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In the context of the dynamics and stability of black holes in modified theories of gravity, we derive the
Teukolsky equations for massless fields of all spins in general spherically symmetric and static metrics. We
then compute the short-ranged potentials associated with the radial dynamics of spin 1 and spin 1=2 fields,
thereby completing the existing literature on spin 0 and 2. These potentials are crucial for the computation
of Hawking radiation and quasinormal modes emitted by black holes. In addition to the Schwarzschild
metric, we apply these results and give the explicit formulas for the radial potentials in the case of charged
(Reissner–Nordström) black holes, higher-dimensional black holes, and polymerized black holes arising
from loop quantum gravity. These results are, in particular, relevant and applicable to a large class of regular
black hole metrics. The phenomenological applications of these formulas will be the subject of a
companion paper.
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I. INTRODUCTION

Black holes (BHs) are fascinating astrophysical objects.
As the ultimate stage of the gravitational collapse of stars,
they probe the limits of general relativity and our under-
standing of high energy and high density physics. With the
recent rise of experimental gravitational wave detection,
they have become the natural arena to seek and test
modified theories of gravity. For this reason, it is essential
to analyze all facets of their phenomenology. At the
theoretical level, the study of physical properties of black
holes sets them at the interface between general relativity,
thermodynamics, and quantum theory.
Since Hawking discovered that black holes emit a

quasithermal radiation [1] and, therefore, slowly evaporate
away, a vast literature has studied the characteristics of this
Hawking radiation. Following Hawking’s seminal work,

Teukolsky, Press, Page, Chandrasekhar, and Detweiler have
worked out the equations governing the perturbations of
rotating and charged Kerr–Newman BHs for perturbations
with spins 0, 1, 2, and 1=2 in general relativity. From this,
they have then deduced the resulting rates of emission of
Hawking radiation [2–11] (see [12] for a complete math-
ematical review). Since then, it has been understood that
general relativity is extremely likely to acquire corrections
in both the infrared and ultraviolet regimes. These correc-
tions naturally affect black hole physics. On one hand, in
the context of cosmology, general relativity has been
challenged by the discovery of dark matter and dark energy
and, for instance, the presence of a cosmological constant
in the Einstein equations leads to anti-de Sitter types of BH
metrics with modified Hawking radiation [13]. On the other
hand, the attempts to reconcile general relativity with
quantum theory have led to theories of quantum gravity
extending general relativity into the deep quantum regime,
such as string theory and loop quantum gravity. Although
the purpose of such theories is to propose an ultraviolet
completion of general relativity, there is a sense in which
they naturally lead to observable effects at large scales. For
instance, string theory leads to extra spatial dimensions
[14,15], and loop quantum gravity leads to effective
modifications, in turn, implying the avoidance of cosmo-
logical [16] and black hole singularities [17–21]. From this
perspective, black holes act as probes and test beds,
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translating the deep quantum corrections to the high
curvature regime of general relativity within the horizon
into semiclassical corrections to black hole properties as
seen from outside the horizon.
Following this logic, various black hole solutions to the

corrected Einstein equations in these manymodified gravity
frameworks have been proposed over the last decades,
accompanied by the computation of the corresponding
Hawking radiation. Recent work includes, e.g., massive
gravity [22], cubic gravity [23], hairy BHs [24], Einstein–
Gauss–Bonnet BHs [25,26], higher-dimensional BHs
[14,15], Kerr–Newman massive scalar emission [27],
Hayward BHs [28,29], general “regular” BHs [30], and
Kerr–Newman–de Sitter BHs [31]. Beside the Hawking
radiation, another important near-horizon property of black
hole, which is very sensitive to modifications of general
relativity and can be measured from the outside, is the detail
of quasinormalmodes. They constitute the ring-down signal
of a black hole relaxing toward its equilibrium state. This has
become especially relevant in view of the recent gravita-
tional wave detections from black hole mergers by LIGO/
VIRGO (see [32] and references therein). Indeed, the
increasing sensitivity of the gravitational wave detectors
promises an access to the fine structure of the quasinormal
modes resulting from black hole mergers. Through this, we
aim to push general relativity to its limits of validity. Indeed,
there is (justified) hope that the measure of those quasinor-
mal mode gravitational waves will give access to the precise
characteristics of black hole horizons and, thus, to their
correct metric description. Recent work has focused, for
example, on chargedBardeenBHs [33], Gauss–Bonnet BHs
[34,35], Palatini gravity [36,37], fðRÞ gravity [38], Kerr–
de Sitter BHs [39], conformal gravity [40,41], higher
derivative gravity [42], and so-called polymerized BHs
within loop quantum gravity [43–45].
The computation of both Hawking radiation and quasi-

normal modes is related to the response of black holes to
perturbations. Thus, understanding the physically measur-
able consequences of modified gravity on the Hawking
radiation and quasinormal modes requires one to work out
the equations of motion of the various spin perturbations to
black hole metrics. This means generalizing the work of
[2–12] to all black hole metrics predicted by the various
modified gravity theories. In the present paper, we focus on
spherically symmetric static metrics of the form (2.1) and
show how the equations of motion can be written in a form
similar to the Regge–Wheeler equation for Schwarzschild
BHs, i.e., as a one-dimensional Schrödinger-like radial
wave equation with a short-ranged potential. This potential
depends on the spin of the perturbation field, and we give
its explicit expression for each spin 0, 1, 2, and 1=2. This
derivation already exists in the literature for fields of spins 2
and 0 (see, e.g., respectively [44] and [46]), but here, we
extend it to spins 1 and 1=2. The potential for spin 1 already
appears in [30] but without the intermediate Teukolsky

equation leading to the result (instead, the authors use an
argument related to conformal invariance). Hawking radi-
ation rates for spin 1=2 fields in the case of polymerized BH
metrics have been studied in [47]. As we will show in the
forthcoming companion paper devoted to the detailed study
of the Hawking spectra, our results differ from that of [47].
We believe that this is due to the fact that this reference does
not use the analytic form of the spin 1=2 short-ranged
potential. This is the reason for which, in the present paper,
we derive once and for all the analytic form of the
Teukolsky equations and short-ranged potentials in the
case of the general metrics (2.1). We also give a general
derivation of the intermediate Teukolsky equation for spins
0, 1, 2, 1=2, and 3=2 for these generalized metrics. This is
given in formula (3.3). This result will be particularly
useful in future work when studying the Hawking emission
spectra for metrics of the general type (2.1). In particular,
the formulas for the Teukolsky equations and the short-
ranged potentials can be applied to the case of metrics with
independent time and radial components [F ≠ G in the
metric ansatz (2.1)], which is particularly interesting since
these metrics arise as regular black holes in several effective
models of quantum gravity [30,44,47].
We note that Kodama and Ishibashi (see, e.g., [48])

develop a formalism that goes straight from the metric to
the short-range potentials by means of the stress-energy
tensor and without computing the intermediate Teukolsky
equations. If it were to be extended to spins 1=2 and 3=2 as
well as metrics with different time and radial components,
this formalism would provide a complementary way of
deriving the potentials. We have checked that our results are
similar to those of [49], to which [48] then compares (in the
case of Schwarzschild-AdS BHs).
The paper is organized as follows. InSec. II,wepresent the

equations of motion using either a direct metric development
or theNewman–Penrose formalism. Section III showshow to
separate these equations to extract the one-dimensional radial
Teukolsky equation for all spins. Section IV presents the
computation of the short-ranged potentials for all spins. In
particular, the calculation for spins 1 and 1=2 requires the use
of a Chandrasekhar transform. Finally, Sec. V is devoted to
the study of some examples of potentials for various black
hole metrics and their comparison with the Schwarzschild
case. Amore detailed application of the formalism to various
metrics will appear in the companion paper [50].

II. METRIC AND NEWMAN–PENROSE
EQUATIONS

We consider spherically symmetric static metrics,
which constitute a subset of Petrov type D metrics. In
four-dimensional Boyer–Lindquist coordinates, the general
form of such metrics is

ds2 ¼ −GðrÞdt2 þ 1

FðrÞ dr
2 þHðrÞdΩ2; ð2:1Þ
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where dΩ2 ¼ dθ2 þ sin θdφ2 is the solid angle in spherical
coordinates. Within this family of metrics, we further focus
on solutions to the Einstein equations that are asymptoti-
cally flat. This means that at spatial infinity, the functions
F, G, and H must satisfy the asymptotic conditions,

FðrÞ ⟶
r→þ∞

1; GðrÞ ⟶
r→þ∞

1; HðrÞ ∼
r→þ∞

r2: ð2:2Þ

Many usual metrics fall into this category, such as charged
BHs, higher-dimensional BHs, or effective BH metrics
inspired by (loop) quantum gravity. One particular case that
will be especially relevant is

GðrÞ ¼ FðrÞ≡ hðrÞ; HðrÞ ¼ r2; ð2:3Þ

to which we refer as tr symmetric (for time-radius
symmetric). For instance, charged and higher-dimensional
BHs are tr symmetric.
We now have to describe the dynamics of matter fields in

these types of spacetimes. This can be done either by
studying the equations of motion written in terms of the
metric or by using the Newman–Penrose formalism. In the
following, we will use the most direct method to obtain
the results. Starting with the spin 0 case, we consider a
massive scalar field ϕ. In this case, it is easier to write the
Proca equation in curved spacetime,

ð□þm2
ϕÞϕ ¼ 1ffiffiffiffiffiffi−gp ∂aðgab

ffiffiffiffiffiffi
−g

p ∂bϕÞ þm2
ϕϕ ¼ 0;

ffiffiffiffiffiffi
−g

p ¼
ffiffiffiffi
G
F

r
H sin θ; ð2:4Þ

where mϕ is the mass of the field. For the other types of
matter fields, the multiplicity of the vector, spinor, or tensor
components makes it difficult to obtain a single equation of
motion when working directly with the metric. A simple
and efficient way to bypass this difficulty is to exploit the
Newman–Penrose formalism [12,51], which relies on a
reformulation of the equations of motion using a null tetrad
field. A choice of null tetrad such that gab ¼ −lanb −
nalb þmam̄b þ m̄amb is given by

la ¼
�
1

G
;

ffiffiffiffi
F
G

r
; 0; 0

�
;

ma ¼
�
0; 0;

1ffiffiffiffiffiffiffi
2H

p ;
iffiffiffiffiffiffiffi

2H
p

sin θ

�
;

na ¼
�
1

2
;−

ffiffiffiffiffiffiffi
FG

p

2
; 0; 0

�
;

m̄a ¼
�
0; 0;

1ffiffiffiffiffiffiffi
2H

p ;
−iffiffiffiffiffiffiffi

2H
p

sin θ

�
; ð2:5Þ

where m and m̄ are complex conjugate. This tetrad satisfies
l · n ¼ −1 and m · m̄ ¼ 1, while all other scalar products
vanish. Introducing eai ¼ðea1;ea2;ea3;ea4Þ¼ðla;na;ma;m̄aÞ,
we define the λ coefficients as

λijk ≡ ðeai ebk − eake
b
i Þ∂aejb: ð2:6Þ

These coefficients enter the definition of the so-called Ricci
spin (or rotation) coefficients,

γijk ≡ 1

2
ðλijk þ λkij − λjkiÞ; ð2:7Þ

and some specific linear combinations of these Ricci
coefficients are then denoted by

κ ≡ γ311; ρ≡ γ314; ϵ≡ ðγ211 þ γ341Þ=2;
σ ≡ γ313; μ≡ γ243; γ ≡ ðγ212 þ γ342Þ=2;
λ≡ γ244; τ≡ γ312; α≡ ðγ214 þ γ344Þ=2;
ν≡ γ242; π ≡ γ241; β≡ ðγ213 þ γ343Þ=2: ð2:8Þ

For the family of metrics (2.1), the only nonvanishing
components are real and given by

ρ ¼ −
H0

2H

ffiffiffiffi
F
G

r
; μ ¼ −

H0

4H

ffiffiffiffiffiffiffi
FG

p
;

γ ¼ G0

4

ffiffiffiffi
F
G

r
; β ¼ −α ¼ cot θ

2
ffiffiffiffiffiffiffi
2H

p ; ð2:9Þ

where X0 ≡ ∂rX denotes the derivative in the radial
direction. In the tr-symmetric case, these spin coefficients
are the same as in [14]. We define the covariant derivatives
along the four directions of the tetrad (2.5) as

D≡ la∇a; Δ≡na∇a; δ≡ma∇a; δ̄≡m̄a∇a: ð2:10Þ

These derivatives satisfy the general commutation relation,

ðD− ðpþ 1Þϵþ qρþ ϵ̄− ρ̄Þðδ−pβþ qτÞ
¼ ðδ− ðpþ 1Þβþ qτþ π̄ − ᾱÞðD−pϵþ qρÞ; ð2:11Þ

where p and q are arbitrary constants. This identity, which
is valid for type D metrics {see Eq. (2.11) of [2]}, is pivotal
in what follows. In particular, for the family of spherically
symmetric static metrics (2.1) that we focus on, it reduces to

ðDþ qρ − ρÞðδþ pαÞ ¼ ðδþ pαÞðDþ qρÞ: ð2:12Þ

We are now equipped with the necessary material to write
down the Newman–Penrose equations of motion for fields
of various spins.
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A. Massless spin 1

For a massless gauge boson, satisfying the Einstein–
Maxwell field equations dF ¼ 0 and dF ¼ 0, the general
form of the Newman–Penrose equations is [2,12,14]

Dϕ1 − δ̄ϕ0 þ ð2α − πÞϕ0 þ κϕ2 − 2ρϕ1 ¼ 0; ð2:13aÞ

Dϕ2 − δ̄ϕ1 þ ð2ϵ − ρÞϕ2 þ λϕ0 − 2πϕ1 ¼ 0; ð2:13bÞ

Δϕ0 − δϕ1 − ð2γ − μÞϕ0 − σϕ2 þ 2τϕ1 ¼ 0; ð2:13cÞ

Δϕ1 − δϕ2 − ð2β − τÞϕ2 − νϕ0 þ 2μϕ1 ¼ 0; ð2:13dÞ

where the three Maxwell scalars are

ϕ0 ≡ Fablamb; ϕ1 ≡ 1

2
Fabðlanb þ m̄ambÞ;

ϕ2 ≡ Fabm̄anb: ð2:14Þ

The cancellation of many of the Ricci coefficients for
the family of metrics (2.1) allows one to write the first and
third equations as a coupled system involving ϕ0 and ϕ1

only; i.e.,

ð2α − δ̄Þϕ0 þ ðD − 2ρÞϕ1 ¼ 0; ð2:15aÞ

ðΔ − 2γ þ μÞϕ0 − δϕ1 ¼ 0: ð2:15bÞ

These coupled first order equations can then be turned into
a pair of decoupled second order differential equations. One
applies δ to the first equation and applies D − 3ρ to the
second one. Adding the two resulting equations and using
the identity (2.12) with p ¼ 0 and q ¼ −2, gives a differ-
ential equation involving ϕ0 only:

ððD − 3ρÞðΔ − 2γ þ μÞ − δðδ̄ − 2αÞÞϕ0 ¼ 0: ð2:16Þ

This is the equation of motion for a massless spin 1 field.

B. Massless spin 2

For purely gravitational perturbations, which are equiv-
alent to a massless spin 2 graviton field, the general form of
the Newman–Penrose equations is [2,12]

ðD − 4ρ − 2ϵÞψ1 − ðδ̄ − 4αþ πÞψ0 þ 3κ̃ψ∘
2 ¼ 0; ð2:17aÞ

ðΔ − 4γ þ μÞψ0 − ðδ − 4τ − 2βÞψ1 − 3σ̃ψ ∘
2 ¼ 0; ð2:17bÞ

ðD − 4ρ − ρ̄ − 3ϵþ ϵ̄Þσ̃ψ ∘
2

− ðδ − 4τ þ π̄ − ᾱ − 3βÞκ̃ψ∘
2 − ψ0ψ

∘
2 ¼ 0; ð2:17cÞ

where the ψ i are the perturbed components of the Weyl
tensor (e.g., ψ0 ≡ −Cabcdlamblcmd), ψ∘

2 is the only non-
vanishing background component, and the tilde on a spin

coefficient indicates a perturbed quantity. We now special-
ize to the family of metrics (2.1). If we remove the
vanishing unperturbed spin coefficients, apply the operator
δ − 2β to the first equation and the operator D − 5ρ to the
second one, add the two and make use of identity (2.12)
with p ¼ 2 and q ¼ −4, we obtain an equation involving
solely ψ0, with the σ̃ψ∘

2 and κ̃ψ∘
2 contributions replaced by

ψ0ψ
∘
2 thanks to the third equation. The resulting equation

reads

ððD− 5ρÞðΔ− 4γ þ μÞ− ðδþ 2αÞðδ̄− 4αÞ − 3ψ∘
2Þψ0 ¼ 0;

ð2:18Þ

where the background ψ ∘
2 is given by the Ricci identity

as [12]

ψ∘
2 ¼Dμ− δπ− ρ̄μ−σλ−ππ̄þðϵþ ϵ̄Þμþðᾱ−βÞπþ νκ

⇒ ψ∘
2 ¼Dμ−ρμ: ð2:19Þ

Equation (2.18) is the equation of motion for a massless
spin 2 field.

C. Massless spin 1=2

The Newman–Penrose equations for the massless Dirac
spin 1=2 field are [2,14]

ðδ̄ − αþ πÞχ0 − ðD − ρþ ϵÞχ1 ¼ 0; ð2:20aÞ

ðΔ − γ þ μÞχ0 − ðδþ β − τÞχ1 ¼ 0; ð2:20bÞ

where χi are the two components of the spinor. We now
specialize to the metrics (2.1). We remove the vanishing
spin coefficients, apply the operator δ − α to the first
equation, apply the operator D − 2ρ to the second one,
subtract the two, and make use of identity (2.12), with p ¼
−1 and q ¼ −1. This produces a decoupled differential
equation for χ0 only:

ððD − 2ρÞðΔ − γ þ μÞ − ðδ − αÞðδ̄ − αÞÞχ0 ¼ 0: ð2:21Þ

This is the equation of motion for a massless spin 1=2 field.

D. Massless spin 3=2

Finally, the general form of the Newman–Penrose
equations for a Rarita–Schwinger massless spin 3=2 field
is [52]

ðD − ϵ − 3ρÞH001 − ðδ̄ − 3αþ πÞH000 − ψ∘
2ψ000 ¼ 0;

ð2:22aÞ

ðδ − β − 3τÞH001 − ðΔ − 3γ þ μÞH000 − ψ∘
2ψ001 ¼ 0;

ð2:22bÞ
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where H000¼ðδ−2β− ᾱþ π̄Þψ000−ðD−2ϵþ ϵ̄− ρ̄Þψ001 is
a combination of the spinor components, and ψ∘

2 is the same
background component as in (2.19). Specializing to the
metric ansatz (2.1), we remove the vanishing spin coef-
ficients, apply the operator δþ α to the first equation, apply
the operatorD − 4ρ to the second one, subtract the two, and
use identity (2.12), with p ¼ 1 and q ¼ −3. This leads to
an equation on H0 ≡H000 only, which reads

ððD − 4ρÞðΔ − 3γ þ μÞ − ðδþ αÞðδ̄ − 3αÞ − ψ∘
2ÞH0 ¼ 0;

ð2:23Þ

where we have also used ðD−3ρÞψ ∘
2¼0 and ðδ−3τÞψ ∘

2¼0,
which follows from theBianchi identities [2]. Equation (2.23)
is the equation of motion for a massless spin 3=2 field.
Following [53,54], we note that Eqs. (2.16), (2.18),

(2.21), and (2.23) for s > 0 fields can be recast under the
remarkably compact form,

f½D − ð2s − 1Þϵþ ϵ̄ − 2sρ − ρ̄�ðΔ − 2sγ þ μÞ
− ½δþ π̄ − ᾱ − ð2s − 1Þβ − 2sτ�ðδ̄þ π − 2sαÞ
− ð2s − 1Þðs − 1ÞΨ2gΦ̃s ¼ 0; ð2:24Þ

with Φ̃s ¼ ðϕ0;ψ0; χ0; H0Þ, depending on the spin.
We will now show how the various Eqs. (2.4), (2.16),

(2.18), (2.21), (2.23) for all spins, or equivalently Eqs. (2.4)
and (2.24), can be transformed into radial Teukolsky
equations.

III. TEUKOLSKY EQUATIONS FOR ALL SPINS

In this section, we now derive an equivalent of the radial
Teukolsky equation for all spins in the general spherically
symmetric and static metric (2.1). The first step of this
calculation consists in developing explicitly all the terms in
Eqs. (2.4), (2.16), (2.18), (2.21), and (2.23). Then, based on
the spherical and time symmetries of the metric (2.1), we
choose

ðϕ;ϕ0;ψ0; χ0; H0Þ ¼ ΦsðrÞSsl;mðθ;φÞe−iωt; ð3:1Þ

as an ansatz for the wavefunctions. Here, Ssl;m are the spin-s
weighted spherical harmonics for angular modes l; m,
satisfying the equation,�

1

sin θ
∂θðsin θ∂θÞ þ csc2 θ∂2

φ þ
2is cot θ
sin θ

∂φ

þ s − s2 cot2 θ þ λsl

�
Ssl;m ¼ 0; ð3:2Þ

where the separation constant is λsl ≡ lðlþ 1Þ − sðsþ 1Þ.
In the spin 0 case, S0l;m ¼ Yl;m are just the spherical
harmonics. As we are here considering metrics with
spherical and not axial symmetry, the dependency on

the angular momentum projection m factorizes as
Ssl;mðθ;φÞ ¼ SslðθÞeimφ. Expanding with (3.1), the equa-
tions of motion obtained above for all spins will now allow
us to decouple the angular and radial equations, just like in
the Schwarzschild and Kerr cases [2,4]. Furthermore, the
time symmetry replaces time derivatives by the energy ω of
the field.
For the sake of clarity, we give the details of the

calculations in the Appendix. The final result takes a
remarkably simple form, andwe obtain the one-dimensional
radial Teukolsky Eqs. (A2), (A4), (A6), (A8), and (A10), for
spins 0, 1, 2, 1=2, and 3=2, respectively. Equivalently, we
can rewrite these results in the form of the master
equation (A11) valid for all spins. This radial Teukolsky
Eq. (A11) can be written in the general form,

AsðBsΦ0
sÞ0 þ

�
ω2 þ iωs

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þ Cs

�
Φs ¼ 0;

ð3:3Þ

where the radial functions AsðrÞ, BsðrÞ, and CsðrÞ can be
read in the Appendix for the various values of the spin s, and
where, once again, a prime denotes the radial derivative. The
consistency of this equation can be checked by choosing a
tr-symmetric metric with (2.3). Inserting this in (3.3)
reproduces the Teukolsky master equation for all spins
derived in [14], which is

1

Δs ðΔsþ1Φ0
sÞ0

þ
�
ω2r2

h
þ 2iωsr−

isωr2h0

h
þ sðΔ00 − 2Þ− λsl

�
Φs ¼ 0;

ð3:4Þ

where, in [14], the notation is ΔðrÞ≡ r2hðrÞ.

IV. SHORT-RANGED POTENTIALS

The next step toward an applicable formulation of the
equations of motion, for the computation of both quasi-
normal modes and Hawking radiation, is to write the
Teukolsky equations (3.3) in the form of a Schrödinger
wave equation with short-ranged potentials. Even if the
equations can, in principle, be solved in the form (3.3),
precise and stable numerical computations require one to
work with potentials, which fall off at least as 1=r2 at
infinity. Furthermore, working with real-valued potentials
also constitutes an appreciable bonus. We, therefore, need
to get rid of the first order radial derivatives and of the
complex isω terms in Eq. (3.3), which have a 1=r behavior
at infinity.
For all of this section, it will be convenient to define a

generalized tortoise coordinate r� as [44,46]
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dr�

dr
¼ 1ffiffiffiffiffiffiffi

FG
p : ð4:1Þ

In what follows, we will give the expressions of the
potentials with both the r� and r coordinates, because
the first one is more concise, and the second one is better
suited for numerical calculations. Furthermore, we will also
consider the general redefinition of the wave function as

Ψs ≡Φs

ffiffiffiffiffiffiffiffiffiffiffi
Bsffiffiffiffiffiffiffi
FG

p
s

; ð4:2Þ

where all quantities are functions of r, and we keep track of
the spin s. Finally, for each spin, our goal will be to find a
wave function Zs satisfying the general Schrödinger-like
equation,

∂2�Zs þ ðω2 − Vsðrðr�ÞÞÞZs ¼ 0; ð4:3Þ

with spin-dependent potentials Vs, and where ∂� denotes
the derivative with respect to the tortoise coordinate r�.
Spins 0 and 2 are already treated in the literature, while
spins 1=2 and 1 require more work and, in particular, the
use of the Chandrasekhar transformation. We now study in
detail these aspects.

A. Spins 0 and 2

For the massive spin 0 field, there is no complex term in
(A2), and all the terms are already decreasing faster than
1=r2 at infinity because of the falloffs (2.2). Applying the
transformations (4.1) and (4.2), we obtain simply a
Schrödinger wave equation for Z0 ≡Ψ0, with a potential
given by [46]

V0ðrðr�ÞÞ ¼ −Gm2
ϕ þ

Gλ0l
H

þ 1

2

ffiffiffiffiffiffiffi
FG
H

r � ffiffiffiffiffiffiffi
FG
H

r
H0

�0

¼ −Gm2
ϕ þ

Gλ0l
H

þ ∂2�
ffiffiffiffi
H

pffiffiffiffi
H

p : ð4:4Þ

This is the short-ranged potential for the massive spin 0
field in the metric (2.1).
For the massless spin 2 field, Ref. [44] follows [12].

They consider clever combinations of the metric compo-
nents and the vanishing of the Ricci tensor components at
first order in the perturbation to obtain directly a decoupled
radial equation of the Schrödinger-like form, with the
potential,

V2ðrðr�ÞÞ ¼
Gðλ2l þ 4Þ

H
þ FGH02

2H2
−
1

2

ffiffiffiffiffiffiffi
FG
H

r � ffiffiffiffiffiffiffi
FG
H

r
H0

�0

¼ Gðλ2l þ 4Þ
H

þ ð∂�HÞ2
2H2

−
∂2�

ffiffiffiffi
H

pffiffiffiffi
H

p : ð4:5Þ

This is the short-ranged potential for the massless spin 2
field in the metric (2.1).

B. Spins 1 and 1=2

We now complete the above results, which are already
present in the literature, by deriving the short-ranged
potentials for spins 1 and 1=2. These represent the main
results of this article. In order to do so, we follow the
method that has been used by Chandrasekhar and Detweiler
to find the short-ranged potentials for the Kerr metric
[8–11] and perform a Chandrasekhar transformation of the
radial Teukolsky equations (A4) and (A8).
Let us briefly look at the massless spin 1 and spin 1=2

fields separately before going back to general expressions
for spin s. For the massless spin 1 field, applying the
transformations (4.1) and (4.2) to (A4) gives

�
ω2 þ iω

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þ FG00

2
−
FGH00

2H
−
FG02

2G

þ FGH02

4H2
þ F0G0

4
−
F0GH0

4H
þ FG0H0

4H
−
Gðλ1l þ 2Þ

H

�
Ψ1

þ ∂2�Ψ1 ¼ 0: ð4:6Þ

For the massless spin 1=2 field, (A8) becomes

�
ω2 þ iω

1

2

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þ FG00

4
−
FGH00

4H
−
3FG02

16G

þ 3FGH02

16H2
þ F0G0

8
−
F0GH0

8H
−
Gðλ1=2l þ 1Þ

H

�
Ψ1=2

þ ∂2�Ψ1=2 ¼ 0: ð4:7Þ

The general form of these equations is

�
ω2þ iωs

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þDs

�
Ψsþ∂2�Ψs¼ 0: ð4:8Þ

The only way to suppress the complex term without
reintroducing first order derivatives is to change the
unknown function Ψs by a linear combination of itself
and its first order derivative. In this context, this is called
the Chandrasekhar transformation. In order to achieve this,
we first define the intermediate function Ys by

Ψs ¼ αsYs: ð4:9Þ

This function is such that Eq. (4.8) can be written in the
form,

Λ2YsþPsΛ−Ys−QsYs

¼ ∂2�Ysþω2YsþPsð∂�Ysþ iωYsÞ−QsYs¼ 0; ð4:10Þ

with two functions Ps and Qs, and the operators,
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Λ� ≡ ∂� � iσ; Λ2 ≡ Λ�Λ∓ ¼ ∂2� þ σ2; ð4:11Þ

with σ ≡ −ω. When written using (4.9), Eq. (4.8) becomes

∂2�Ys þ ω2Ys þ iωs

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
Ys þDsYs

þ 1

αs
ð2∂�αs∂�Ys þ Ys∂2�αsÞ ¼ 0: ð4:12Þ

Comparing this result with (4.10) then reveals that the two
new functions are defined by the requirements,

Qs ¼ −Ds −
∂2�αs
αs

;

Ps ¼
2∂�αs
αs

¼ s

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
¼ s∂� ln

�
H
G

�
: ð4:13Þ

One can then show that this gives

Q1 ¼
Gðλ1lþ 2Þ

H
; Q1=2 ¼

Gðλ1=2l þ 1Þ
H

; αs ¼
�
H
G

�
s=2

;

ð4:14Þ

where the expressions for Q1 and Q1=2 can explicitly be
checked using (4.6) and (4.7). Note that Qs takes a
remarkably simple form, as displayed here, in the case
of spin 1=2 and 1. Unfortunately, this is not true for spin 2
and 3=2, in which case, the explicit expression is actually
much more complicated. The solution for αs, however, is
valid for all spins.
In order to continue with a lighter notation, from now on,

we remove the explicit spin label s from all the various
functions involved. We simply need to keep in mind that all
the functions encountered below depend on the spin s. Now,
let us further decompose Y as a linear combination of the
function Z satisfying the Schrödinger wave equation (4.3),
by writing

Y ≡ fΛþΛþZ þWΛþZ; ð4:15Þ

where on the right-hand side, we have two unknown
functions f and W. The Schrödinger equation (4.3) takes
the form Λ2Z ¼ VZ, where V is the short-ranged potential
that we are trying to determine for spin 1 and 1=2. Acting on
(4.15) with Λ− and using Λþ ¼ Λ− þ 2iσ then leads to

Λ−Y ¼ ð∂�ðfVÞ þWVÞZ þ ðfV þ ∂�ðW þ 2iσfÞÞΛþZ

≡ −
β

α2
Z þ RΛþZ; ð4:16Þ

where, on the right-hand side, we have introduced two
unknown functions β and R. Acting once again with Λ− on
both sides gives

Λ−Λ−Y ¼
�
2iσ

β

α2
− ∂�

�
β

α2

�
þ RV

�
Z

þ
�
∂�R −

β

α2

�
ΛþZ: ð4:17Þ

Next, we can use Λþ ¼ Λ− þ 2iσ once again to rewrite
Eq. (4.10) in the form,

Λ−Λ−Y ¼ −ðPþ 2iσÞΛ−Y þQY

¼
�
β

α2
ðPþ 2iσÞ þQfV

�
Z

þ ðQðW þ 2iσfÞ − ðPþ 2iσÞRÞΛþZ; ð4:18Þ

where P is given in Eq. (4.13). Matching the Z and ΛþZ
terms of these two different expansions forΛ−Λ−Y now tells
us that we must have

RV −QfV ¼ ∂�β
α2

;

∂�ðα2RÞ ¼ β þ α2ðQðW þ 2iσfÞ − 2iσRÞ; ð4:19Þ

in addition to which, we should remember that, because of
(4.16), we also have the definitions,

−
β

α2
¼ ∂�ðfVÞ þWV;

R ¼ fV þ ∂�ðW þ 2iσfÞ: ð4:20Þ

Now, one can check by a direct substitution that the four
previous equations lead to the conservation equation,

∂�ðα2RfV þ βðW þ 2iσfÞÞ ¼ 0; ð4:21Þ

which is a generalization of Chandrasekhar’s result [8–11].
We call this constant K, and we will see later on that it
simplifies the calculations neatly. We also define the
quantity T ≡W þ 2iσ. Using the identity (4.21) to remove
an unwanted derivative of the potentialV (whichwould have
caused further difficulties), we finally obtain that (4.19) and
(4.20) reduce to the following system of four equations:

RV −QfV ¼ ∂�β
α2

; ð4:22aÞ

∂�ðα2RÞ ¼ β þ α2ðQT − 2iσRÞ; ð4:22bÞ

RðR − ∂�TÞ þ
βT
α2

¼ K
α2

; ð4:22cÞ

R ¼ fV þ ∂�T; ð4:22dÞ

where (4.22c) has been obtained by combining (4.20) and
(4.21). This is the system that we have to solve in order to
prove that a solution Z satisfying the Schrödinger wave
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equation in the potential V does indeed exist. This system
follows from the form of the Chandrasekhar transformation
and is valid for all spins.1 Chandrasekhar andDetweiler have
solved it for the Kerr metric and for spins 0, 1, 2, and 1=2.
Wewill now solve it in the general case of themetric (2.1) for
spin 1 following [8] and for spin 1=2 following [11].

1. Spin 1

In the case of spin 1, we look for a simple solution; i.e.,
we suppose that the unknown quantities are linear in σ and
of the form A ¼ A1 þ 2iσA2 and that the desired potential
V is, of course, independent of σ (together withQ, which is
the initial potential without the iω part). Looking at the
system (4.22) tells us that the only σ2 term will come from
R2, meaning that we need to actually choose R2 ¼ 0. Then,
if we do not wish to carry out the integrations, we further
assume that ∂�T2 ¼ 0. The only remaining term in iσ then
comes from f2 and ∂�β2, so we take f2 ¼ 0 and β2 to be
constant. Indeed as in [8], both R and f are also indepen-
dent of σ with these hypotheses. We, therefore, only need to
decompose

T≡ T1 þ 2iσT2; K≡K1 þ 2iσK2; β≡ β1 þ 2iσβ2:

ð4:23Þ

With all these assumptions, the system (4.22) simply
becomes

RV −QfV ¼ ∂�β1
α2

; ð4:24aÞ

∂�ðα2RÞ ¼ β1 þ 2iσβ2 þ α2ðQðT1 þ 2iσT2Þ − 2iσRÞ;
ð4:24bÞ

RðR − ∂�T1Þ þ
1

α2
ðβ1T1 þ 2iσðβ1T2 þ β2T1Þ − 4σ2β2T2Þ

¼ 1

α2
ðK1 þ 2iσK2Þ; ð4:24cÞ

R ¼ fV þ ∂�T1: ð4:24dÞ

Identifying the no-σ and σ terms in (4.24b) then gives us the
two equations,

∂�ðα2RÞ ¼ β1 þ α2QT1; R ¼ β2
α2

þQT2; ð4:25Þ

while doing the same in (4.24c) leads to

RðR − ∂�T1Þ þ
1

α2
ðβ1T1 − 4σ2β2T2Þ ¼

K1

α2
;

β2T1 þ β1T2 ¼ K2: ð4:26Þ

We can see from the last equation that the numerical value
of the constant T2 can be absorbed in the other unknown
quantities, so we set T2 ¼ 1 and define κ ≡ K1 þ 4σ2β2. In
order to rewrite the system in an elegant way, we now
define the function,

F ≡ α2Q ¼ lðlþ 1Þ: ð4:27Þ

With this, the second equation in (4.25) gives

α2R ¼ β2 þ F ; ð4:28Þ

which can then be injected in the first equation of (4.25) to
find

∂�F ¼ β1 þ T1F : ð4:29Þ

We can now use (4.26) to eliminate β1 from all other
equations and (4.28) to eliminate R. We can then write the
previous equation as

T1 ¼
1

F − β2
ð∂�F − K2Þ; ð4:30Þ

and (4.24c) can be rewritten in the form,

1

α2
ðF þβ2Þ2−ðF þβ2Þ∂�T1þT1ðK2−β2T1Þ¼ κ: ð4:31Þ

Substituting the expression (4.30) for T1, we finally obtain
an identity on F , which reads [8]

F ð∂�F Þ2 þ ðβ22 − F 2Þ∂2�F þ F 4

α2
−
�
2β22
α2

þ κ

�
F 2

þ ð2κβ2 − K2
2ÞF þ

�
β42
α2

− κβ22

�
¼ 0: ð4:32Þ

The goal is now to find a set of constants β2, κ, and K2

compatible with this identity. Since F is a constant given
simply by F ¼ lðlþ 1Þ, this is actually straightforward.
We deduce that β2 ¼ �lðlþ 1Þ and K2 ¼ 0, while κ is
unconstrained. We then choose K1 ¼ 0 and obtain
κ ¼ 4σ2β2. Finally, since (4.30) does not constrain T1,
we choose T1 ¼ 0, which implies β1 ¼ 0 thanks to (4.26).
We have, therefore, found a consistent set of constants
satisfying the assumptions, and all the remaining functions
can be analytically computed. At the end, Eqs. (4.24a) and
(4.24d) lead to the very simple result,

V1ðrðr�ÞÞ ¼ Q1 ¼ lðlþ 1ÞG
H
: ð4:33Þ1We remember that in all the functions appearing in this

system, we have kept the spin label s implicit for conciseness.
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This is the short-ranged potential for a massless spin 1 field
in the metric (2.1), which is moreover coherent with the
potential obtained in [30].

2. Spin 1=2

In order to study the case of spin 1=2, we first note that
the definition of F gives the simple result,

F ¼ α2Q ¼ ðλ1=2l þ 1Þ
ffiffiffiffi
F
G

r
: ð4:34Þ

In spite of this simple form, using the same hypothesis as in
the previous subsection, leading to (4.32), we find that the
latter has no solution. We, therefore, need to make fewer
assumptions than above. We will, in fact, follow [11] and
go back to the system of equations (4.22). In this system,
integrations can be avoided by assuming

∂�T ¼ 0; ∂�ðα2RÞ ¼ 0; ð4:35Þ

which, in turn, implies that R̃≡ α2R is a constant. Thus, we
have the system,

V ¼ ∂�β
R̃

þ ðλ1=2l þ 1Þ
α4

; ð4:36aÞ

0 ¼ β þ ðλ1=2l þ 1ÞT
α2

− 2iσR̃; ð4:36bÞ

R̃2

α4
þ βT

α2
¼ K

α2
; ð4:36cÞ

R̃
α2

¼ fV; ð4:36dÞ

where, in order to obtain (4.36a), we have used (4.36d). We
see that (4.36a) already gives us the potential as a function
of β and R̃. The goal is, therefore, to determine these
functions. For this, we set T ¼ 2iσ by analogy with the
final result of [11] and the result of the spin 1 calculation.
Equation (4.36b) then becomes

β ¼ 2iσ

�
R̃ −

ðλ1=2l þ 1Þ
α2

�
; ð4:37Þ

and (4.36c) gives

R̃2 þ 4σ2ðλ1=2l þ 1Þ ¼ α2ð4σ2R̃þ KÞ: ð4:38Þ

In this equation, everything is a constant except α, and we
can, therefore, identify separately

K ¼ −4σ2R̃; R̃ ¼ �2iσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1=2l þ 1Þ

q
: ð4:39Þ

We have, therefore, found a set of constants and a function
β satisfying the system (4.36). We can finally use (4.36a) to
write the potential as

V1=2ðrðr�ÞÞ

¼ ðlðlþ1Þþ1=4ÞG
H
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þþ1=4

p ∂�

� ffiffiffiffi
G
H

r �

¼ðlðlþ1Þþ1=4ÞG
H
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þþ1=4

p ffiffiffiffiffiffiffi
FG

p � ffiffiffiffi
G
H

r �0
:

ð4:40Þ

This is the short-ranged potential for the massless spin 1=2
field in the metric (2.1).

C. Summary

In this section, we have obtained the short-ranged
massless potentials for all spins in elegant forms using
the tortoise coordinate r�. This is summarized as

V0 ¼ ν0
G
H

þ ∂2�
ffiffiffiffi
H

pffiffiffiffi
H

p ; ð4:41aÞ

V1 ¼ ν1
G
H
; ð4:41bÞ

V2 ¼ ν2
G
H

þ ð∂�HÞ2
2H2

−
∂2�

ffiffiffiffi
H

pffiffiffiffi
H

p ; ð4:41cÞ

V1=2 ¼ ν1=2
G
H

� ffiffiffiffiffiffiffiffi
ν1=2

p ∂�

� ffiffiffiffi
G
H

r �
; ð4:41dÞ

where we have defined for conciseness ν0≡lðlþ1Þ≡ν1,
ν2 ≡ lðlþ 1Þ − 2, and ν1=2 ≡ lðlþ 1Þ þ 1=4. These
results are surprisingly compact and extend the existing
literature to the case of spin 1 and 1=2massless fields in the
metric (2.1). We can now focus on specific examples of
metrics and see what the resulting potentials look like when
compared to the Schwarzschild ones.

V. SOME EXAMPLES

There are numerous physically motivated spherically
symmetric and static metrics of the form (2.1). These
examples come from both classical general relativity and
modified theories of gravity with, e.g., quantum gravity
corrections. In this section, we will study three examples of
potentials: for charged BHs, higher-dimensional BHs, and
finally, so-called polymerized BHs with corrections from
loop quantum gravity. We will have a more extensive
discussion of the applications of the formalism presented
here in the companion paper [50].
There is already important physical information, which

can be extracted directly from the form of the potentials
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given below. For example, BHs which have a higher
potential barrier than in the Schwarzschild case, will have
a lower Hawking emission rate. While this cannot directly
be seen from the plots below because they are rescaled, it
can easily be seen by looking at the analytic form of the
potentials.

A. tr-symmetric case

Charged and higher-dimensional BHs fall within the
family of tr-symmetric metrics (2.3). We, therefore, first
give general results about this case. Using a tr-symmetric
ansatz, which depends only on a single function hðrÞ, the
massless potentials (4.41) become

V0 ¼ h

�
lðlþ 1Þ

r2
þ 1

r
h0
�
; ð5:1aÞ

V1 ¼ h
lðlþ 1Þ

r2
; ð5:1bÞ

V2 ¼ h

�
lðlþ 1Þ

r2
−
1

r
h0 þ 2ðh − 1Þ

r2

�
; ð5:1cÞ

V1=2 ¼ h
lðlþ 1Þ þ 1=4

r2
� h1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ þ 1=4

p
r

h0

∓ h3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ þ 1=4

p
r2

: ð5:1dÞ

The first three potentials, which are bosonic, can be written
as a single master potential,

Vs ¼ h

�
lðlþ 1Þ

r2
þ 1 − s

r
h0 þ sðs − 1Þðh − 1Þ

r2

�
: ð5:2Þ

We note that the last term in this master potential is absent
from Eq. (6) of [28] but is coherent with our results and with
that of [44].2 For the Schwarzschild metric, we recall that

F ¼ G ¼ h ¼ 1 −
rS
r
; H ¼ r2; ð5:3Þ

where rS ¼ 2M≡ rH is the Schwarzschild radius of the
horizon.

B. Charged black holes

After the Schwarzschild solution (5.3), the simplest
tr-symmetric physically relevant BH, which is solution
of classical general relativity equations, is the charged BH,
with

F ¼ G ¼ h ¼ 1 −
rS
r
þ r2Q

r2
; H ¼ r2; ð5:4Þ

where r2Q ≡Q2, and Q < M is the charge of the BH (since
we are working with natural units 4πε0 ¼ 1, the fine
structure constant is αem ¼ 1). The exterior horizon is
given by

rH ≡ rþ ¼ rS
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r2Q=r

2
S

q
2

: ð5:5Þ

For neutral particles (i.e., with no additional coupling
between the charge of the BH and that of the particle),
the potentials take the form,

V0 ¼
ν0
r2

þ ð1 − ν0ÞrS
r3

þ r2Qðν0 − 2Þ − r2S
r4

þ r2QrS
r5

−
2r4Q
r6

;

ð5:6aÞ

V1 ¼
ν1
r2

−
ν1rS
r3

þ ν1r2Q
r4

; ð5:6bÞ

V2 ¼
ν2 þ 2

r2
−
ðν2 þ 3ÞrS

r3
þ ðν2 þ 4Þr2Q þ r2S

r4
−
r2QrS
r5

þ 2r4Q
r6

;

ð5:6cÞ

V1=2 ¼
ν1=2
r2

−
ν1=2rS
r3

þ ν1=2r2Q
r4

∓
ffiffiffiffiffiffiffiffi
ν1=2

p
2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

rS
r
þ r2Q
r2

s �
2

r3
−
3rS
r4

þ 4r2Q
r5

�
: ð5:6dÞ

In Fig. 1, we show these potentials compared to the
Schwarzschild ones for the minimum possible angular
momenta l ¼ s and for rQ ¼ rS=3 (that is to say,
Q ¼ 2M=3).

C. Higher-dimensional black holes

Another simple case of tr-symmetric metrics describes
(4þ n)-dimensional BHs [14,15]. In this case, the geo-
metry is specified by

F ¼ G ¼ h≡ 1 −
�
rH
r

�
nþ1

; H ¼ r2; ð5:7Þ

where the horizon radius is3

rH ¼ 1ffiffiffi
π

p
M�

�
M
M�

�
1=ðnþ1Þ�8Γððnþ 3Þ=2Þ

nþ 2

�
1=ðnþ1Þ

; ð5:8Þ

2We, therefore, conclude that the master equation of [28] is not
valid for spin 2.

3Reference [14] assumes that these BHs satisfy lP ≪ rH ≪ R,
where lP is the Planck length, and R is the typical size of the extra
dimensions.
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and M2
P ∼Mnþ2� Rn defines the fundamental mass scale of

the theory. In this geometry, the massless potentials become

V0 ¼
ν0
r2

þ rnþ1
H ðnþ 1 − ν0Þ

rnþ3
−
ðnþ 1Þr2nþ2

H

r2nþ4
; ð5:9aÞ

V1 ¼
ν1
r2

−
ν1r

nþ1
H

rnþ3
; ð5:9bÞ

V2 ¼
ν2 þ 2

r2
−
ðν2 þ 2þ ðnþ 1ÞÞrnþ1

H

rnþ3
þ ðnþ 1Þr2nþ2

H

r2nþ4
;

ð5:9cÞ

V1=2¼
ν1=2
r2

−
ν1=2r

nþ1
H

rnþ3

∓
ffiffiffiffiffiffiffiffi
ν1=2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
rH
r

�
nþ1

s �
2

r2
−
ðnþ3Þrnþ1

H

rnþ3

�
: ð5:9dÞ

Note that these potentials describe the radiation truncated
to the four-dimensional ðt; r; θ;φÞ subspace and, in par-
ticular, do not describe the radiation within the extra
dimensions. In Fig. 2, we plot these potentials and compare
them to the Schwarzschild ones for n ¼ 2, M ¼ 1010MP,
and M� ¼ 10 TeV [15].

FIG. 1. Comparison of the potentials for a charged BH with rQ ¼ rS=3 (solid lines) and for the Schwarzschild metric (dashed lines).
The vertical black line represents the BH horizon.

FIG. 2. Comparison of the potentials for a higher-dimensional BH with n ¼ 2, M ¼ 1010MP, and M� ¼ 10 TeV (solid lines) and for
the Schwarzschild metric (dashed lines). The vertical black line denotes the BH horizon.
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D. Polymerized black holes

Interesting metrics that are not tr symmetric arise in loop
quantum gravity, where effective semiclassical corrections,
due to effects of quantum gravity, have been derived and
give rise to so-called polymerized BHs. There are many
proposals for deriving such BH metrics [18,19,21,55–58],
as we will review in the companion paper [50]. Here, for the
sake of the example and in order to compare with previous
results obtained in [44,46], we will focus on the particular
type of polymerized BHs, with [59]

F¼ ðr− rþÞðr− r−Þr4
ðrþ r�Þ2ðr4þa20Þ

; G¼ ðr− rþÞðr− r−Þðrþ r�Þ2
r4þa20

;

H¼ r2þa20
r2
: ð5:10Þ

Here, a0 is the area gap of loop quantum gravity, and the
radii are given by

rþ ¼ 2m≡ rH; r− ¼ 2mP2; r� ¼ ffiffiffiffiffiffiffiffiffiffi
rþr−

p
; ð5:11Þ

where P ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
− 1Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
þ 1Þ is the so-called

polymeric function, and the parameter m is related to the
so-called ADM massM byM ¼ mð1þ PÞ2. These polym-
erized BH solutions, therefore, have two free parameters,
which are a0 and ϵ. With these ingredients, the massless
potentials become

V0 ¼
ðr − rþÞðr − r−Þ

ðr4 þ a20Þ4
ðν0r12 þ ð2ν0r� þ rþ þ r−Þr11 þ ðν0 − 2Þr2�r10 þ 2a20ðν0 þ 5Þr8

þ 2a20ð2ν0r� − 5ðrþ þ r−ÞÞr7 þ 2a20r
2�ðν0 þ 5Þr6 þ a40ðν0 − 2Þr4 þ a40ð2ν0r� þ rþ þ r−Þr3 þ a40ν0r

2�r2Þ; ð5:12aÞ

V1 ¼ ν1
r2ðr − rþÞðr − r−Þðrþ r�Þ2

ðr4 þ a20Þ2
; ð5:12bÞ

V2¼
ðr− rþÞðr−r−Þ

ðr4þa20Þ4
ððν2þ1Þr12þð2ν2r� þ rþþ r−Þr11þðν2þ2Þr2�r10þa20ð2ν2−11Þr8

þ2a20ðν2r� þ5ðrþþ r−ÞÞr7þa20r
2�ðν2−10Þr6þa40ðν2þ1Þr4þa40ð2ν2r�− rþ− r−Þr3þν2a40r

2�r2þa60Þ; ð5:12cÞ

V1=2 ¼ ν1=2
r2ðr − rþÞðr − r−Þðrþ r�Þ2

ðr4 þ a20Þ2
�

ffiffiffiffiffiffiffiffi
ν1=2

p
2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðr − r−Þ

p
ðr4 þ a20Þ3

ððr4 þ a20Þ½r2ðrþ r�Þð2r − rþ − r−Þ

þ 2r2ðr − rþÞðr − r−Þ þ 2rðr − rþÞðr − r−Þðrþ r�Þ� − 8r5ðr − rþÞðr − r−Þðrþ r�ÞÞ: ð5:12dÞ

FIG. 3. Comparison of the potentials for a polymerized BH with ϵ ¼ 0.8 and a0 ¼ 10−10r2S (solid lines) and for the Schwarzschild
metric (dashed lines). The vertical black line denotes the BH horizon.
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In Fig. 3, we show these potentials compared to the
Schwarzschild ones for ϵ ¼ 0.8 and a0 ¼ 10−10r2S. For this
particular example, the spin 0 potentials almost coincide
because of the cancellation of most of the corrections due to
the choice of the angular mode l ¼ 0.

VI. CONCLUSION

In this paper, we have studied the dynamics of massless
fields of all spins in the general spherically-symmetric and
static black hole metrics (2.1), deriving a generic one-
dimensional radial Teukolsky equation. For the spin 1 and
spin 1=2 cases, we have computed the short-ranged
potentials, following the transformation developed by
Chandrasekhar, thus completing the existing literature on

spins 0 and 2. We have applied our general formalism to
three examples, namely charged black holes, higher-dimen-
sional black holes, and polymerized black holes (coming
from effective models of loop quantum gravity), and
compared them to the case of Schwarzschild black holes.
We have seen that the resulting potentials can largely
deviate from the Schwarzschild case, in particular, for spin
2 fields. The two main applications of these potentials are
the computation of quasinormal modes and Hawking
radiation. The latter will be the subject of the companion
paper [50], which will tackle the in-depth computation of
Hawking radiation for modified gravity black holes in order
to identify critical differences with the emission by a
standard Schwarzschild black hole.

APPENDIX: DETAILS ON THE RADIAL TEUKOLSKY EQUATIONS RADIAL TEUKOLSKY

In this Appendix, we give the detailed equations leading to the radial Teukolsky equations for all spins, which take the
general form (3.3). We recall that prime denotes a radial derivative.

1. Massive spin 0

The massive spin 0 field satisfies the equation of motion (2.4). Using the metric (2.1), this becomes

− ∂2
tϕþ G

H

�
1

sin θ
∂θðsin θ∂θÞ þ csc2 θ∂2

φ

�
ϕþ

ffiffiffiffiffiffiffi
FG

p

H
ð

ffiffiffiffiffiffiffi
FG

p
Hϕ0Þ0 þ Gm2

ϕϕ ¼ 0: ðA1Þ

Using the ansatz (3.1), the radial part decouples and becomes

�
ω2 þ Gm2

ϕ −
Gλ0l
H

�
Φ0 þ

ffiffiffiffiffiffiffi
FG

p

H
ð

ffiffiffiffiffiffiffi
FG

p
HΦ0

0Þ0 ¼ 0: ðA2Þ

This is the radial Teukolsky equation for a massive spin 0 field.

2. Massless spin 1

For the massless spin 1 field, Eq. (2.16) takes the explicit form,

− ∂2
tϕ0 þ

ffiffiffiffi
F
G

r �
G0 −

GH0

H

�
∂tϕ0 þ

�
1

sin θ
∂θðsin θ∂θÞ þ csc2 θ∂2

φ þ
2i cot θ
sin θ

∂φ − 1 − cot2 θ

�
ϕ0

þ
�
FG00 þ FGH00

2H
−
FG02

2G
þ FGH02

4H2
þ F0G0

2
þ F0GH0

4H
þ 7FG0H0

4H

�
ϕ0

þ 1

H2

ffiffiffiffi
F
G

r
ð

ffiffiffiffiffiffiffi
FG

p
GH2ϕ0

0Þ0 ¼ 0: ðA3Þ

Using the ansatz (3.1), the radial part decouples and becomes

�
ω2 þ iω

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þ FG00 þ FGH00

2H
−
FG02

2G
þ FGH02

4H2
þ F0G0

2
þ F0GH0

4H
þ 7FG0H0

4H
−
Gðλ1l þ 2Þ

H

�
Φ1

þ 1

H2

ffiffiffiffi
F
G

r
ð

ffiffiffiffiffiffiffi
FG

p
GH2Φ0

1Þ0 ¼ 0: ðA4Þ

This is the radial Teukolsky equation for a massless spin 1 field.
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3. Massless spin 2

For the massless spin 2 field, Eq. (2.18) takes the explicit form,

− ∂2
tψ0 þ 2

ffiffiffiffi
F
G

r �
G0 −

GH0

H

�
∂tψ0 þ

�
1

sin θ
∂θðsin θ∂θÞ þ csc2 θ∂2

φ þ
4i cot θ
sin θ

∂φ − 2 − 4 cot2 θ

�
ψ0

þ
�
2FG00 −

FGH00

H
−
FG02

G
þ 3FGH02

2H2
þ F0G0 −

F0GH0

2H
þ 9FG0H0

2H

�
ψ0

þ 1

GH3

ffiffiffiffi
F
G

r
ð

ffiffiffiffiffiffiffi
FG

p
G2H3ψ 0

0Þ0 ¼ 0: ðA5Þ

Using the ansatz (3.1), the radial part decouples and becomes

�
ω2 þ 2iω

ffiffiffiffi
F
G

r �
GH0

H
− G0

�
þ 2FG00 −

FGH00

H
−
FG02

G
þ 3FGH02

2H2
þ F0G0 −

F0GH0

2H
þ 9FG0H0

2H
−
Gðλ2l þ 4Þ

H

�
Φ2

þ 1

GH3

ffiffiffiffi
F
G

r
ð

ffiffiffiffiffiffiffi
FG

p
G2H3Φ0

2Þ0 ¼ 0: ðA6Þ

This is the radial Teukolsky equation for a massless spin 2 field.

4. Massless spin 1=2

For the massless spin 1=2 field, Eq. (2.21) takes the explicit form,

− ∂2
t χ0 þ

1

2

ffiffiffiffi
F
G

r �
G0 −

GH0

H

�
∂tχ0 þ

�
1

sin θ
∂θðsin θ∂θÞ þ csc2 θ∂2

φ þ
i cot θ
sin θ

∂φ −
1

2
−
1

4
cot2 θ

�
χ0

þ
�
FG00

2
þ FGH00

2H
−
FG02

4G
þ F0G0

4
þ F0GH0

4H
þ 3FG0H0

4H

�
χ0

þ 1

H

ffiffiffiffi
F
H

r
ð

ffiffiffiffiffiffiffiffi
FH

p
GHχ00Þ0 ¼ 0: ðA7Þ

Using the ansatz (3.1), the radial part decouples and becomes

�
ω2 þ iω

1

2

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þ FG00

2
þ FGH00

2H
−
FG02

4G
þ 3FG0H0

4H
þ F0G0

4
þ F0GH0

4H
−
Gðλ1=2l þ 1Þ

H

�
Φ1=2

þ 1

H

ffiffiffiffi
F
H

r
ð

ffiffiffiffiffiffiffiffi
FH

p
GHΦ0

1=2Þ0 ¼ 0: ðA8Þ

This is the radial Teukolsky equation for a massless spin 1=2 field.

5. Massless spin 3=2

For the massless spin 3=2 field, Eq. (2.23) takes the explicit form,

− ∂2
t H0 þ

3

2

ffiffiffiffi
F
G

r �
G0 −

GH0

H

�
∂tH0 þ

�
1

sin θ
∂θðsin θ∂θÞ þ csc2 θ∂2

φ þ
3i cot θ
sin θ

∂φ −
3

2
−
9

4
cot2 θ

�
H0

þ
�
3FG00

2
−
3FG02

4G
þ 3FGH02

4H2
þ 3F0G0

4
þ 3FG0H0

H

�
H0

þ 1

GH2

ffiffiffiffi
F
H

r
ð

ffiffiffiffiffiffiffiffi
FH

p
G2H2H0

0Þ0 ¼ 0: ðA9Þ

Using the ansatz (3.1), the radial part decouples and becomes
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�
ω2 þ iω

3

2

ffiffiffiffi
F
G

r �
GH0

H
−G0

�
þ 3FG00

2
−
3FG02

4G
þ 3FGH02

4H2
þ 3F0G0

4
þ 3FG0H0

H
−
Gðλ3=2l þ 3Þ

H

�
Φ3=2

þ 1

GH2

ffiffiffiffi
F
H

r
ð

ffiffiffiffiffiffiffiffi
FH

p
G2H2Φ0

3=2Þ0 ¼ 0: ðA10Þ

This is the radial Teukolsky equation for a massless spin 3=2 field.
Using the master Newman-Penrose (NP) equation (2.24) directly, one can obtain a master Teukolsky equation for spins

s > 0, which can be written under the form,

−
H
G
∂2
tΦþ s

ffiffiffiffi
F
G

r �
H
G0

G
−H0

�
∂tΦþ FH∂2

rΦs þ
�
F0H
2

þ ðsþ 1=2ÞFG
0H

G
þ ðsþ 1ÞFH0

�
∂rΦs

þ
�

1

sinðθÞ ∂θðsinðθÞ∂θÞ þ
2is cotðθÞ
sinðθÞ ∂φ þ

1

sinðθÞ2 ∂
2
φ − s − s2 cotðθÞ2ÞΦs þ

�
s
FG00H
G

þ 3s − 2s2

2
FH00 −

s
2

FG02H
G2

þ 2s2 − s
4

FH02

H
þ s
2

F0G0H
G

þ 3s − 2s2

4
F0H0 þ 2s2 þ 5s

4

FG0H0

G

�
Φs ¼ 0

⇔

ffiffiffiffi
F
G

r
1

ðGHÞs ∂rð
ffiffiffiffiffiffiffi
FG

p
ðGHÞsH∂rΦsÞ þ

�
H
G
ω2 þ isω

ffiffiffiffi
F
G

r �
H0 −H

G0

G

�
þ s

FG00H
G

þ sð3 − 2sÞ
2

FH00

−
s
2

FG02H
G2

þ sð2s − 1Þ
4

FH02

H
þ s
2

F0G0H
G

þ sð3 − 2sÞ
4

F0H0 þ sð2sþ 5Þ
4

FG0H0

G
− λsl − 2s

�
Φs ¼ 0; ðA11Þ

where we have used the ansatz (3.1) to obtain the final expression. One can observe that this equation is also valid for s ¼ 0,
as shows a comparison with Eq. (A2).
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