.40)
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The determination of the charge renormalization constant δZe beyond NLO deserves
some care. It is derived from the condition that the renormalized fermion-photon vertex for
on-shell fermions does not receive a correction in the “Thomson limit” of vanishing photon
momentum. Using symmetry arguments similar to the arguments based on a Ward identity
in quantum electrodynamics (QED), it is possible to express δZe in terms of gauge-boson
self-energies instead of vertex-correction formfactors. For the SM this derivation based
on Lee identities is spelled out in appendix C of ref. [47] at NLO. Taking the fermion
of the renormalization condition in the Thomson limit as a lepton, the only source for
O(αsα) contributions in a generalization of this derivation are closed quark loops in the
gauge-boson self-energies and related self-energies involving Goldstone bosons. Since those
self-energies do not receive O(αs) contributions, no reducible O(αsα) corrections occur in
the derivation. Therefore, all identities that are given in appendix C of ref. [47] for O(α)
corrections are valid for O(αsα) as well, with all corrections but the self-energies of the
gauge-boson and Goldstone-boson sectors vanishing. The final result for δZe then takes a
form fully analogous to NLO,

δZe,(αsα) = 1
2Σ′AAT,(αsα)(0)− sw

cw

ΣAZ
T,(αsα)(0)
µ2

Z
. (2.41)

Specifically to O(αsα) this result simplifies to

δZe,(αsα) = 1
2Σ′AAT,(αsα)(0), (2.42)

because

ΣAZ
T,(αsα)(k

2) ≡ 0, (2.43)

which holds as a consequence of Slavnov-Taylor (ST) identities.
The same result can be obtained more directly within the background-field method

(BFM) [88–92], which is applied to the SM in refs. [47, 93]. Owing to the gauge invariance
of the background-field effective action, the Ward identities for the fermion-photon vertex
takes the same simple form as in QED to all perturbative orders. In particular, eq. (2.42)
holds within the BFM to all orders.4 Consequently, the QED-like result (2.42) for δZe
trivially carries over to the SM in its BFM formulation in each perturbative order. We
note in passing that we have checked explicitly all ST identities for the O(αsα) contributions
to the EW gauge-boson two-point functions ΓV ′V considered in the previous section. At
O(αsα) these ST identities are formally identical to the BFM Ward identities given in
eqs. (59)–(61) in ref. [47].

The renormalization constants defined above enter the amplitudes for the O(Nfαsα)
corrections in two different ways. On the one hand, they are part of the renormalized

4This fact, in particular, proves (2.43) in the conventional formalism, because the O(αsα) contribution
to ΣAZT (k2), which involves only gauge-boson-fermion couplings, is the same in the conventional formalism
and in the BFM.
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gauge-boson self-energies ΣV ′V
R,T ,

ΣV ′V
R,T,(αsα)(k

2) = ΣV ′V
T,(αsα)(k

2) + 1
2(k2 − µ2

V )δZV V ′,(αsα) + 1
2(k2 − µ2

V ′)δZV ′V,(αsα)

− δV ′V δµ2
V,(αsα), (2.44)

where we set µA = 0. On the other hand, they enter the gauge-boson-fermion counterterms,
where they change the LO coupling factors gσ

V f̄f ′
with chirality σ = ± by the factors

δct,σ
W f̄f ′,(αsα) = δZe,(αsα) −

δsw,(αsα)
sw

+ 1
2δZW,(αsα), (2.45)

δct,σ
Zf̄f,(αsα) =

δgσ
Zf̄f,(αsα)
gσ
Zf̄f

+ 1
2δZZZ,(αsα) −

Qf
2gσ
Zf̄f

δZAZ,(αsα), (2.46)

δct,σ
Af̄f,(αsα) = δZe,(αsα) + 1

2δZAA,(αsα) −
gσ
Zf̄f

2Qf
δZZA,(αsα), (2.47)

where

gσ
Zf̄f

= −sw
cw
Qf +

I3
w,f
swcw

δσ−, gσ
Af̄f

= −Qf , (2.48)

δgσ
Zf̄f

= gσ
Zf̄f

(
δZe,(αsα) + 1

c2
w

δsw,(αsα)
sw

)
−

2I3
w,f

swcw

δsw,(αsα)
sw

δσ− (2.49)

for a fermion f with relative electric charge Qf and third component I3
w,f = ±1

2 of weak
isospin. All gauge-boson field renormalization constants cancel in the sum over all contri-
butions, but in the above form the quantities ΣV V ′

R,T,(αsα) and δct,σ
V f̄f ′,(αsα) are all ultraviolet

finite individually.

2.4 Electroweak input-parameter scheme

In the following, we use the Fermi constant Gµ as input for the EW coupling strength,
instead of the fine-structure constant α(0) = e2/(4π), along with the gauge-boson masses
µW, µZ, i.e. we work in the so-called “Gµ-scheme”, as e.g. described in refs. [11, 47].
Formally, we derive the following value for α from Gµ,

αGµ =
√

2GµM2
W

π

(
1− M2

W
M2

Z

)
, (2.50)

i.e. we take αGµ as a real quantity. The arguments given, e.g., in section 6.6.4 of ref. [47]
that this is a legal procedure in O(α) easily carry over to O(αsα). This reparametrization
of α leads to the change in the charge renormalization constant,

δZe,(αsα)
∣∣
Gµ

= δZe,(αsα) −
1
2∆r(αsα), (2.51)

where ∆r quantifies the corrections to muon decay [94, 95]. The O(αsα) contribution
∆r(αsα) to ∆r is entirely given by the fermion-loop contributions to the gauge-boson self-
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energies and, thus, follows from the O(α) result [47, 87, 94, 95] for ∆r with the correspond-
ing substitution for the self-energies,

∆r(αsα) = Σ′AAT,(αsα)(0)− c2
w
s2

w

(
ΣZZ

T,(αsα)(M
2
Z)

M2
Z

−
ΣW

T,(αsα)(M
2
W)

M2
W

)

+
ΣW

T,(αsα)(0)− ΣW
T,(αsα)(M

2
W)

M2
W

, (2.52)

where we have used (2.43). Similar to the situation at NLO, using the Gµ scheme eliminates
the sensitivity of the corrections to DY production to the light quark masses, since the mass-
singular contribution Σ′AAT,(αsα)(0) cancels in δZe,(αsα)

∣∣
Gµ

, and the universal corrections to
the ρ-parameter are absorbed into the charged-current coupling αGµ/s2

w.
Following the arguments of section 6.6.4 of ref. [47], we can take the gauge-boson

widths ΓV as independent input parameters, although they are strictly speaking not free
parameters of the SM. We uniformly set them to their experimental values given below.
Using different width parameters in LO predictions and corrections would unnecessarily
obscure the impact of the calculated O(Nfαsα) corrections we want to discuss.

3 Numerical results

3.1 Input parameters and event selection

The setup for the calculation is widely taken over from refs. [45, 46]. The choice of input
parameters closely follows ref. [96],

MW,OS = 80.385 GeV, ΓW,OS = 2.085 GeV,
MZ,OS = 91.1876 GeV, ΓZ,OS = 2.4952 GeV,
MH = 125.9 GeV, mt = 173.07 GeV,
Gµ = 1.1663787× 10−5 GeV−2, mb = 4.78 GeV.

(3.1)

We convert the on-shell (OS) masses and decay widths of the vector bosons to the cor-
responding pole masses according to (2.34). The electromagnetic coupling constant is set
according to the Gµ scheme. The masses of the light quark flavours (u,d,c,s) and of the
leptons are neglected throughout. The CKM matrix is chosen diagonal in the third gener-
ation, and the mixing between the first two generations is parametrized by the following
values for the entries of the quark-mixing matrix,

|Vud| = |Vcs| = 0.974, |Vcd| = |Vus| = 0.227. (3.2)

While b-quarks appearing in closed fermion loops have the mass mb given in eq. (3.1),
external b-quarks are taken as massless.

For reference, in table 1 we give numerical values for the gauge-boson-fermion renormal-
ization constants δct,σ

V f̄f ′,(αsα) defined in eqs. (2.45) and (2.46) for V = W,Z.5 The numerical
values are calculated using the complex-mass scheme and the Gµ input-parameter scheme,
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σ − +

δct,σ
Wd̄u,(αsα)/10−3 0.0843967704 + 0.0026086585 i

δct,σ
Wν̄``,(αsα)/10−3 0.0843967704 + 0.0026086585 i

δct,σ
Zūu,(αsα)/10−3 1.3246636238− 0.2506548513 i −4.4427625269 + 0.552219570 i

δct,σ
Zd̄d,(αsα)/10−3 0.3190294259− 0.1046758916 i −4.4427625269 + 0.552219570 i

δct,σ
Z ¯̀̀ ,(αsα)/10−3 2.8687295153− 0.4797272589 i −4.4427625269 + 0.552219570 i

Table 1. Numerical values for gauge-boson-fermion renormalization constants for the input values
of eq. (3.1) and αs = 0.119.

as described above, using the input values of eq. (3.1) and αs = 0.119. Note that in the OS
scheme diagrams containing the gauge-boson-fermion renormalization constants in table 1
dictate the size of the vv-1PI O(Nfαsα) corrections close to the resonance of the amplitude.
Therefore, in the resonance regions the size of the vv-1PI O(Nfαsα) corrections is at the
permille level due to the smallness of δct,σ

V f̄f ′,(αsα).
For the PDFs we consistently use the NNPDF2.3 set [97], i.e. the NLO and NNLO

QCD-EW corrections are evaluated using the NNPDF31_nlo_as_0118_luxqed set [98],
which also includes O(α) corrections. The value of the strong coupling αs(MZ) = 0.118 is
dictated by the choice of these PDF sets. The renormalization and factorization scales are
set equal, with a fixed value given by the respective gauge-boson mass,

µR = µF = MV , (3.3)

with V = W,Z for W and Z production, respectively.
For the experimental identification of the DY process we impose the following cuts on

the transverse momenta and rapidities of the charged leptons,

pT,`± > 25 GeV, |y`± | < 2.5, (3.4)

and an additional cut on the missing transverse energy

Emiss
T > 25 GeV, (3.5)

in case of the charged-current process. For the neutral-current process we further require
a cut on the invariant mass M`` of the lepton pair,

M`` > 50 GeV, (3.6)

in order to avoid the photon pole at M`` → 0.
Since there is no photon emission involved in the corrections of O(Nfαsα), the issue

of dressed leptons and photon recombination is not relevant for the calculated corrections.
5We do not give values for the photon-fermion renormalization constants δct,σ

Af̄f,(αsα), since they do not
enter the corrections to the resonant parts of the cross sections. Moreover, they are not infrared finite
owing to collinear singularities originating from the light quarks. Those infrared singularities cancel against
the photon wave function renormalization constant contained in the photon self-energy correction (which
depends on phase space).
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3.2 Corrections to differential distributions

Since QCD corrections to W/Z production can be quite large for specific observables, such
as the transverse-momentum distributions of the leptons, we consider two variants for the
definition of relative corrections of O(Nfαsα),

δ =
dσ(Nfαsα)

dσLO
, δ′ =

dσ(Nfαsα)

dσNLOQCD
, (3.7)

the first variant normalizing the cross-section correction dσ(Nfαsα) to the LO cross section
dσLO, the second variant normalizing it to the cross section dσNLOQCD corrected at NLO
QCD. The quantity δ′ can be viewed as the EW O(Nfα) correction to the QCD O(αs)
correction.

Figure 7 shows the relative correction δ of O(Nfαsα) to the distributions in the in-
variant mass M`` of the lepton pair `+`− (` = e, µ) for Z production and in the transverse
invariant mass MT,ν` of the pair ν``+ for W+ production, where MT,ν` is the invariant
mass that is calculated by taking only the transverse components of the respective three-
momenta into account. In the calculation of δ the O(Nfαsα) contribution dσ(Nfαsα)
to the differential cross section is normalized to the LO cross section dσLO bin by bin in
the histograms, where both contributions are evaluated with the same PDF set, so that δ
is practically independent of the factorization scale µF. The correction δ mildly depends
on the renormalization scale µR via its proportionality to αs(µR). Apart from the full
O(Nfαsα) contribution (red curves) we show the part of the correction that is furnished
by reducible diagrams only (green curves) and the contribution delivered by the first two
fermion generations (blue curves). In figure 7 we depict the regions of low and high M``

and MT,ν` separately, where the resonant contributions of the intermediate W/Z bosons
is contained in the low-mass plots on the l.h.s. More precisely, the whole region with
MT,ν` . MW is dominated by resonant W bosons, while the Z-boson resonance shows up
only for M`` ∼ MZ. We only show the relative corrections δ to illustrate their impact;
results on the absolute predictions for the shown spectra and their distinctive shapes are
discussed in numerous papers (see, e.g., refs. [18, 19]). As already expected from the size
of the renormalization constants given in table 1, from the results on O(αsα) corrections
for stable W/Z bosons, and from the results in pole approximation [46], the impact of
O(Nfαsα) corrections is at the level of permille, and thus phenomenologically unimpor-
tant, in all regions where resonant W/Z bosons dominate the cross section. Away from
the resonance regions, the corrections grow to 1.5–2%, which is the typical size of the cor-
rections for M`` and MT,ν` values of 300−1000 GeV. Corrections of this size are in fact
phenomenologically relevant in those off-shell tails, in particular in the search for traces of
new physics, as potentially induced by Z′ or W′ bosons.

It is interesting to note that the contribution of reducible corrections dominates over the
impact of irreducible diagrams whenever the O(Nfαsα) correction is sizeable. Furthermore,
we notice that the contributions of the individual fermion generations are generically of
similar size, i.e. there is no suppression of the third generation (with massive quarks) w.r.t.
to the other generations. In fact for Z production the impact of the third generation is
even larger than the sum of the first two. We note in passing that the tt̄ threshold is
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Figure 7. Relative O(Nfαsα) corrections δ (normalized to the LO cross section) to distributions in
the transverse invariant mass of the W bosons (upper plots) and in the invariant mass of the Z boson
(lower plots), where the complete O(Nfαsα) corrections are compared to the contribution originat-
ing from reducible graphs and to the contribution delivered by the first two fermion generations.

observable in the M`` spectrum at M`` ∼ 2mt ≈ 346 GeV (lower right plot in figure 7)
in the full O(Nfαsα) correction (red) and its reducible part (green), but of course not
in the contribution of the first two fermion generations (blue). From the comparison of
the three different curves we conclude that neither a neglect of the third quark generation
nor the approximation by setting mt and mb to zero provides a viable approximation for
the corrections. Such approximations are often useful for QCD corrections at low or high
energies; for EW corrections such approximations in general fail, since the EW gauge-boson
masses MW ∼MZ enter the renormalization conditions and provide an additional scale.

Since the NLO QCD corrections to the (transverse) invariant-mass distributions con-
sidered in figure 7 are not unusually large (order of some 10%), changing the normalization
of the relative corrections from LO to NLO QCD, i.e. going over from δ to δ′ as defined in
eq. (3.7), does not change the picture qualitatively. This is illustrated in figure 8.
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Figure 8. Relative O(Nfαsα) corrections δ′ (normalized to the NLO QCD cross section) to
distributions in the transverse invariant mass of the W bosons (upper plots) and in the invariant
mass of the Z boson (lower plots), where the complete O(Nfαsα) corrections are compared to the
contribution originating from reducible graphs and to the contribution delivered by the first two
fermion generations.

Figure 9 shows the relative O(Nfαsα) correction δ, which normalizes the correction to
the LO prediction, to the leptonic transverse-momentum distributions in the low- and high-
energy regions. At LO, the regions in which resonant W/Z bosons dominate the spectra
are characterized by kT,` . MV /2 (V = W,Z), i.e. at the left side of the Jacobian peaks
at kT,` = MV /2. Note, however, that jet emission from the initial-state partons transfers
some transverse momentum to the W/Z bosons, so that in the presence of QCD corrections
(and to a lesser extent also in the presence of photonic corrections which are not discussed
here) the kT,` regions above the Jacobian peaks receive contributions that are enhanced
by a W/Z resonance. This well-known effect leads to extremely large QCD corrections for
kT,` > MV /2 which grow to some 100%. This does not mean that perturbation theory
does not work in this region, but only that the LO prediction is not a good approximation
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Figure 9. Relative O(Nfαsα) corrections δ (normalized to the LO cross section) to transverse-
momentum distributions for W-boson (upper plots) and Z-boson production (lower plots), again
with a comparison of full O(Nfαsα) corrections to its reducible parts and to the contribution of
the first two fermion generations.

for the differential cross section there. This enhancement mechanism of NLO QCD over
LO contribution also leads to an enhancement of the O(αsα) correction, since it involves
jet emission as well. In figure 9 the suppression of the LO cross section for kT,` > MV /2
results in large values of δ that grow even to about 15% for kT,` & 250 GeV. In figure 10
we show the correction δ′ normalized to the NLO QCD cross section and find relative
corrections in the few-% range, which are of the expected size of the O(αsα) corrections as
observed in the invariant-mass spectra above.6 The dominance of the real QCD corrections

6The fact that the corrections δ′ seem overly pronounced on the resonance at kT,` ∼MV /2 is merely a
normalization effect, because the NLO QCD corrections are large and negative on resonance in the chosen
setup (see, e.g., ref. [45]).
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Figure 10. Relative O(Nfαsα) corrections δ′ (normalized to the NLO QCD cross section) to
transverse-momentum distributions for W-boson (upper plots) and Z-boson production (lower
plots), again with a comparison of full O(Nfαsα) corrections to its reducible parts and to the
contribution of the first two fermion generations.

via the described recoil mechanism is also the reason for the extreme dominance of the
reducible contributions in the O(Nfαsα) corrections, because the irreducible corrections
do not involve real-emission effects. As already noticed in the discussion of the invariant-
mass spectra above, the contribution of the third generation relative to each of the first two
is higher for Z production than for W production; this feature is even more pronounced in
the transverse-momentum spectra.

Finally, we mention that we observe only permille corrections of O(Nfαsα) to the
integrated cross section and to differential distributions that are entirely dominated by
resonant W or Z bosons, such as distributions in the lepton rapidities.
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4 Summary

Next-to-next-to-leading-order corrections of mixed QCD×EW type seem to be the largest
component of the yet unknown radiative corrections to Drell-Yan-like W/Z production at
fixed perturbative order, at least for off-shell W/Z bosons. In the vicinity of the W/Z reso-
nances, the corrections are known in the form of a pole approximation up to the corrections
that solely concern the initial state, which are supposed to be small. Recent evaluations
of those initial-state corrections for on-shell Z bosons have confirmed this expectation. For
off-shell W/Z production, several ingredients have been presented in recent years, including
results for rather complex two-loop integrals, but no cross-section predictions have been
presented yet. This paper takes a first step towards the numerical evaluation of the O(αsα)
corrections by presenting results on the corrections of O(Nfαsα), which are nominally en-
hanced by the number Nf of fermion generations. These corrections comprise all diagrams
with closed fermion loops and form a gauge-invariant part of the full O(αsα) corrections.

The genuine two-loop part of the calculation involves only self-energy complexity and
was feasible by a straightforward application of current two-loop techniques. The two-
loop integrals were reduced to master integrals with the help of Laporta’s algorithm as
implemented in the program KIRA, and the master integrals were evaluated via differen-
tial equations. We have successfully compared our results on the EW gauge-boson self-
energies to existing results in the literature and give explicit analytical results to allow for
cross-checks with upcoming similar calculations. Generally, the description of resonance
processes including higher-order corrections is delicate, in particular because of issues with
gauge invariance. In order to guarantee a gauge-invariant description that is uniformly
valid on resonance and in off-shell regions, we have generalized the complex-mass scheme,
which is a standard procedure for treating resonances at NLO. It is interesting to note that
the consideration of all O(Nfαsα) corrections is already sufficient for the generalization of
the complex-mass scheme for the full O(αsα) corrections, since the W/Z propagators that
develop the resonance are affected at O(αsα) only by diagrams involving closed quark loops.

Concerning real corrections, focusing on O(Nfαsα) leads to drastic simplifications in
comparison to the full O(αsα) corrections as well. Since the O(Nfαsα) corrections do
not involve photon emission, but only up to a single emission of QCD partons, one-loop
subtraction techniques are sufficient to treat infrared singularities. Specifically, we have
applied dipole and alternatively antenna subtraction.

Our discussion on numerical results shows that O(Nfαsα) corrections to observables
that are dominated by resonant W/Z bosons, such as integrated cross sections or rapidity
distributions, are at the permille level and thus phenomenologically negligible. This could
be already concluded from the existing results on on-shell W/Z production or from re-
sults in pole approximation. Off-shell regions in differential distributions, however, receive
sizeable corrections. For instance, the invariant-mass distribution for lepton pairs in Z pro-
duction and the respective transverse-invariant-mass distribution in W production receive
corrections at the level of 1.5–2% for (transverse) invariant masses of ∼ 300−1000 GeV.
Nominally, transverse-momentum distributions of leptons even receive corrections of the or-
der of 10% or more above the Jacobian peak at transverse momenta ∼MV /2 (V = W/Z) if
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corrections are normalized to leading-order predictions. However, those corrections reduce
to the few-% level after normalizing them to full predictions, since leading-order predic-
tions systematically underestimate the distribution above the Jacobian peaks, which is a
well-known phenomenon.

Considering the remaining theoretical uncertainty induced by missing higher-order
corrections to W/Z production at hadron colliders, we have to keep in mind that the
still unknown O(αsα) corrections without nominal Nf enhancement are expected to be
not smaller than the corrections of O(Nfαsα). This is due to the enhancement of EW
corrections at high energies originating from double (Sudakov) and single logarithms at
NLO EW, which are known to factorize from QCD corrections in higher orders. With both
NLO QCD and NLO EW corrections at the (known) level of some 10% in the TeV range
of invariant masses, additional O(αsα) contributions at the few-% level can be expected.
The presented results on O(Nfαsα), thus, do not directly reduce the current theoretical
uncertainty, but represent a relevant contribution to the full O(αsα) corrections and can
serve as an estimate for the order of magnitude of missing corrections at this order.
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A Calculation of the master integrals via differential equations

In this appendix we briefly describe the calculation of the two-loop master integrals via
differential equations, which is based on transformations of the set of master integrals into
Henn’s canonical form [68, 69] and subsequent integration of the new basis integrals in
terms of a Laurent expansion in ε including terms up to order ε1, which involve Goncharov
polylogarithms (GPLs) up to weight three. We start by describing the procedure for the
general case of different non-vanishing masses and present some special cases with much
simpler results afterwards. The most simple case, in which all masses are zero, has also
been checked by direct integration with Feynman parameters.

Apart from the results outlined in the following, we have worked out an alternative
solution for the master integrals, which is based on a more involved transformation to the
canonical form, but leading to somewhat simpler expressions for the integrals. Numerically
the two sets of obtained master integrals are in mutual agreement.
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A.1 General case of different non-vanishing masses

We first change the basis of master integrals Sabcde used to express the 1PI parts of the
EW gauge-boson self-energies to the following set of basis functions,

~F (s,m2
1,m

2
2) = (F1, . . . , F9)T ,

F1 = sS10220,

F2 =
√
λ(S10220 + S20120 + S20210),

F3 = s+−S20120 − s−+S20210 + (m2
1 −m2

2)S10220,

F4 = S00220,

F5 = S02020,

F6 = 1
2
√
λ

[
(
√
λ− s−+)S00220 − (

√
λ+ s+−)S02020 + 2(1− 2ε)sS01120

]
,

F7 = 1
2
√
λ

[
(
√
λ− s−+)S00202 − (

√
λ+ s+−)S00220 + 2(1− 2ε)sS01102

]
,

F8 = s

λ

{
m2

2S00202 + s−−S00220 +m2
1S02020

− (1− 2ε)
[
s−+S01102 − (1− 2ε)sS01111 + s+−S01120

]}
,

F9 = S00202, (A.1)

where we have used the shorthands

λ = s2 +m4
1 +m4

2 − 2sm2
1 − 2sm2

2 − 2m2
1m

2
2,

s±± = s±m2
1 ±m2

2, s±∓ = s±m2
1 ∓m2

2. (A.2)

Here and in the following, squared masses are always assumed to possess an infinitesimally
small negative imaginary part, i.e. m2 ≡ m2 − i0. Moreover, we replace the kinematical
variable s in favour of the dimensionless variable x, which rationalizes

√
λ,

s = x[m2
1(1− x)−m2

2]
1− x ,

√
λ = m2

2 −m2
1(1− x)2

1− x . (A.3)

In terms of the kinematical input, the variable x is calculated according to

x =


(s+− +

√
λ)/(2m2

1) for λ > 0, s+− ≥ 0,
2s/(s+− −

√
λ) for λ > 0, s+− < 0,

(s+− + i
√
−λ)/(2m2

1) for λ ≤ 0,
(A.4)

where the two versions for λ > 0 are just distinguished to improve numerical stability. In
order to ensure that s = 0, which will be our initial condition for solving the differential
equation, corresponds to x = 0, we assume m2 > m1 in the following. The case m2 <

m1 can be handled upon interchanging the mass values before the calculation of master
integrals and appropriately interchanging the obtained master integrals using the symmetry
relations (2.7).
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The transformation to the set of functions ~F , which is inspired by a corresponding but
simpler transformation for the one-loop bubble integral, brings the differential equation of
the master integrals for the evolution in the variable s (keeping the massesm1,m2 constant)
into the canonical form

∂ ~f

∂x
= εA~f, (A.5)

where ~f results from ~F by some rescaling,

~F (s,m2
1,m

2
2) = Γ(1 + ε)2

(
4πµ2

m2
1

)ε(4πµ2

m2
2

)ε
~f(x, r), r = m2

m1
. (A.6)

Schematically, the matrix A is given by

A =


A4 03×5

05×3 A6

 , (A.7)

where A4 and A6 are the 4× 4 and 6× 6 matrices which have the element A44 = A4,44 =
A6,11 = 0 in common and 0m×n is the zero matrix of the indicated geometry. The explicit
entries of A4 and A6 are given by

A4 =


2
x − q(x) 1

1−x 0 0
6

x−1 − 2
x − 6p(x) + 4q(x) 2

1−x + 2q(x) 2
1−x

0 1
x−1 − q(x) − 2

x + q(x) 0
0 0 0 0

 , (A.8)

A6 =



0 0 0 0 0 0
0 0 0 0 0 0

1
1−x + p(x) −p(x) q(x)− 2p(x) 0 0 0
−p(x) 0 0 q(x)− 2p(x) 0 1

1−x + p(x)
1

1−x + 2p(x) −p(x) −q(x) q(x) + 2
1−x 2q(x)− 4p(x) 1

x−1 − p(x)
0 0 0 0 0 0


,

with the auxiliary functions

p(x) = 1
x− 1− r + 1

x− 1 + r
− 1
x− 1 + r2 ,

q(x) = 1
x− 1 + 1

x
− 1
x− 1 + r2 . (A.9)

Owing to the block structure (A.7) of the matrix A, the first four components of ~f and the
last six components of ~f each define an independent system of linear differential equations,
which can be solved independently; the fact that f4 is part of either system does not disturb
this feature.
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As initial condition for the evolution of ~f(x, r) in x, we take the values ~f(0, r) cor-
responding to s = 0, where the functions Sabcde reduce to vacuum integrals of the type
defined in (2.25). For the functions in ~F this leads to the initial values

Fk(0,m2
1,m

2
2) = 0, k = 1, 6, 7, 8,

F2(0,m2
1,m

2
2) = −F3(0,m2

1,m
2
2) = 1− ε

ε
(m2

1 −m2
2)T122(m2

1,m
2
2),

F4(0,m2
1,m

2
2) = T022(m2

1,m
2
2),

F5(0,m2
1,m

2
2) = T022(m2

1,m
2
1),

F9(0,m2
1,m

2
2) = T022(m2

2,m
2
2). (A.10)

The integrals T022 are just products of simple one-loop vacuum integrals, which are easy
to calculate. The integral T122 was first expressed in terms of T111 with the help of KIRA,
and T111 was calculated by solving the corresponding Feynman parameter integral. The
result for T111 was also checked against the one published in ref. [99]. For the rescaled
functions ~f , the initial values explicitly read

fk(0, r) = 0, k = 1, 6, 7, 8,
f2(0, r) = −f3(0, r)

= 1
ε

ln r2 − 2 Li2(1− r−2)− 1
2 ln2 r2 + ε

[
2 Li3(1− r−2)− 2 Li3

( 1
1− r2

)

+ 1
3 ln3(r2 − 1) + π2

3 ln(r2 − 1)− 1
6 ln3 r2

]
+O(ε2),

f4(0, r) = 1
ε2
, f5(0, r) = r2ε

ε2
, f9(0, r) = r−2ε

ε2
. (A.11)

With these initial values, the integration of the system (A.5) in terms of GPLs is
straightforward. Since the functions fk(x, r) with k = 4, 5, 9 are constant in x, their
solutions are trivially given by

fk(x, r) ≡ fk(0, r), k = 4, 5, 9. (A.12)

For the remaining functions fk(x, r), we give the results in terms of coefficients f (j)(x, r)
of the Laurent series

~f(x, r) =
∞∑

j=−2
εj ~f (j)(x, r) (A.13)
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up to the relevant order in ε. Up to order ε0, those functions read

f
(−2)
k (x, r) = 0, k = 1, 2, 3, 6, 7, 8,

f
(−1)
1 (x, r) = f

(−1)
8 (x, r) = 0,

f
(−1)
2 (x, r) = f

(−1)
2 (0, r)− 2G(1;x),

f
(−1)
3 (x, r) = f

(−1)
3 (0, r),

f
(−1)
6 (x, r) = f

(−1)
7 (x, r) = −G(1;x),

f
(0)
1 (x, r) = 2G(1, 1;x)−G(1;x) ln(r2),

f
(0)
2 (x, r) = f

(0)
2 (0, r)− 4G(0, 1;x)− 8G(1, 1;x) + 12G(1− r, 1;x)

+ 12G(1 + r, 1;x)− 4G(1− r2, 1;x)
+
[
4G(1;x)− 6G(1− r;x)− 6G(1 + r;x) + 4G(1− r2;x)

]
ln(r2),

f
(0)
3 (x, r) = f

(0)
3 (0, r) + 2G(0, 1;x)− 2G(1− r2, 1;x)−

[
G(1;x)− 2G(1− r2;x)

]
ln(r2),

f
(0)
6 (x, r) = −G(0, 1;x)−G(1, 1;x) + 2G(1− r, 1;x) + 2G(1 + r, 1;x)−G(1− r2, 1;x)

−
[
G(1− r;x) +G(1 + r;x)−G(1− r2;x)

]
ln(r2),

f
(0)
7 (x, r) = −G(0, 1;x)−G(1, 1;x) + 2G(1− r, 1;x) + 2G(1 + r, 1;x)−G(1− r2, 1;x)

+
[
G(1;x)−G(1− r;x)−G(1 + r;x) +G(1− r2;x)

]
ln(r2),

f
(0)
8 (x, r) = 2G(1, 1;x)−G(1;x) ln(r2). (A.14)

For the evaluation of the self-energies given in section 2.2, the functions f (1)
k (x, r), the

results of which are getting more lengthy and untransparent, are needed as well; we provide
those functions in the supplementary material of this article.

To finally reconstruct the relevant master integrals Sabcde in terms of a Laurent series
in powers of ε, we first have to convert the coefficients f (j)

k (x, r) to the corresponding
coefficients F (j)

k (s,m2
1,m

2
2) of the components of ~F as defined in (A.6). By convention, we

do not expand the global factor Γ(1 + ε)2 (4π)2ε contained in ~F and define

Fk(s,m2
1,m

2
2) =

∞∑
j=−2

Γ(1 + ε)2 (4π)2ε εj F
(j)
k (s,m2

1,m
2
2), (A.15)

so that

F
(−2)
k (s,m2

1,m
2
2) = f

(−2)
k (x, r),

F
(−1)
k (s,m2

1,m
2
2) = f

(−1)
k (x, r) + f

(−2)
k (x, r)L,

F
(0)
k (s,m2

1,m
2
2) = f

(0)
k (x, r) + Lf

(−1)
k (x, r) + 1

2L
2 f

(−2)
k (x, r),

F
(1)
k (s,m2

1,m
2
2) = f

(1)
k (x, r) + Lf

(0)
k (x, r) + 1

2L
2 f

(−1)
k (x, r) + 1

6L
3 f

(−2)
k (x, r), (A.16)

with the constant
L = ln

(
µ2

m2
1

)
+ ln

(
µ2

m2
2

)
(A.17)
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containing the dependence on the reference scale µ. The set of master integrals Sabcde
contained in (A.1) can be derived from the results for Fk(s,m2

1,m
2
2) by simply inverting

the set of linear equations (A.1). The corresponding results for the Laurent coefficients
defined by

Sabcde(s,m2
1,m

2
2) =

∞∑
j=−2

Γ(1 + ε)2 (4π)2ε εj S
(j)
abcde(s,m

2
1,m

2
2), (A.18)

in terms of the F (j)
k , however, get somewhat lengthy because of the explicit appearance of

ε in the defining equations. Moreover, the basis set of master integrals used in the self-
energies in section 2.2 is not identical with the one used in (A.1), i.e. a further change of
basis has to be performed. Instead of reproducing unnecessarily lengthy formulas here, we
provide the coefficients S(j)

abcde needed for the self-energies in terms of the coefficients F (j)
k

given above in the mentioned supplementary material.

A.2 Two equal non-vanishing masses

In this appendix we consider the calculation of the master integrals Sabcde for the special
case m = m1 = m2, in which the number of independent master integrals is reduced
compared to the general case of the previous section owing to the symmetry relations (2.7).
To solve the system of differential equations obeyed by those master integrals we consider
the following basis of five functions,

~F (s,m2) = (F1, . . . , F5)T ,

F1 = sS10220,

F2 =
√
λ(S10220 + S20120 + S20210),

F3 = S02020,

F4 = s√
λ

[
(1− 2ε)S01120 − S02020

]
,

F5 = s2

λ

[
(1− 2ε)2S01111 − 2(1− 2ε)S01120 + S02020

]
, (A.19)

with the shorthand
λ = s2 − 4sm2. (A.20)

We replace the kinematical variable s in favour of the dimensionless variable x, which
rationalizes

√
λ,

s = m2x2

x− 1 ,
√
λ = m2x(x− 2)

x− 1 . (A.21)

In terms of the kinematical input, the variable x is calculated according to

x =


(s+

√
λ)/(2m2) for s > 4m2,

2s/(s−
√
λ) for s < 0,

(s+ i
√
−λ)/(2m2) otherwise.

(A.22)
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Rescaling ~F according to

~F (s,m2) = Γ(1 + ε)2
(

4πµ2

m2

)2ε
~f(x), (A.23)

the functions ~f fulfill a differential equation of the form (A.5) with the matrix A schemat-
ically given by

A =


A3 02×2

02×2 A′3

 . (A.24)

The two 3× 3 submatrices explicitly read

A3 =


1

1−x + 2
x

1
1−x 0

6
x−1

6
2−x + 4

x−1 −
2
x

2
1−x

0 0 0

 ,

A′3 =


0 0 0
1

1−x
2

2−x + 1
x−1 0

0 2
1−x

4
2−x + 2

x−1

 (A.25)

and have the element A33 = A3,33 = A′3,11 = 0 in common. Each of the matrices A3, A′3
defines a 3-dimensional system of linear ordinary differential equations that can be solved
independently.

An appropriate initial condition is again given by s = 0, corresponding to x = 0, where
the master integrals Sabcde reduce to vacuum integrals. The initial values of ~F are given
by

F3(0,m2) = T022(m2,m2), Fk(0,m2) = 0, k = 1, 2, 4, 5, (A.26)

so that

f3(0) = 1
ε2
, fk(0) = 0, k = 1, 2, 4, 5. (A.27)

The system of differential equations easily integrates to GPLs. Since f3(x) is constant
in x, we simply have

f3(x) ≡ f3(0). (A.28)
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The results for the remaining fk(x) are given in terms of Laurent coefficients defined anal-
ogously to (A.13) up to the relevant order in ε,

f
(−2)
k (x) = 0, k = 1, 2, 4, 5,

f
(−1)
1 (x) = f

(−1)
5 (x) = 0,

f
(−1)
2 (x) = −2G(1;x),

f
(−1)
4 (x) = −G(1;x),

f
(0)
1 (x) = f

(0)
5 (x) = 2G(1, 1;x),

f
(0)
2 (x) = 4G(0, 1;x)− 8G(1, 1;x) + 12G(2, 1;x),

f
(0)
4 (x) = −G(1, 1;x) + 2G(2, 1;x),

f
(1)
1 (x) = 4G(0, 1, 1;x)− 4G(1, 0, 1;x) + 6G(1, 1, 1;x)− 12G(1, 2, 1;x),

f
(1)
2 (x) = −8G(0, 0, 1;x) + 16G(0, 1, 1;x)− 24G(0, 2, 1;x) + 16G(1, 0, 1;x)

− 20G(1, 1, 1;x) + 48G(1, 2, 1;x)− 24G(2, 0, 1;x) + 48G(2, 1, 1;x)
− 72G(2, 2, 1;x),

f
(1)
4 (x) = −G(1, 1, 1;x) + 2G(1, 2, 1;x) + 2G(2, 1, 1;x)− 4G(2, 2, 1;x),

f
(1)
5 (x) = 6G(1, 1, 1;x)− 4G(1, 2, 1;x)− 8G(2, 1, 1;x). (A.29)

Analogously to (A.15), we define the Laurent coefficients F (j)
k of ~F , so that the coeffi-

cients F (j)
k are obtained from the coefficients f (j)

k as in (A.16) with the constant

L = 2 ln
(
µ2

m2

)
(A.30)

containing the dependence on the reference scale µ. The set of master integrals Sabcde
contained in (A.19) can be derived from the results for Fk(s,m2) by simply inverting the
set of linear equations (A.19) and finally converted into results for the master integrals used
in the self-energies in section 2.2. The corresponding results for the Laurent coefficients
S

(j)
abcde(s,m2,m2), which are defined as in (A.18), are again collected in the supplementary

material.

A.3 One non-vanishing mass

Here we consider the calculation of the master integrals Sabcde for the special case m1 = 0
and m2 = m, which are somewhat simpler than in the two previous cases, because no
rationalization of the kinematical variables is required and some vacuum integrals be-
come scaleless and vanish. To solve the differential equation we consider the following

– 31 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
1

5-dimensional basis of functions,

~F (s,m2) = (F1, . . . , F5)T ,

F1 = sS10220,

F2 = (m2 − s)(S10220 + S20120 + S20210),

F3 = (1− 2ε) s

m2 − s
S01102 + (s+m2)

2(s−m2)S00202 + 1
2S00202,

F4 = (1− 2ε)2 s2

(s−m2)2S01111 − (1− 2ε)s(s+m2)
(s−m2)2S01102 + (s+m2)2

4(s−m2)2S00202

− 1
4S00202,

F5 = S00202. (A.31)

We replace the kinematical variable s in favour of the dimensionless variable x,

s = m2x

x− 1 , x = s

s−m2 . (A.32)

Rescaling ~F according to (A.23), the functions ~f fulfill a differential equation of the
form (A.5) with the matrix A schematically given by

A =

 A2 02×3

03×2 A3

 . (A.33)

The 2× 2 and 3× 3 submatrices A2 and A3 explicitly read

A2 =

 1
1−x + 1

x
1

1−x
6

x−1 −
6
x

4
x−1

 , A3 =


1

x−1 + 1
x 0 1

1−x
1

1−x + 1
x

2
x−1 + 2

x
1

x−1

0 0 0

 . (A.34)

Each of the matrices A2, A3 define independent sets of linear ordinary differential equations.
An appropriate initial condition is again given by s = 0, corresponding to x = 0, where

the master integrals Sabcde reduce to vacuum integrals. The initial values of ~F are given
by

F2(0,m2) = −1− ε
ε

m2 T122(0,m2), F5(0,m2) = T022(0,m2),

Fk(0,m2) = 0, k = 1, 3, 4, (A.35)

so that the initial values of ~f , which are related to the ones of ~F according to (A.23), read

f2(0) = − 1
ε2
− π2

3 + 2ζ(3)ε+O(ε2), f5(0) = 1
ε2
, fk(0) = 0, k = 1, 3, 4. (A.36)

The system of differential equations again easily integrates to GPLs. Since f5(x) is
constant in x, we simply have

f5(x) ≡ f5(0). (A.37)
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The results for the remaining fk(x) are given in terms of Laurent coefficients defined anal-
ogously to (A.13) up to the relevant order in ε,

f
(−2)
2 (x) = −1, f

(−2)
k (x) = 0, k = 1, 3, 4,

f
(−1)
1 (x) = −f (−1)

3 (x) = f
(−1)
4 (x) = G(1;x),

f
(−1)
2 (x) = −4G(1;x),

f
(0)
1 (x) = f

(0)
4 (x) = G(0, 1;x) + 3G(1, 1;x),

f
(0)
2 (x) = −π

2

3 − 6G(0, 1;x)− 10G(1, 1;x),

f
(0)
3 (x) = −G(0, 1;x)−G(1, 1;x),

f
(1)
1 (x) = π2

3 G(1;x) +G(0, 0, 1;x) + 3G(0, 1, 1;x) + 5G(1, 0, 1;x) + 7G(1, 1, 1;x),

f
(1)
2 (x) = 2ζ(3)− 4π2

3 G(1;x)− 6G(0, 0, 1;x)− 18G(0, 1, 1;x)− 18G(1, 0, 1;x)

− 22G(1, 1, 1;x),

f
(1)
3 (x) = −G(0, 0, 1;x)−G(0, 1, 1;x)−G(1, 0, 1;x)−G(1, 1, 1;x),

f
(1)
4 (x) = G(0, 0, 1;x) + 5G(0, 1, 1;x) + 3G(1, 0, 1;x) + 7G(1, 1, 1;x). (A.38)

The Laurent coefficients F (j)
k of ~F are again defined as in (A.15) and obtained from the

coefficients f (j)
k as in (A.16) with the constant L as given in (A.30). The Laurent coefficients

S
(j)
abcde(s, 0,m2) of the master integrals Sabcde that are eventually required for the evaluation

of self-energies in section 2.2 are obtained by first constructing the integrals Sabcde contained
in (A.31) and subsequently switching to the desired basis of master integrals. The results
that express the desired S(j)

abcde(s, 0,m2) in terms of the coefficients F (j)
k constructed above

are again provided in the supplementary material.

A.4 Massless case

The required master integrals for m1 = m2 = 0 can be obtained upon specializing the
results from the previous section or via Feynman parameter integration in a straightforward
way. The independent integrals are explicitly given by

S10110 = Γ(1 + ε)2
(

4πµ2

−s− i0

)2ε

s

[
− 1

4ε −
13
8 +

(
−115

16 + π2

12

)
ε

]
+O(ε2),

S11110 = Γ(1 + ε)2
(

4πµ2

−s− i0

)2ε [ 1
2ε2 + 5

2ε + 19
2 −

π2

6 +
(

65
2 −

5π2

6 − 5ζ(3)
)
ε

]
+O(ε2),

S01111 = Γ(1 + ε)2
(

4πµ2

−s− i0

)2ε [ 1
ε2

+ 4
ε

+ 12− π2

3 +
(

32− 4π2

3 − 4ζ(3)
)
ε

]
+O(ε2),

S01102 = S00202 = S00220 = 0. (A.39)

The remaining ones follow from those via the symmetry relations (2.7).
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