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2LAPTh, Université Savoie Mont Blanc, CNRS, BP 110, F-74941 Annecy-le-Vieux, France
3Centre for High Energy Physics, Indian Institute of Science,

C.V. Raman Avenue, Bangalore 560012, India
4Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India

5Institute of Theoretical Physics, School of Physics, Dalian University of Technology,
Dalian 116024, People’s Republic of China

(Received 20 February 2021; accepted 13 August 2021; published 5 October 2021)

The present paper is the first in a series that addresses the calculation of the full one-loop corrections of
dark matter (DM) annihilation cross sections in the low mass region of the inert doublet model (IDM). This
series is a sequel to our recent publication concerning these corrections in the high mass region. We first
review the renormalization of the model both in a fully on shell (OS) scheme as well as in a mixed scheme
that combines on shell (for the masses) and a MS approach when the partial invisible width is closed and
does not allow the use of a full OS scheme. The scale dependence introduced by the mixed scheme is shown
to be tracked through an analysis of a parametrization of the tree-level cross section and the β constant of a
specific coupling; this analysis could be followed in theories. We discuss how to minimize the scale
dependence. The theoretical uncertainty brought by the scale dependence leads us to introduce a new
criterion on the perturbativity of the IDM. This criterion further delimits the allowed parameter space,
which we investigate carefully by including a host of constraints, both theoretical and experimental,
including in particular, new data from the LHC. We come up with a set of benchmark points that cover three
different mechanisms for a viable relic density of DM: (i) a dominance of coannihilation into a fermion pair,
(ii) annihilation into two vector bosons of which one is off shell that requires the calculation of a 2 → 3

process, (iii) annihilation that proceeds through the very narrow standard model Higgs resonance. Since the
2 → 3 vector boson channel features in all three channels and is essentially a buildup on the simpler
annihilation to OS vector bosons, we study the latter in detail in the present paper. We confirm again that the
corrected cross sections involve a parameter that can be considered as rescattering in the dark sector, which
a tree-level computation is not sensitive to. The setup of the renormalization detailed in the present paper
will be the backbone of the accompanying papers where each mechanism requires, calculationally, a
specific treatment. One-loop corrections to 2 → 3 processes for DM annihilation are technically
challenging and have not been attempted before. We dedicate one of the accompanying papers to such
a computation. The one-loop correction in the presence of a resonance will be presented separately since we
need to supplement our general schemes with a complex scheme. For the coannihilation into fermions, our
study will show that the annihilation cross sections can be excellently parametrized through simple
effective couplings.

DOI: 10.1103/PhysRevD.104.075002

I. INTRODUCTION

Cosmology has entered the era of precision measure-
ments. One suchmeasurement is the inferred relic density of
dark matter (DM) that is now determined at the percent level
[1]. For a particle physicist, such an accuracy is reminiscent
of the one achieved at Large Electron Positron Collider
(LEP). In turn, on the theory side, this level of accuracy
requires that observables be computed with a precision on
par with the experimental precision or even better. Given the
cosmological model for the thermodynamics/evolution of
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theUniverse and amodel ofDM, the computation of the relic
density of DM involves the calculations of annihilation
rates. While, unfortunately, no sign of a model of DM has
emerged either in direct detection or at the colliders, many
models have been proposed, and a huge amount of work has
been dedicated to the search and study of these models. Yet,
despite the central role that the very precise measurement of
the relic density plays in constraining the phenomenology of
these models, only a few examples have provided the
calculation of the annihilation rates beyond the leading
order, tree-level approximation. Most of these examples
concerned the minimal supersymmetric standard model
(MSSM), including full electroweak [2–10] and QCD
corrections [3,11–17]. Sommerfeld effects [18–29] and
Sudakov effects [30–33] that are of importance for TeV
DMannihilation, especially for indirect detection [2,34–40],
have been computed for a variety ofmodels.Next-to-leading
order (NLO) corrections to DM direct detection have been
calculated in some cases [41–51]. In this series of papers, we
will tackle the computation of many annihilation rates that
occur in different viable scenarios of the inert double model
(IDM) [52–54], in particular the lowmass DM region in this
model, beyond the tree-level approximation. This is a
continuation of the work we initiated in [10] to cover the
heavy DM scenario, 500 GeV to 1 TeV, which complements
important nonperturbative electroweak Sommerfeld effects
[18–20,23,29] that are relevant beyond the TeV scale. As far
as corrections affecting the annihilation cross sections are
concerned, let us add a few words about (possible) temper-
ature corrections. It has been shown quite sometime ago [55]
that the temperature corrections are totally negligible, at
least in the freeze-out scenario that will be our main
application. This issue has been reassessed [56,57] more
recently in conjunction with infrared divergences. The latter
not only cancel at a finite temperature, but their thermal
effect is again totally negligible, so that we only need to
make sure that infrared divergences cancel at zero temper-
ature as we will do in this study.
The IDM, with its possible link between the Higgs sector

and DM [54], has enjoyed some popularity [23,46,58–93],
but its structure beyond the tree level has been looked
at only for some specific applications or conditions [46,51,
54,75,94–106]. In order to perform one-loop calculations,
for any process in the IDM, and in particular, for DM
annihilation into standard model (SM) particles, we need a
full and coherent renormalization program for the IDM.
Here, we present the details of our renormalisation
schemes. We underline many important features that we
believe will be very useful not only in studying DM
annihilation in the IDM but also in studying the renorm-
alization of models beyond the standard model (BSM).
Having obtained the one-loop corrected, velocity depen-

dent, annihilation cross sections, we will need to convert
them into a prediction for the relic density. This conversion
will be carried out in the context of the freeze-out scenario.

We will interface our improved rates with the widely used
micrOMEGAs code [107], where the numerical accuracy of
the convolution is better than the percent, given sufficient
values of the cross sections across the relative velocity
range. We stress that the aim of our study is to give as
precise theoretical predictions of the annihilation cross
sections, and subsequently, to the relic density, assuming
the freeze-out mechanism.
Independently of the size of the corrections of the one-

loop calculation of the cross sections and, as we will see,
the interesting new indirect effects that the latter brings, the
necessity of a renormalization program forces one to give a
physical definition to the minimal set of (independent)
input parameters that define model. This elevates some
parameters, from mere parameters at the Lagrangian level
to physical input parameters defined from physical observ-
ables, generally defined at some scale whose dependence
we can study. The theoretical uncertainty associated to the
scale choice is another facet of the uncertainty that arises
from the parametric uncertainty. The latter derives from the
uncertainty on the value of the input parameters even if the
latter were reconstructed from, say collider, experimental
observables. A scan on the parameters of the Lagrangian, as
has been the tradition for tree-level analyses of new physics
models, usually projected on a map, does not provide a
meaningful measure of such uncertainties. Improving the
theoretical precision and finding how large these correc-
tions can be is one aim of this series. This goes hand in
hand with setting up and developing the techniques to make
such precision calculations possible as we will do here and
in the next articles in the series, in more detail. Of course, as
with any theory, and more so for a model of new physics,
the inherent parametric uncertainty is important: a change
in a parameter will shift the value of the relic density for
example. A strategy of how precisely some key parameters
need to be measured to match the precision of the relic
density has been laid out by one of us in [108] in the
framework of the MSSM. This strategy can be trivially
adopted for the IDM. Considering the present precision on
the relic density and precision from future runs of the LHC
(and from possibly other facilities), such studies require
theoretical precision calculations. Take the SM alone, at
tree level, it predicts the same value for the angle (sin2 θW)
derived from the mass ratio of weak neutral and charged
weak bosons as the one derived from the asymmetries at Z
peak. Radiative corrections change that relation dramati-
cally. Likewise, as will be shown in this series, the
parameter dependence for the one-loop improved analyses
of the relic density is larger than that based on tree-level
calculations; a crucial parameter of the IDM model only
appears at one-loop. This indirect effect is akin to the
indirect dependence of LEP observables on the top and
Higgs masses. These theoretical indirect effects will be
qualitatively weighed. Radiative corrections, independent
of their size, to the relic density that we will conduct in the
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IDM, is a first necessary step to study many of these
interesting aspects.
As has only recently been uncovered, the small (DM)

mass region consists in fact of three subregions, whose
characteristics we confirm in this study. The main produc-
tion mechanism is quite different in these three-regions
which, at the one-loop level, call for rather different and
sophisticated computational techniques. Since these tech-
niques are rather involved, the details of the calculations
and the discussions are kept separate in three accompany-
ing papers. To unravel the one-loop features, for each one
of these subregions, we perform the full one-loop electro-
weak corrections for two or three benchmark points chosen
in each subregion in order to illustrate the fact that our
results generalize to other benchmarks of the subregions.
Still, for those wishing to perform a one-loop calculation
for scattering processes in the IDM, we provide the
necessary model files. The corrected cross sections, either
those we have studied in these series with the freeze-out
mechanism, could then be interfaced with micrOMEGAs

or any alternative code for conversion of the annihilation
rates to DM observables or in conjunction with colliders
observables.
The plan of this first, parent paper in the series is as

follows. In the next section, Sec. II, we briefly describe the
model. This will bring forth the meaning of the physical
parameters (rather than the parameters of the underlying
Lagrangian). This will then set the stage to Sec. III on
renormalization where we strive as much as possible to take
an on shell (OS) scheme, which will use the physical
masses of the model and the partial width of the SM Higgs
boson to a pair of DM. Even in the narrow range of masses
for the IDM that we will study here, a fully OS scheme is
not possible when the latter’s partial width is kinematically
closed. In this case, we advocate a mixed OS-MS scheme.
This mixed scheme introduces a scale dependence, but we
will show, on a simple example first, how to track the scale
dependence through the β constant of the associated
coupling and a knowledge of the tree-level dependence
on this coupling. This section will give us the opportunity
to present our automated code to conduct one-loop calcu-
lations and the means we have to check the correctness of
the results (switching between different choices of non-
linear gauge-fixing parameters [3,109] and ultraviolet
finiteness of the cross sections and decays). Section IV
is lengthy but necessary since we reanalyze all available
experimental data and theoretical arguments to delimit the
new parameter space of the model. The constraints include
new data on direct detection and also new data from the
LHC. We then propose a set of benchmark points, which
will be scrutinized further by computing their respective
relic density based on one-loop cross sections. We will see
how the relic density predictions compare with those
derived with tree-level cross sections. The thorough scan
of the parameter space reveals in fact three mechanisms that

permit a good DM candidate with a mass below the W
boson’s, MW . The features of these mechanisms are
summarized in Sec. V. They consist of (i) a narrow
coannihilation region driven essentially by gauge coupling,
(ii) annihilations driven essentially by the SM Higgs
resonance, and (iii) annihilations into three-body final
states, Wff̄0, Zff̄ built up (mainly) on WW⋆, ZZ⋆
(W⋆; Z⋆ denote the off shell vector bosons, a notion which
will become clearer when we study the 2 → 3 processes).
The technicalities involved in these three mechanisms are
quite different, and this is the reason we decided to present
the calculations in these three cases in three separate
publications for more clarity and readability. In particular,
(ii) and (iii) are very challenging. This is the first time that
annihilation of DM to three particles is conducted at one
loop. Renormalization and loop corrections in the presence
of a resonance require extreme care; in fact, our paper [110]
on the mechanism of annihilation through a Higgs can
serve as a good example for many other BSM processes.
Very subtle issues about renormalization beyond what is
presented in the parent paper of the series will be high-
lighted in [110]. Moreover, even in the so-called coanni-
hilation scenario [111], there is a small (but non-negligible)
contribution that proceeds through annihilation to three-
body final state. A contribution fromWff̄0 will also feature
in the Higgs resonance mechanism. This is one of the
reasons why, before tackling the challengingWff̄0; Zff̄ in
[112], the present paper studies in Sec. VII, as a warm-up,
the annihilation to a pair of on shellWþW− and ZZ, even if
phenomenologically they lead to underabundance. Another
reason is that in this mass range, a fully OS scheme is not
possible, and we need to use the mixed scheme. We
therefore study the scale dependence of these annihilation
cross sections and suggest an optimal scale for such
processes thereby putting a conjecture, we make for the
Higgs decay in this paper and for other processes else-
where, on more solid ground. This study will also reveal
that certain choices of parameters lead to too large scale
dependence and even a breakdown of perturbativity in the
sense of the loop expansion. We propose a criterion to
avoid such configurations, a criterion that goes beyond the
perturbativity argument used in our constraints in Sec. IV.
This helps reduce the number of the benchmark points we
use in the accompanying papers of this series. In Sec. VI,
we go over how our calculations are set up by going
through the different steps and interfaces as well as how
we test the correctness of our computation. This will apply
also to the detailed calculations we perform in the accom-
panying papers. We end the present paper with a short
conclusion in Sec. VIII.

II. THE MODEL AND THE PARAMETERS

The IDM consists, in addition to the Standard Model
(SM) Higgs doublet Φ1, of an extra doublet of scalars Φ2

on which a discrete Z2 symmetry is imposed. This
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symmetry entails thatΦ2 is odd while all other fields (of the
SM) are even. As a consequence, this symmetry guarantees
the stability of the lightest of the scalars of the Φ2 doublet.
If the latter is neutral, it qualifies as a possible dark matter
candidate. Another important upshot of this symmetry is
that these extra scalar fields in Φ2 cannot couple to
fermions, at least through renormalizable operators.
Keeping only renormalizable operators, the scalar sector
is therefore modified to

Lscalar
IDM ¼ ðDμΦ1Þ†DμΦ1 þ ðDμΦ2Þ†DμΦ2 −VIDMðΦ1;Φ2Þ;

ð2:1Þ

with

VIDMðΦ1;Φ2Þ ¼ μ21jΦ1j2 þ μ22jΦ2j2 þ λ1jΦ1j4 þ λ2jΦ2j4
þ λ3jΦ1j2jΦ2j2 þ λ4ðΦ†

2Φ1ÞðΦ†
1Φ2Þ

þ
�
λ5
2
ðΦ†

1Φ2Þ2 þ H:c:

�
: ð2:2Þ

μi and λi are real and Dμ is the covariant derivative.
We parameterize the doublets as

Φ1 ¼
� Gþ

1ffiffi
2

p ðvþ hþ iG0Þ
�

and Φ2 ¼
� Hþ

1ffiffi
2

p ðXþ iAÞ
�
;

ð2:3Þ

where v is the SM vacuum expectation value (vev) with
v ≃ 246 GeV, defined from the measurement of the W
(MW) and Z (MZ) masses. We have

s2W≡sin2θW ¼1−
M2

W

M2
Z
; MW ¼1

2

e
sW

v;

�
v¼2MWsW

e

�
;

ð2:4Þ

where e is the electromagnetic coupling. The SUð2Þ gauge
coupling, g, and the hypercharge gauge coupling, g0,
are then

g ¼ e=sW; g0 ¼ e=cW: ð2:5Þ

h is the SM Higgs boson (with a mass Mh ¼ 125 GeV),
and G0; G� are, respectively, the neutral and the charged
Goldstone bosons. X and A are the new neutral physical
scalars1 and H� is the charged physical scalar. While both
X and A are possible DM candidates, the physics is the
same through the interchange ðλ5; XÞ ↔ ð−λ5; AÞ. In these
series of papers we take, for definiteness, X as the DM

candidate. Note that, in order to avoid any confusion
between the neutral scalars of the model, we have labeled
the fields differently than in our previous paper [10].
It is much instructive to revert to the description of the

model through the physical parameters, especially when we
will be seeking, as much as possible, an on shell renorma-
lization of the model based on physical observables. In
particular, the parameters of the potential can be translated
to the physical masses of the scalars,

M2
h ¼ 2λ1v2; ð2:6Þ

M2
H� ¼ μ22 þ λ3

v2

2
; ð2:7Þ

M2
X ¼ μ22 þ λL

v2

2
¼ M2

H� þ ðλ4 þ λ5Þ
v2

2
; ð2:8Þ

M2
A ¼ μ22 þ λA

v2

2
¼ M2

H� þ ðλ4 − λ5Þ
v2

2
¼ M2

X − λ5v2;

where λL=A ¼ λ3 þ λ4 � λ5: ð2:9Þ

Unfortunately, the masses do not provide enough input
to determine all the independent parameters of the poten-
tial. First of all, λ2 is a parameter that describes the
interaction solely within the dark sector X; A;H�.
Therefore, at tree level, the SM particles are insensitive
to this parameter even in their interaction with the dark
sector particles X; A;H� particles. Nonetheless, as we will
see, one-loop observables will depend on this parameter
that describes scattering/rescattering in the DM sector.
Second, to fully define an observable, we still need an
extra parameter, μ2, λ3, or alternatively, λL. The latter seems
to be the most appropriate combination since it has a direct
physical interpretation. Indeed, the coupling of the SM
Higgs boson, h, to a pair of DM is (at the amplitude level)
given by

A0
hXX ¼ −λLv: ð2:10Þ

The superscript 0 relates to the tree-level definition. In lieu
of the mass term, μ22, we take λL as an input parameter.
The parameters of the potential in Eq. (2.2) can then be
reconstructed from the input parameters (Mh;MX;MA;
M�

H; λL) as

λ1 ¼
M2

h

2v2
; ðλ1 ∼þ0.129Þ;

λ5 ¼
M2

X −M2
A

v2
;

λ4 ¼ λ5 þ 2
M2

A −M2
H�

v2
;

λ3 ¼ λL − λ4 − λ5 ð2:11Þ
1Since these additional scalars do not couple to the fermions

(of the SM), we can not assign them definite CP numbers. By an
abuse of language, we will, nonetheless, call A the pseudoscalar.
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�
μ22 ¼ M2

X − λL
v2

2
→ λL ¼ 2ðM2

X − μ22Þ
v2

�
: ð2:12Þ

μ2 is a redundant parameter. As mentioned earlier, λ2 is a
parameter, which, at tree level is not accessible since it
describes the interactions solely within the dark sector. To
define any benchmark and in view of the OS scheme for the
renormalization of the IDM that we advocate, apart from
the SM parameters, the input (physical) parameters we
choose are

MX;MA;MH� ; λL; ðλ2Þ: ð2:13Þ

It is instructive to make the following comments which
will prove helpful later. When the DM candidate, X, is
almost degenerate in mass with A, coannihilation may be
important. This scenario requires λ5 ∼ 0. In another limit,
MH� ¼ MA, the electroweak custodial symmetry parameter
T vanishes at one loop, even when MA;MH� are large.
In this limit, with MA;H� > MX, λ4 ¼ λ5 ¼ −λ < 0 (with
λ > 0). As we will see later, direct detection will impose
that λL ≪ 1, which means that λ3 ∼ 2λ when the custodial
symmetry is imposed.

III. RENORMALIZATION OF THE MODEL

A. Automation of the calculation

New model files for the IDM2 allowing different
schemes for the renormalization of the model, to which
we turn shortly, have been added to SloopS [2–6,8–10,
113,114]. SloopS, our automated code for the calculation
of tree-level and one-loop observables relies on the bundle
of packages based on FeynArts [115], FormCalc [116], and
LoopTools [117], that we refer to as FFL for short. A few
improvements to LoopTools [2] have been made over the
years. A key component is the generation of the model file
(with counterterms and renormalization conditions) made
possible with LanHEP [118,119] judiciously interfaced with
the bundle FFL. We have exploited this approach success-
fully for the SM, the full renormalization of all sectors of
the MSSM [3,4,8], the next-to-minimal supersymmetric
standard model (NMSSM) [114], and a singlet extension of
the SM [9]. The code has been thoroughly checked and
allows many tests on the correctness of the results,
including tests on the ultraviolet finiteness (for loop
calculations) and very importantly, on gauge parameter
independence of the results both at tree level and at loop
level; see III C below. The code is optimized also for DM

annihilation cross section such that it inputs directly the
result for σv, where σ is the annihilation cross section and v
is the relative velocity of the annihilating particles. This
avoids potential instabilities when specializing to v → 0
had the output been σ.

B. The SM parameters

The SM part of the IDM is renormalized exactly in the
same way as what has become standard practice in one-
loop calculations of electroweak observables [114]. This
calls for an OS scheme whereby the fermion masses as well
as the mass of the W, MW ¼ 80.449 GeV, the Z, MZ ¼
91.187 GeV, and the Higgs boson, Mh ¼ 125 GeV, are
taken as input physical masses. For the SM, the tadpole,
Tad ¼ vðμ21 − λ1v2Þ (at tree level) is required to vanish at all
orders. The electric charge is defined in the Thomson limit;
see [3]. The light quark (u, d, s, c) masses, mu ¼ md ¼
66 MeV, ms ¼ 150 MeV, mc ¼ 1.6 GeV, are taken as
effective quark masses that reproduce the SM value of
α−1ðM2

ZÞ ∼ 128.907. Use of the latter effective coupling
can, in many instances, amount to about 13% correction
compared to the use of α ¼ αð0Þ ¼ 1=137.036. Since it is
αðM2

ZÞ that is used as the default value3 of the effective
coupling in the tree-level evaluation of micrOMEGAs [107,
120–122], we will investigate whether implementing the
numerical value αðM2

ZÞ instead of α in tree-level cross
sections can account for a significant part or the full one-
loop correction. For a portion of the allowed parameter
space of the IDM, the relic density is driven almost entirely
through the SM Higgs resonance for which h → bb̄ is
dominant. We will therefore take an effective b-quark mass
that (at tree level) reproduces very well the dominant partial
width to bs and the total SM Higgs width. In fact, for such a
scenario, we adapt the renormalization of the Higgs mass to
include its width as well. We give more details [110] on this
subtle but very important issue when we describe the
processes for the DM annihilation that we will be dealing
with. The top mass is taken as mt ¼ 174.3 GeV.

C. Gauge fixing

We take a nonlinear gauge fixing term [2,3,109] that still
preserves the Z2 symmetry. We take these gauge fixing
terms to be renormalized. In particular, the gauge functions
involve the physical fields. Although this will not make all
Green’s functions finite, it is enough to make all S-matrix
elements finite. With Aμ, the photon field, we write the
gauge fixing as

2The model files can be downloaded from the wikipage https://
lapth.cnrs.fr/projects/PrecisionCalculations/. They are provided
for those who would like to conduct further precision analyses of
the IDM in accord with the renormalization we explicit in this
section. The present subsection explains which other codes are
needed to run SloopS. Section VI will give the different steps to
arrive at the derivation of the relic density.

3We stress this point in case users of micrOMEGAs attempt
to compare the tree-level results we quote in this series of
papers with the output of their runs with the default SM values
of the input parameters in micrOMEGAs. We can of course run
micrOMEGAs with αð0Þ.
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LGF ¼ −
1

ξW
FþF− −

1

2ξZ
jFZj2 − 1

2ξγ
jFAμ j2; ð3:1Þ

where

Fþ ¼
�
∂μ − ieα̃γμ − ie

cW
sW

β̃Zμ

�
Wμþ

þ iξW
e

2sW
ðvþ δ̃hþ iκ̃G0ÞGþ;

FZ ¼ ∂μZμ þ ξZ
e
s2W

ðvþ ϵ̃hÞG0;

FAμ ¼ ∂μAμ: ð3:2Þ

The ghost Lagrangian LGh is derived through the use
of the BRST transformation, see [109], which leads to an
easy implementation in the automated code SloopS. We
specialize to the case ξW ¼ ξZ ¼ ξγ ¼ 1 in order that the
gauge propagators retain the simple form of the usual
Feynman gauge, but the nonlinear gauge furnishes enough
parameters (α̃;…ϵ̃) on which to carry out the gauge
parameter dependence of the amplitude for further checks
on the correctness of the calculation beside the ultraviolet
finiteness tests. We perform gauge parameter independence
checks on all cross sections and decays we calculate with
SloopS in this series of papers.

D. On shell renormalization for the masses
of the IDM scalars

The renormalization of the IDM is technically quite
straightforward since the new scalars, A, X, and H�, do not
mix, nor do they mix (1 → 1 transition) with those of the
SM, including the Goldstones, because of the Z2 symmetry.
Shifts on the parameters of the potential, which get
translated into counterterms, δλi, for the λi (and μ2) as
well as shifts on the fields through wave function renorm-
alization constants (δZ), are introduced. In the OS scheme,
the masses of the physical scalars, ϕ (ϕ ¼ X; A;H�), are
defined from the pole position of the one-loop correspond-
ing self-energy Σϕϕðk2Þ, where k is the momentum carried
by ϕ. We also require that the residue at the pole of these
particles be properly normalized to unity. The conditions on
the counterterms are then

δM2
ϕ ¼ ReΣϕϕðM2

ϕÞ; ð3:3Þ

δZϕ ¼ −Re
∂Σϕϕðk2Þ

∂k2
����
k2¼M2

ϕ

: ð3:4Þ

E. λL: MS and OS

We use the full h → XX amplitude to define λL. At tree
level, the amplitude is given by Eq. (2.10). It serves to
generate (and define) the counterterms for the one-loop

amplitude. The latter also includes the contributions of the
one-loop diagrams such that the full renormalized one-loop
amplitude is momentum dependent. The full one-loop
renormalized amplitude (when the threshold is open) for
hðQ2Þ → Xðp2

1ÞXðp2
2Þ of the SM Higgs, h, with momen-

tum Q to a pair of the DM X with momenta p1, and p2

writes as

Aren
hXXðQ2;p2

1;p
2
2Þ¼−

�
vδλLþλLδvþλLv

�
1

2
δZhþδZX

��
þA1PI

hXXðQ2;p2
1;p

2
2Þ; ð3:5Þ

where A1PI
hXXðQ2; p2

1; p
2
2Þ is the full one-loop one-particle

irreducible vertex. δλL is the counterterm for λL for which
we are seeking a renormalization condition, δZh is the SM
wave function renormalization and δZX is the wave
function renormalization for the DM particle, X. δv is
the counterterm for v [defined through e;MZ;MW in
Eq. (2.4)]. When the threshold for the ziggs decay to
XX is open, we set Q2 ¼ M2

h and p2
1 ¼ p2

2 ¼ M2
X and

require that the full one-loop correction to this partial width
is zero, defining a gauge invariant OS counterterm for λL as

δOSλL ¼ A1 PI
hXXðQ2 ¼ M2

h;M
2
X;M

2
XÞ

v

− λL

�
δv
v
þ 1

2
δZh þ δZX

�
for Mh > 2MX:

ð3:6Þ

Another gauge invariant but scale dependent scheme
valid even when the decay threshold is closed, is to use a
MS definition, where only the (mass independent term)
ultraviolet divergent part is kept.

δMSλL¼
�
A1PI

hXXðQ2;M2
X;M

2
XÞ

v
−λL

�
δv
v
þ1

2
δZhþδZH

��
∞

for anyQ2: ð3:7Þ

In our code, δOSλL in Eq. (3.6) and δMSλL in Eq. (3.7) are
extracted exactly by evaluating the amplitude h → XX and
constructing the above equations.
In our previous paper, dealing with the heavy DM

scenario [10], we did mention the possibility of using as
input another, OS observable to define the λL counterterm.
Formally, the scattering of a quark, q, and the DM, X,
Xq → Xq involves, as a subset, the exchange of the SM
Higgs boson. The matrix element of such a process is
therefore sensitive to λL. This is exactly what is at play in
direct detection, where the exchange occurs at very small
Q2 ∼ 0 GeV2. However, this is impractical. At the level of
the nuclear matrix elements that enter the detection rate,
many other contributions need to be evaluated (gluonic
contributions, …), and large uncertainties have to be taken
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into account such that the extraction of the effective
coupling hXX will not be fit for an input for a precision
calculation, let alone that the effective coupling refers to a
scale Q2 ∼ 0, which is far removed from typical scales
where cross sections for DM annihilation take place. In
Ref. [46], a very interesting proposal for defining the λL
counterterm was made. In essence, it is suggested that, for
MX ¼ Mh=2, one could use the measured value of the relic
density itself. In this extremely narrow range of the DM
mass, the relic density is extremely sensitive to λL.
Assuming nonresonant contributions to be negligible, this
amounts to isolating the h → XX decay amplitude. This in
turn provides a way of calculating radiative correction to
direct detection.4 Away from MX ¼ Mh=2, a scale depend-
ence is introduced but more importantly, there is an issue
with the nonresonant contributions in the relic density
calculation, which were not estimated. We prefer therefore
the use of the h → XX amplitude, which isolates the λL
parameter unambiguously.

F. The β constant for βλL
The coefficient of the ultraviolet divergent part is nothing

but the one-loop β constant for λL,

δMSλL ¼ 1

32π2
β̃λLCUV; CUV ¼ −

2

ε
− 1þ γE − lnð4πÞ;

ð3:8Þ

where ε ¼ 4 − d with d being the number of dimensions in
dimensional regularization and γE is the Euler-Mascheroni
constant. Or, keeping μdim, the scale introduced by dimen-
sional regularization [which goes hand in hand with the
lnð4πÞ term as lnð4πμ2dimÞ], the scale, Q2, dependence
through the parameter λL also writes as

32π2
∂λL

∂ lnðQ2Þ ¼ −32π2
∂λL

∂ lnðμ2dimÞ ¼ β̃λL : ð3:9Þ

The analytical formulas for the β constants of the IDM
have been adapted from those of the general two Higgs
doublet model (2HDM) [94,123] and can be found in
[71,98]. For our purposes, we have reformulated them for
λL, taking into account the scalar(s), the gauge (g) and the
Yukawa (Y) contributions as

β̃λL ¼ β̃ðgÞλL
þ β̃ðsÞλL

þ β̃ðYÞλL
; ð3:10Þ

with

β̃ðgÞλL
¼ −3λLð3g2 þ g02Þ þ 3

4
ð3g4 þ g04 þ 2g2g02Þ;

β̃ðsÞλL
¼ 4λLðλL þ 3ðλ1 þ λ2ÞÞ − 4ðλ1 þ λ2Þðλ4 þ 2λ5Þ
þ 2ðλ24 þ 2λ4λ5 þ 3λ25Þ;

β̃ðYÞλL
¼ 4λL

X
f¼all fermions

Nf
C

m2
f

v2
: ð3:11Þ

Here, mf is the mass of the fermion, f, and Nf
c is its

corresponding color factor (3 for quarks and 1 for leptons).
For small λL, the Yukawa contribution is tiny, and the
largest contribution is from the top quark. We find excellent
agreement (in fact perfect agreement with machine pre-
cision) between these analytical formulas and those
extracted from our code according to Eqs. (3.7), (3.8).
An important observation here is that Eq. (3.11) shows that
even if λL ¼ 0, a one-loop induced λL is generated. Also,
while λ2 is a parameter residing solely in the dark sector and
is not involved at tree level in DM annihilation processes
to SM particles, it makes its effect felt at one loop with the
conclusion that a large scale variation due to λ2 can be
present apart from other contributions at one loop. In our
code, we can freely vary μ2dim to quantify the scheme
dependence in an MS scheme. Obviously, in a fully OS
scheme, the check on the UV finiteness of the result means
that there is no μ2dim dependence.

G. Scale dependence of the one-loop corrected
h → XX in the MS

At tree level, the partial width for Higgs decay to a pair of
DM, X, is expressed as

Γh→XX ¼ λ2Lv
2

32πMh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
X

M2
h

s
; ðMh > 2MXÞ; ð3:12Þ

showing that the parametric dependence on λL, a quadratic
dependence, of this observable is algebraically straightfor-
ward. This is the reason that this observable is chosen
as an input to define λL. Naturally, in the OS scheme, this
observable receives no correction.Nonetheless, aswewill see
later, based on present experimental constraints,whichmeans
that the Higgs partial decay rate to DM is way too small to be
measured, let alone be measured with good precision, one
may be forced to rely on an MS prescription. When
h → XX is closed, the use of the OS scheme is not possible,
and in this case, we have to study the scale uncertainty.
The purpose of this short interlude is to investigate which

scale choice may be considered the best, best in the sense of
minimizing the one-loop correction. In fact, Γh→XX provides
a good example. One can study this observable at one loop in
theMS and quantify how it deviates from the tree-level result
which is, by construction, the result of the OS scheme.
Knowing the λL dependence of an observable at tree level

4A variation on this proposal for the coannihilation region was
recently discussed in Ref. [51].
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and having at our disposal the βλL of the model, the scale
dependence can be derived analytically allowing to compare
the difference between two choices of scale, μ1 and μ2.
The λL dependence of Γh→XX is trivial. Indeed, from

Eq. (3.12), we have

δΓh→XX

Γh→XX
¼ 2

δλL
λL

; ð3:13Þ

which through Eq. (3.9) allows us to relate the one-loop
correction at scale μ2 to that at scale μ1 as

δΓh→XXðμ̄2Þ − δΓh→XXðμ̄1Þ
ΓðtreeÞ
h→XX

¼ −
1

8π2
β̃λL
λL

lnðμ̄2=μ̄1Þ: ð3:14Þ

As expected, an important lesson to always keep in mind
is that large β̃λL values induce large scale variations. For the
IDM, βλL depends also on λ2 which can contribute
significantly. These considerations are crucial. However,
they do not point to the most optimal choice of μ. The most
optimal choice of μ is the one that minimizes the full one-
loop correction. The latter will involve all scales of the
problem. Therefore, to investigate the issue of the optimal
scale, we need to consider a few examples calculating the
full one-loop correction.
For the purpose of this exercise, we take a value of λL

which is not too small in order not to induce unnaturally
large relative corrections. At this stage, we do not impose
experimental constraints on the parameter space. This is
studied in great detail, later. Our aim here is to see if there is
a trend for an optimal choice of the scale that we could then
advocate for other processes driving the relic density. We
consider three models that differ in the masses of A andH�.
With Mh ¼ 125 GeV, we keep MX ¼ 57 GeV for these
three models. These choices generate different hierarchies
for the scale of the problem. While λ2 is not needed to
calculate the tree-level decay, the value of λ2 is required at
one loop. We consider three values of λ2 for each point to
gauge the λ2 dependence, and we test various values of the
scale, μ, in relation with the scales that are involved in
the observable at one loop. It is important to observe that
the masses of the IDM act at two levels in the one-loop
result. Reinterpreted in terms of λi¼3;4;5;ðLÞ, they contribute

directly to the coefficient β̃λL as λ2 does, but unlike λ2, the
masses are involved in the arguments of the various one-
loop scalar functions.
Our results of the numerical full one-loop corrections

are shown in Table I. First of all, Eq. (3.14) is in perfect
agreement with the numbers given in Table I, where
we compare, for the same point, the correction between
two scales. This is another evidence of the correctness
of the implementation of the model and the numerical
computation.

The relevant scales of the problem are all the invariants
that are involved in the loop functions that enter the
radiative corrections. They include both the external
kinematical variables but also the internal masses called
in the loop calculations. The μdim dependence is tracked as
logðQ2

Δ=μ
2
dimÞ.QΔ is an effective collective scale which is a

combination of the scales involved in the (various) loops
entering the loop calculation. As argued at some length in
Ref. [114], if one of these scales is (much) larger than the
others, it should approximate QΔ.
One would expect that the typical scale for this decay is

Mh. Observe that in our case, Mh ∼ 2MX. Table I shows
that μdim ¼ Mh; 2MX is a good choice but only if
MA < Mh; 2MX. In particular, for the case (C) of Table I
whereMA is much larger thatMh and 2MX,MA is by far the
best choice for all values of λ2 confirming the general

TABLE I. One-loop corrections, δΓh→XX, to the partial decay
width of the SM Higgs boson (Mh ¼ 125 GeV) to pairs of DM,
X, with MX ¼ 57 GeV (all values for the widths are given in
MeV) in the MS scheme for different masses ofMH� andMA and
λ2, the coupling within the dark sector. The tree-level width of
this observable is 5.106 MeV. All masses (and scales) are in GeV.
For each set of parameters defining the IDM model, we give the
reconstructed λi parameters as well as the one loop β̃. The
parameters of the model are only illustrative and do not
necessarily pass the experimental constraints on the IDM. Entries
in bold represent corrections that represent more than 75% of the
tree-level value, while those that are also underlined lead to a total
width that turns negative.

(Model) λL; MA, MH� μdim λ2 ¼ 0. λ2 ¼ 1 λ2 ¼ 2

(A) 0.05; 106,106 Mh=2 0.90 1.48 2.05
λ4 ¼ λ5 ¼ −0.127;
λ3 ¼ 0.305

Mh −1.910−2 −1.36 −2.69

(β̃λL ¼ 1.03þ 2.13λ2) 2Mh −0.94 −4.18 −7.44
MX 1.02 1.85 2.68
2MX 0.10 −0.98 −2.06
200 −0.64 −3.28 −5.90

MA ¼ MH� 0.2 −0.68 −1.56

(B) 0.05; 138,138 Mh=2 1.73 4.47 7.20
λ4 ¼ λ5 ¼ −0.252;
λ3 ¼ 0.555

Mh 0.13 −0.38 −0.90

(β̃λL ¼ 1.78þ 3.63λ2) 2Mh −1.46 −5.23 −9.01
MX 1.95 5.11 8.28
2MX 0.35 0.26 0.17
200 −0.95 −3.67 −6.40

MA ¼ MH� −0.10 −1.07 −2.06

(C) 0.05; 170,200 Mh=2 6.51 15.5 24.4
λ4 ¼ λ5 ¼ −0.765,
λ3 ¼ 1.225

Mh 2.15 4.87 7.60

(β̃λL ¼ 4.86þ 6.94λ2) 2Mh −2.21 −5.71 −9.21
MX 7.08 16.9 26.6
2MX 2.72 6.28 9.83
MH� −0.81 −2.30 −3.80
MA 0.22 0.18 0.15
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observation made in [114] in the totally different context of
the NMSSM, where it was found that the largest scale
minimizes the correction. We must also keep in mind that
when MA is much larger than MX, βλL is larger (since λ3;4;5
are larger). It is therefore more important to choose MA as
the optimal μdim. As a rule of thumb, we advocate the
optimal scale to be μ ¼ maxðMh;MAÞ, Mh is the typical
(kinematical) scale of the process, while MA is the typical
internal scale. We find that it fares better than MH� . Scales
that are much smaller or much larger than the optimal scale,
for instance, MX;Mh=2; 2Mh, lead to large corrections. On
many instances these corrections are so large that the
calculations are not reliable.
We check this conjecture about the optimal scale also in

the study of the annihilation cross section of DM,
XX → SM. Considering the rather small velocities taking
part in the annihilation cross sections, 2MX will again
represent the typical kinematical scale to be compared
again with the internal mass, MA.

IV. PRESENT CONSTRAINTS ON THE
PARAMETER SPACE OF THE IDM

We quantify the effect of the one-loop corrections on the
annihilation cross sections in the IDM. We perform these
calculations on some benchmark points of the IDM. The
benchmark points need to pass several constraints. While
searching for benchmark points that satisfy all theoretical
and experimental constraints, we perform a numerical scan,
where all the constraints that we discuss in this section are
implemented numerically without any approximation, by
running different codes and routines. Nonetheless, it is
instructive to extract the salient features through approxi-
mate analytical formulas, and some judicious considera-
tions as this helps carry out a more efficient scan. Thorough
investigations of the constraints have been performed
recently [78,83].5 While we agree with their findings, we
update the constraints in view of some new experimental
data on the direct detection of dark matter and searches/
analyses at the LHC. Our purpose is not to present new
exclusion zones in the parameter space of the model but to
make sure that the benchmark points we pick up for our
studies at one loop, pass all the experimental (and theo-
retical constraints), and are representative of a larger set. As
is known, the present precision on the relic density of DM
is such that it reduces the parameter space of any model of
DM, drastically. However, since all studies impose this
constraint based on tree-level calculations of the annihila-
tion cross sections, we use the tree-level based relic density
constraint only as a guide and see how the prediction
transforms when a full one-loop calculation is implemented
and how the theoretical uncertainties should be taken into
account. Many studies have allowed benchmarks where the

predicted (tree-level) relic density leads to underabundance
but not (obviously) overabundance. Nevertheless, a pre-
diction of an overabundance with a tree-level calculation
may turn into a viable model with a more precise
calculation. First of all, let us repeat again that we are
taking X as the DM candidate. X is neutral and is taken to
be the lightest of the three additional scalars that the IDM
provides. From (2.11), this means that

λ5 < 0: ð4:1Þ

Moreover, we take MA ≤ MH� ,6 in which case,

λ4 ≤ λ5 < 0: ð4:2Þ

The equality (λ4 ¼ λ5) automatically evades indirect
electroweak precision measurements by preserving custo-
dial symmetry. Remember also that the existence of the SM
Higgs boson means that

λ1 > 0: ð4:3Þ

Usually while studying the viable parameter space of the
IDM, the discussion starts with the restriction from the
stability and the perturbativity of the potential. We discuss
all these constraints, but we prefer to start with a constraint
that has in the last years become quite stringent. It also
delimits a specific coupling and not a combination of a
large number of parameters. It concerns the parameter λL
and its connection to the DM direct detection. λL is a key
input in our OS renormalization scheme.

A. Dark matter direct detection

The direct detection of dark matter sets a very strong
constraint on λL=MX for the IDM. In the rather narrow
(light) mass range, direct detection proceeds through the
SM Higgs exchange with a cross section given by7

σhSI ∼
�

λL × 103

MX=100 GeV

�
2

8.53 × 10−49 cm2: ð4:4Þ

Assuming that X accounts for all of the DM density on
Earth and provides the correct measured relic density as we
are assuming, the latest xenon1T limit [125] for a DM in the
range 50 < MX < 100 GeV translates into

5See also [23,46,58–87,124].

6This choice does not allow for coannihilation XH� → ff̄0
when XA → ff̄ coannihilation is not present.

7Again, here our analysis for direct detection is at tree level.
There may be important radiative corrections, but these can be
incorporated only within a coherent renormalization scheme and
a global analysis of different observables within the same scheme.
Please refer to our discussion at the end of paragraph 3.5. In any
case, we do not expect an order of magnitude change.
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σXenon1TSI < 12 × 10−47 × ðMX=100 GeVÞ cm2: ð4:5Þ

Applied to our case, we have

jλLj × 103 < 12 × ðMX=100 GeVÞ3=2
→ jλLj < jλmax

L j ¼ 7 × 10−3; for MX ¼ 70 GeV;

→ jλLj < 5 × 10−3 for MX ¼ 57 GeV: ð4:6Þ

This invisible branching fraction is far too small com-
pared to the present limit from the LHC fits [126–128].
Indeed, from Eq. (3.12),

Brðh→ XXÞ
¼

�
1.183ðλL × 103Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 0.64ðMXðGeVÞ=50Þ2

q �
× 10−3

ð4:7Þ

¼ 2.8 × 10−3 for MX ¼ 57 GeV; λL ¼ 2.4 × 10−3:

ð4:8Þ

Considering the very tiny value of the invisible width, we
take the total Higgs width to be the SM value of the total
width from [129,130]

ΓSM
h ¼ 4.07� 0.16 MeV: ð4:9Þ

If the IDM only provides a fraction of the total relic
density of DM, the direct detection cross section needs to
be rescaled. With the density of the IDM written as ΩX and
that extracted from the Planck measurements as ΩPlanck

DM , the
limits above are transformed into

λL < λmax
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPlanck

DM

ΩX

s
; ð4:10Þ

where λmax
L is derived from Eq. (4.6). We take the view that

if the IDM is to be considered as a model for DM, it should
provide at least 50% of the total DM. This requirement
does not significantly change the limit on λL from direct
detection constraints (a modest factor of

ffiffiffi
2

p
is possible),

which is restricted to be rather small, λL < 0.01.

B. Electroweak precision observables (EWPO)

The custodial SUð2Þ symmetry breaking parameter, T
[131], restricts mass splitting between the scalars of the
IDM. In the limit MX ≪ MA;MH, we require MA ∼MH.
Indeed,

ΔT ≃
1

24π2αv2
MAðMH� −MAÞ ∼ 0.05

MA

500 GeV
ΔM

10 GeV
;

ð4:11Þ

is combined with the S [131] parameter, which gives the
weaker constraint,

ΔS ≃ −
5

72π
: ð4:12Þ

The full expressions for the S, T contribution in the IDM
can be found in Ref. [53].
In the code, we impose [132]

S ¼ 0.06� 0.09;

T ¼ 0.10� 0.08;with a correlation coefficient of þ 0.89:

ð4:13Þ

C. Stability of the potential

As with λ1 > 0, we need to have λ2 > 0. Equations (4.1)
and (4.2) are sufficient to guarantee the vacuum to be
neutral (λ4 − jλ5j < 0). The other constraints on the poten-
tial (see, for example, [83]) are easily satisfied if one takes
into account that direct detection requires a very small λL.
The conditions expressed as a function of λL require,
for instance,

2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
þ λL > 0; ð4:14Þ

which is satisfied if we take λL > 0. In our case, the
condition 2

ffiffiffiffiffiffiffiffiffi
λ1λ2

p þλ3¼2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p þλL−λ4−λ5>0 would
be redundant.
Moreover, with very small λL and not vanishingly small

λ2, the parameter, R ¼ λL
2

ffiffiffiffiffiffi
λ1λ2

p , satisfies R ≪ 1, and we have

that the minimum of the potential, which is the trivial one
with the inert minimum being the deepest [83]. Requiring

λ2 > 0.01; ð4:15Þ

satisfies these conditions. An upper limit on λ2 (λ2 enters at
one-loop order in the relic density calculation) is derived by
considering unitarity to which we now turn to.

D. Tree-level unitarity

Unitarity constraints (that are found to be stronger than
the perturbativity constraints) are also imposed; see [103].
These have been studied by considering the eigenvalues of
the full set of all scattering processes involving all the
scalars in the theory. They allow us to set an upper limit on
the masses of the scalars. ForMH� ≫ MX, these constraints
simplify if we impose the T parameter constraints, MA ¼
MH� (or λ4 ¼ λ5 ¼ −λ). They can be decomposed into
subsets. The λ1, λ2 independent limits translate into
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MA ≤
ffiffiffiffiffiffi
8π

3

r
v ∼ 720 GeV: ð4:16Þ

Stronger limits apply if we allow for non-negligible
values of λ2. In the approximation, λ4 ¼ λ5 and with λL ∼ 0,
we have the additional constraint,

ðλ1 þ λ2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 þ λ2Þ2 þ λ2

q
<

8π

3
; ð4:17Þ

which, for small λ2, gives the limit in Eq. (4.16). For
λ2 ¼ 2ð1Þ, values as high as MA ¼ 600ð660Þ GeV are
within the perturbative tree-level regime. Tree-level uni-
tarity allows much larger values of λ2 than 2, especially for
not too large valuesMH� ∼MA as implied from Eq. (4.17).
We have however restricted our analyses to λ2 ¼ 0.01, 1, 2.

E. Collider limits

1. Direct searches at LEP

The LEP constraints can be easily evaded if the masses of
the inert scalars are above the threshold for LEPII produc-
tion. In our benchmarks, this applies to HþH− pair
production. ForXA associated production at LEPII, avoiding
the constraints is possible either because the cross section is
much reduced (close to threshold) and/or because the
signature is such that these particles go undetected.
Reinterpretation in terms of the IDM of LEPII data for
searches of charginos [133] and neutralinos [61] has been
done. These constraints can be summarized simply as
MA;MH� > 110 GeV independently of the X mass (as
long as MX < MA;H�). There is however a caveat when
ΔMAX ¼ MA −MX < 8 GeV that leads to too soft leptons
that invalidate the LEP searches. This recently discovered
small region [83,134] allows efficient XA coannihilation into
a fermion pair. We study this region and look at the impact of
the loop corrections on the relic density in Ref. [111].

2. Direct searches at the LHC

The searches (and limits on the parameter space) are
based primarily on the Drell-Yan like associated production
of the scalars. The signatures are classified according to
the number, l, of charged leptons, missing energy and
possibly jets,

H�X → W�XX → l� þ =ET; l ¼ 1 ð4:18Þ

AX→ ðZÞXX→lþl−þ=ET; l¼2 ðmono-ZÞ ð4:19Þ

H�A→ ðW�ÞðZÞXX→l0�lþl−þ=ET; l¼3 ð4:20Þ

HþH−→ ðWþÞðW−ÞXX→lþl0−þ=ET; l¼2; ð4:21Þ

where the Z;W� may or may not be on shell. The monojet
signature (XXj; XAj) is relevant only when λL is not too

small (XXj) or when MA −MX is very small [83]. The
contribution from vector boson fusion is negligible [83].
Higher values of l ¼ 4, 5 can be envisaged depending on
the mass difference between MA and MH� giving more
leptons through cascade decays [134].
The most studied [59,135] scenario is the dilepton

scenario in Eq. (4.19). Reinterpretation of the ATLAS
and CMS 8 TeV data concerning searches of charginos,
neutralinos, and sleptons, to the case of the IDM was
conducted in Ref. [79]. They are essentially based on
the dilepton signature of the IDM, Eq. (4.19), with the
important caveat that dileptons from the Z-boson decay are
vetoed by the CMS/ATLAS cut (|mll−MZj>10GeV).
Combined with the LEP data, one learns [78,79,83] that
one should impose8

MX > 45 GeV: ð4:22Þ

Simulations for all process (4.18)–(4.21) were studied
for some benchmark points in [134], while a full simulation
was performed for (4.19) in Ref. [83]. The caveat,
|mll −MZj > 10 GeV, we alluded to earlier, has a crucial
impact on the searches, existing and forthcoming. This cut
is meant to reduce the large SM background in events
containing a (on shell) Z boson. Yet, for a large part of the
IDM parameter space, ΔMAX > MZ, where A → XZ pro-
ceeds with an on shell Z. Therefore, large values ofMA not
only give smaller cross sections, but also a very large
fraction of the yield of leptons are cut. Thus, the prospects
for future discovery are slim.
Very recently, ATLAS has also provided limits on the

masses of the supersymmetric charginos and neutralinos in
the pure (simplified) wino and (nondegenerate) Higgsino
limits of the MSSM [136] based on data from the LHC atffiffiffi
s

p ¼ 13 TeV. In these special manifestations of the
MSSM (heavy mass sfermions), the production mecha-
nisms and the signatures at the LHC are the same as those
of the IDM. The only (notable) difference is the spin of the
produced particles in these models. Therefore, we also take
into account the ATLAS exclusion zones observing that the
corresponding limits on the IDM are more relaxed because
of the scalar nature of the IDM particles resulting in much
smaller cross sections. In Table II, we therefore also
provide the corresponding cross sections for the electro-
weak production of the IDM alongside those of the wino
and Higgsino production processes. Moreover, we also
perform a recasting analysis based on MadAnalysis 5

[137–139] on some of the benchmarks points. A more
extensive recast of the IDM will be studied independently
of this series of papers. We check few of the benchmarks
against some of the existing searches. In particular, we use

8This lower limit depends slightly on the masses of the other
scalars. For us, it rests a very good starting point to find viable
IDM DM candidates.
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the 2lþ =ET [140,141] from electroweakinos/slepton
pair production, the 2lþ =ET , 3lþ =ET [142,143] from
the chargino-neutralino pair production, the 2lþ=ET
[144,145] from the mono-Z search and the lþ =ET
[146,147] from the W0 search. We must mention here that

the topologies considered in the latter two analyses are
not the same as ours, and detailed simulations including
relevant cuts are necessary for a proper study. However, the
aforementioned analyses, especially the ones with the
chargino pair or the chargino-neutralino productions, show

TABLE II. Benchmarks points that pass the constraints discussed in Sec. IV. All masses are in GeV. The benchmarks are divided into
three classes: 1) the Higgs resonance region, 2) the small co-annihilation region with ΔM ¼ MA −MX allowed by LEPII and 3) the less
tuned annihilation class for masses of a DM around MX ¼ 70 GeV. For the relic density, we use micrOMEGAs 5.07 for which the SM
parameters are given in Sec. III B. The relic density is calculated both with an OS α in the Thomson limit and with the effective αðM2

ZÞ.
To weigh the dependence of λL, we also give the result for λL ¼ 0. The relative contribution of the most important annihilation/
coannihilation (more than 5%) cross sections to the relic density are given: XX → WþW−; ZZ; bb̄; gg and AX → ff̄. These relative
contributions do not depend much on the value of the α used for the relic density calculation. For the relative contributions, we therefore
show only those calculated with αð0Þ. In the particular case of point P57, the relative contributions are changed drastically when λL ¼ 0

(they become 90% into WW⋆ and 10% into ZZ⋆) since the Higgs boson mediated bb̄ final state is eliminated with λL ¼ 0. We do not
show, in this table, either the values of the S, T,U parameters or of the direct detection. The latter can be trivially rescaled; see Sec. IV for
the theoretical constraints of unitarity, which we carefully check. For each point, we do however give the values of the LHC
(

ffiffiffi
s

p ¼ 13 TeV with NN23LO1 parton distribution function, pdf, as implemented in MadGraph5_aMC@NLO [149]) cross sections (in fb)
for the electroweak production of a pair of the new scalars, should future LHC analyses update the exclusion regions. Alongside these
IDM cross sections, we also list the wino and Higgsino cross sections that the LHC Collaborations have studied (simplified wino and
nondegenerate Higgsino) [136] and may update in the future. Note that the phenomenology of point A at a high luminosity LHC is
considered in [83] and that of point B in [134]. The LHC cross sections are computed at LO. NLO results for the cross sections at the
LHC should be scaled by a factor of 30%. While the NLO corrections in the case of supersymmetry have been computed, we expect the
same corrections for the IDM, since these are DY-like processes and the corrections are essentially initial-state QCD corrections. We also
show the values of the Higgs boson to diphoton signal strength that includes the IDM contribution, should this observable be better
constrained in future LHC analyses.

Resonant Higgs Boson Coannihilation XX → WW⋆; ZZ⋆

P57 P59 P58 P60 A B C D E F G H

MX 57 59 58 60 70 70 70 70 72 72 72 70
λL × 103 2.4 1.0 0.0 0.0 5.0 5.0 4.7 4.7 0.5 3.8 0.1 7.0
MA 113 113 66 68 170 130 360 571 165 138 158 250
MH� 123 123 110 150 200 240 360 571 165 138 158 250

Ωh2
αð0Þ 0.113 0.108 0.113 0.116 0.156 0.153 0.146 0.142 0.119 0.119 0.121 0.142
αðM2

ZÞ 0.118 0.113 0.101 0.103 0.130 0.128 0.121 0.119 0.099 0.099 0.101 0.119
αðM2

ZÞ; λL ¼ 0 1.97 1.97 0.101 0.103 0.146 0.143 0.135 0.132 0.100 0.107 0.102 0.140
ΩWW⋆ð%Þ 22 24 5 9 90 90 88 88 89 88 88 88
ΩZZ⋆ð%Þ � � � � � � � � � � � � 10 10 12 12 11 12 12 12
Ωbbð%Þ 58 57 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Ωggð%Þ 8 7 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
ΩAX→ff̄ð%Þ � � � � � � 95 91 � � � � � � � � � � � � � � � � � � � � � � � �
μγγ 1.022 1.024 1.026 1.021 1.021 1.018 1.015 1.014 1.026 1.032 1.028 1.018

LHC13 cross sections
A → ZX open No No No No Yes No Yes Yes Yes No Yes Yes
H� → W�X open No No No Yes Yes Yes Yes Yes Yes No Yes Yes
pp → AX 364 352 1475 1277 94 198 8 1 100 163 113 29
Higgsino 4048 3894 18310 15430 1019 2184 86 15 1088 1800 1233 305
pp → H�X 497 481 659 272 104 59 15 3 178 287 201 52
Higgsino 5366 5199 7196 2909 1123 637 161 28 1931 3140 2177 557
pp → H�A 200 200 566 244 37 35 3 0.3 58 112 68 12
wino 8890 8890 24850 10550 1756 1634 138 19 2666 5076 3122 579
Higgsino 2222 2222 6201 2642 438 409 35 4.6 669 1274 781 144
pp → HþH− 97 97 144 48 17 9 2 0.4 34 64 39 7.3
wino 3814 3814 5704 1860 650 328 66 9 1318 2523 1539 280
Higgsino 1045 1045 1537 521 186 94 19 3 372 699 434 81
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that our benchmark points are safe. We also use MadAnalysis

5’s extrapolation code [148] to show that the checked
benchmark points are also allowed at the high luminosity
run of the LHC (HL-LHC) with an integrated luminosity
of L ¼ 3 ab−1.

F. μγγ
We also check for a possible constraint from the signal

strength in the diphoton decay of the SM Higgs boson,

μγγ ¼
BrIDMðh → γγÞ
BrSMðh → γγÞ ; ð4:23Þ

with [129,130]

BrSMðh → γγÞ ¼ ð2.27� 0.05Þ × 10−3: ð4:24Þ

The ATLAS and CMS limits for μγγ are given in
Refs. [150,151], respectively. We use the standard combi-
nation of signal strengths and uncertainties (see [106])
and impose

μγγ ¼ 1.04� 0.1: ð4:25Þ

The IDM contribution has been worked out in [69]. It
turns out, see Table II, that the present signal strength
constraint on the IDM is not significant. Nonetheless, we
list the values of μγγ for the benchmark points should future
LHC analyses improve the limits.

G. Relic density

The present limit [1] on the relic density abundance is9

Ωh2 ¼ 0.1197� 0.0022: ð4:26Þ

The experimental uncertainty is less than 2%. This is the
main reason it is extremely important that the theoretical
prediction be as precise as possible. Once the cosmological
model has been set up, in our case, the thermal freeze-out
assumption, the major uncertainty is the evaluation of the
annihilation cross sections. These cross sections must be
evaluated beyond the tree-level approximation. This is the
aim of this series of papers for the IDMmodel. However, to
select a few points that pass all other constraints and weigh
in the importance of the radiative corrections, we have to be
content with a prediction of the relic density based on
tree-level cross sections. We use micrOMEGAs 5.0.7 [107,
120–122,152] for computing the relic densities. Some
considerations beyond tree level are taken into account

in micrOMEGAs; in particular, the Higgs couplings to the SM
particles. The code also uses a running for the electromag-
netic coupling with an effective coupling estimated at
αðMZÞ ∼ 1=128.907 instead of the OS coupling in the
Thomson limit, i.e., α ¼ =137.036. For many annihilation
cross sections, this change of α amounts to an overall
rescaling that brings a correction of about 13% in 2 → 2
annihilation processes. However, in many scenarios and
models beyond the SM, this rescaling does not account
for the full one-loop correction [3,5,6,10,106]. It is there-
fore wise when we select benchmarks points, using
micrOMEGAs for the relic density constraint, to allow for a
theoretical uncertainty of 20%. We will therefore keep
points that satisfy

0.096 < Ωh2 < 0.144: ð4:27Þ

Moreover, we quote the value of the relic density using
micrOMEGAs with both an effective αðMZÞ and α. Once we
compute the full one-loop corrections, we comment on the
use of the effective electromagnetic coupling for each of the
benchmark points that we study at one loop. When running
micrOMEGAs, we also let the code check explicitly for the
direct detection and possible indirect detection constraints.

V. THE DIFFERENT CHANNELS CONTRIBUTING
TO THE RELIC DENSITY FOR 55 < MX < 75 GeV

A. Characteristics of the benchmarks points

Keeping all the constraints that we have introduced so
far, we do of course recover the general conclusions of a
scan of the IDM with the relic density constraint calculated
with micrOMEGAs. Namely, apart from a region with the
heavy scalar, MX > 500 GeV, scenarios that we investi-
gated in [10], the low mass region range lies in the
range 55 GeV < MX < 75 GeV.
Within this relatively small range, three different mech-

anisms are at play,
(i) The coannihilation region

For MX ∼MA (within MX −MA < 8 GeV set by
the LEPII constraint), extremely efficient coannihi-
lation XA → ff̄ takes place. It is so efficient that the
Boltzmann factor is needed to reduce its contribu-
tion. Therefore, ΔMAX should be as large as pos-
sible. This is the reason this scenario occurs at the
very edge of the limit allowed by LEPII, i.e.,
MA ∼MX þ 8 GeV. For MX ∼ 55 GeV, XX anni-
hilations are still away from the h peak, and the onset
of XX → Wff̄0, XA → ff̄ is the principal channel.
In any case, for the smallest MX masses, one still
needs to reduce annihilation to the SM Higgs boson
by setting λL ∼ 0. Although we find this scenario
extremely fine-tuned, we find it a good example
for the effect of the loop corrections in a certain
limit. Indeed, in this limit, the tree-level process is

9We quote the so-called TT (Planck high multipole TT
likelihood) + lowP (low multipole polarization data). Adding
external, +“lensing,”… data do not change the limit appreciably,
especially in view of the larger theoretical uncertainty that we
include.
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governed totally by the gauge coupling. The one-
loop corrections to AX → Z → ff̄ are technically
the easiest to consider. A detailed investigation is
conducted in Ref. [111].

(ii) The SM Higgs resonance
For MX ∼Mh=2, efficient annihilation is possible

through the very narrow Higgs resonance. Again,
this is also fine-tuned. Nonetheless, the annihilation
does require nonzero hXX, λL, coupling. The one-
loop corrections here will have to deal with the
implementation of the width at one loop, a nontrivial
problem. We leave all technicalities and discussion
on the results in Ref. [110].

(iii) The annihilation XX → WW⋆; ZZ⋆
ForMX < 80 GeV, these annihilations occur with

large enough rates even though we are below the
WW threshold. They become too efficient when this
WW threshold is crossed. Past aboutMX ∼ 73 GeV,
the annihilations become too large, depleting the
dark matter density. Technically, the one-loop cor-
rections here are quite challenging, requiring the
computation of 2 → 3 processes at one loop. We
leave these calculations and their impact on the relic
density to a separate paper [112]. It is not possible to
attempt a 2 → 2, XX → Wff̄0, with an off shell W,
and integrate over Breit-Wigner distribution without
getting into trouble with gauge invariance. None-
theless, since WW and ZZ annihilation cross sec-
tions are a backbone to the XX → Vff̄ [112], we
study these 2 → 2; XX → WþW−; ZZ on shell proc-
esses, see Sec. VII, before we embark on the full
2 → 3 processes. This investigation helps unravel
some characteristics of the corrections and more
importantly, reveals that one-loop perturbativity may
break down for some choices of the parameters that
tree-level unitarity allows. This study above theWW
and ZZ threshold will help select further among the
benchmark points.

These benchmark points based on the constraints we
reviewed so far are listed in Table II. Most of the regimes
are, at tree level, driven by the gauge coupling but the
contribution of λL is not negligible. The value of λL plays a
major role in the derivation of the cross section for the
Higgs resonance scenario since this mechanism calls for the
hXX coupling. The coannihilation region requires λL ≃ 0
and is therefore driven by the gauge coupling. While
the (nonresonant) annihilation region, XX → Wff̄0 and
XX → Zff̄, is dominated by the gauge coupling, the λL
contribution is not negligible at all. First, it occurs because
there is a contamination from the SM Higgs exchange but
also because the production of longitudinal vector bosons
is λL dependent. This λL dependence can be seen in the
XXGG and XXGþG− quartic couplings, which once the
masses of the scalars are fixed (λ4;5 fixed), the coupling is
sensitive to λL. Table II gives the value of the relic density

when λL is switched off. Because of the importance of this
coupling and the fact that we will, in some cases, rely on an
MS scheme for its renormalization, we give in Table III the
value of the β constant of λL, β̃λL , for each benchmark point.
Observe the very large values we obtain for this constant for
points C and D that are associated with large values of the
heavy scalars.

B. Cross sections and velocity dependence

The following subsection is too well known for DM
practitioners, but we hope it will be of relevance to our
colleagues, experts in NLO calculations who want to
apply their know how to DM annihilation. Moreover,
since the calculation of the relic density needs that
one generates data at NLO for many values of the
relative velocity and that the result of each relative
velocity is time consuming, it helps to know where
NLO data should most judiciously be generated for
DM relic abundance prediction.
In order to convert the cross sections into their contri-

bution to the relic abundance, a thermodynamical/cosmo-
logical model needs to be implemented. In the case of
freeze-out that we will be working with, a thermal average
and a convolution of the cross sections over relative
velocities of the annihilating particles are performed.
The velocity distribution is important since if the cross
sections are large in regions where the weight of the
velocity distribution is negligible, the contribution of the
process to the relic density is very much reduced. In case of
annihilations, v determines the centre of mass total energy,
or the kinematical invariant s, as

v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
X

s

r
or

ffiffiffi
s

p ¼ 2MX
1ffiffiffiffiffiffiffiffiffiffiffi
1 − v2

4

q : ð5:1Þ

TABLE III. Values of the underlying λ3;4;5 parameters and the
corresponding β functions for λL, β̃λL , for the benchmarks points
defined in Table II.

Model λ4 λ5 λ3 βλL

P57 −0.227579 −0.152146 0.382125 1.12312þ 2.15628λ2
P59 −0.223871 −0.148438 0.373309 1.09738þ 2.09499λ2

P58 −0.263378 −0.015854 0.279232 0.77300þ 1.18034λ2
P60 −0.587742 −0.016365 0.604108 1.50953þ 2.48189λ2

A −0.738354 −0.383561 1.12691 4.34278þ 6.0819λ2
B −1.49269 −0.19178 1.68947 7.2441þ 7.565λ2
C −1.99292 −1.99292 3.99053 51.1306þ 23.9714λ2
D −5.13238 −5.13238 10.2695 324.269þ 61.6449λ2
E −0.352252 −0.352252 0.705005 2.48707þ 4.23303λ2
F −0.221506 −0.221506 0.446813 1.40176þ 2.70368λ2
G −0.316118 −0.316118 0.632336 2.14181þ 3.79461λ2
H −0.920545 −0.920545 1.84809 12.0397þ 11.1305λ2
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Although we will interface all of our cross section to
micrOMEGAs for the velocity and temperature averaging for a
full numerical integration, it is instructive to gain an
analytical understanding. The velocity averaged cross
section, at a temperature T for annihilating DM particles
of mass MX can be approximated as

hσvi ¼
Z

∞

0

dvfðv; xÞðσvÞ; fðv; xÞ ¼ x3=2

2
ffiffiffi
π

p v2e−xv
2=4;

x ¼ MX=T; ðx > 1Þ: ð5:2Þ

Figure 1 shows the weight function of the velocity
distribution at the freeze-out temperature, Tf. As a general
rule, freeze-out occurs at xf ¼ MX=Tf ∼ 20–25. This helps
understand which range in the relative velocity, v, we need
to generate most of the annihilation cross sections. This is
particularly useful for the calculations at one-loop cross
sections where there is no need to compute the (involved)
one-loop cross sections for too many values of v where
these cross sections are small. Observe that a typical v
where we must get the cross section right is v ∼ 0.4 (see
Fig. 1) and that for v > 0.8, the cross sections are weighted
down. As we will see, there may be exceptions to this
general rule [110], in particular, if the cross section is
dominated by a peak (in our case, the Higgs resonance
region) that may occur toward the higher end of the
distribution function and also, to a lesser extent, if the
cross section grows because of the opening up of a
threshold. In our analyses, for the most general case,
we compute the cross sections for values of v as high as
v ¼ 0.9 (or even v ∼ 1). Going to such high values of v
makes sense only if the cross section peaks dramatically as

is the case of the resonance through the very narrow
SM Higgs boson. Indeed, for the point MX ¼ 57 GeV,
v ¼ 0.82 corresponds to

ffiffiffi
s

p
≃Mh ¼ 125 GeV. Observe

that for MX ¼ 70, 72 GeV, v ¼ 0.8 does not permit the
production of both Ws on shell but only a WW⋆, and
therefore, we must consider Wff̄.
In the case of coannihilation, the Boltzmann factor is a

very penalising factor. In our case, this concerns AX
coannihilation when the mass difference between these
two particles is small. The effective relative weight (to the
annihilation XX rate) is

g̃eff ¼ ð1þ δÞ3=2e−xδ; δ¼m−=MX; m� ¼MA�MX:

ð5:3Þ

For large δ, coannihilation is therefore exponentially
suppressed, and it effectively does not take place. If δ is too
small and the associated coannihilation cross sections
are large, we then have too small ΩDM. In the case of
coannihilation, the relative velocity is calculated from the
invariant s of the coannihilating particles X and A as

v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −m2þ=sÞð1 −m2

−=sÞ
q

1

1 − m2
þm

2
−

s2

: ð5:4Þ

For MA ¼ MXðm− ¼ 0Þ, we recover the usual annihila-
tion relative velocity of Eq. (5.1). As remarked earlier, in
SloopS when calculating the annihilation cross for DM,
the phase space factor is modified such that the code returns
σv rather than σ, which could be ill defined for v ¼ 0. We
give the DM annihilation σv cross sections in units of
cm3 s−1. Our conversion factor to translate σv expressed in
GeV−2m=s is

c0 ¼ 2.99792 × 3.8937966 × 108 ≃ 1.16732 × 109: ð5:5Þ

VI. THE DIFFERENT STEPS IN THE
CALCULATION OF THE RELIC DENSITY

WITH RATES AT ONE LOOP

The annihilation processes we consider are, at tree level,
of the type 2 → n with n ¼ 2 for annihilation/coannihila-
tion to light fermions or to on shell WW=ZZ pairs and
n ¼ 3 for the type WW⋆=ZZ⋆ for off shell W=Z for which
the associated full fermion pair ll̄ð0Þ is considered. Even
with the help of automatic codes for the calculation of the
different components involved in the evaluation of the relic
density, at one loop, the task is almost daunting because for
each space point in parameter space we need to generate a
large number of data corresponding to a large number of
relative velocities, v, values because many diagrams are
generated as we will see in the next section even for a

FIG. 1. The normalized velocity distribution fðv; xF ¼ 25Þ as a
function of v.
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relatively simple 2 → 2 subprocess. The different steps we
take, for each process, are as follows:

(i) Calculate the tree-level annihilation cross sections
for a large set of relative velocities. A first check is
made with the code CalcHEP [153], which is used
internally in micrOMEGAs. At tree level, the cross
sections do not depend on the parameter λ2. The
analysis of the tree-level cross section will indicate
how to sample the v values.

(ii) Calculate the one-loop virtual corrections within a
specific renormalization scheme, for the same set of
relative velocities as at tree level. Generate this step
with at least three values of the parameter λ2. At this
step, for processes involving charged (final) par-
ticles, the cross sections involve infrared QED
divergences which are regulated with a finite ficti-
tious photon mass, mγ . We check the result of the
one-loop virtual corrections by confirming that it is
ultraviolet finite and that it is gauge parameter
independent by varying the nonlinear gauge param-
eters (see III C) for a random point in phase space
(the latter is a very powerful test).

(iii) The QED infrared divergences from the virtual one-
loop corrections cancel out against the ones emanat-
ing from the real radiation after integration over
the photon spectrum in the (tree level) reaction
2 → nþ γ, which we generate. Here we use the
slicing technique (see, for example, [154]) by slicing
the energy of the outgoing photon Eγ at Eγ ¼ kc. kc
is chosen sufficiently soft, such that the factorization
of soft photons (with the same fictitious photon mass
as the one chosen for the virtual corrections) is
applicable. Integration over Eγ, for Eγ > kc, is
carried out numerically for different values of kc.
This step is time consuming since one must make
sure the final result (virtual one-loop þ real photon
radiation) does not depend on kc beside being
independent of mγ .

(iv) Once the set of corrected one-loop (virtual and real
radiation) v dependent cross sections is generated,
all annihilation subprocess that contribute to the
relic density are passed as a table to micrOMEGAs

substituting the default micrOMEGAs tree-level v
annihilation cross sections tables. micrOMEGAs has
a built-in interface for such a purpose. Among other
possibilities, the users can replace (or/and remove)
any default cross section by their own. At this stage,
some sanity checks are performed, as we will
explain in more detail for the difficult Higgs reso-
nance in Ref. [110].

We stress that we leave the (numerical) resolution of the
Boltzmann equations to micrOMEGAs. We therefore implic-
itly assume the same (standard freeze-out) assumptions
(full equilibrium, no entropy production...) that go into the
calculation of the relic density. Even if the full OðαÞ

correction we plug into micrOMEGAs contains, for charged
final states, a hard photon part, the latter dresses the final
charged particle and thermodynamically (from the point of
view of the Boltzmann equations), it is classified as a 2 → 2
process. Therefore, the use of micrOMEGAs is totally justi-
fied. Moreover, by comparing the full NLO corrections of
the charged channels and the corresponding neutral chan-
nel, where there is no QED correction (for example,
comparing AX → μþμ− vs AX → νν̄), the effect of the
hard photon is negligible, as we will see in [111].
Observe that the 2 → 3 processes XX → Wff̄0 represent

a gauge invariant process to correctly calculate XX→WW⋆
below threshold, a cross section which is not negligible at
all. For early computations of such below threshold
processes and their impact on the relic (freeze-out) density,
see Refs. [155–158]. This type of processes is now taken
care of by micrOMEGAs as generalized 2 → 2 processes for
the implementation of the Boltzmann equations. The full
calculation, both at tree level, and at one loop, shows [110]
that the flavor dependence of the XX → Wff̄0 is very well
described by the branching fraction BrðW → ff̄0Þ.
Therefore, the one-loop implementation is like that of
the tree-level implementation as concerns the Boltzmann
equations in micrOMEGAs. The same applies to the
XX → Zff̄.
It may be argued that the very small coupling of the SM

Higgs boson to DM required to obtain the present exper-
imental value of the relic density, thanks to the boost
from the annihilation at the very narrow Higgs resonance,
implies a suppression of the rate of DM scattering off the
particles in the bath signaling (early) kinetic decoupling,
which is a departure from the usual assumption of the
freeze-out mechanism [159,160]. If this were the case, a
phenomenological study should include this effect, which
at the moment is not included in micrOMEGAs. However, in
the present series, we concentrate on how to precisely set
up and calculate the one-loop corrections for such a tricky
situation. We have also given the corrected annihilation
cross sections (with their v dependence) so they could be
interfaced with some other code than micrOMEGAs.

VII. XX → ZZ;W +W − AT ONE-LOOP
AS A WARM-UP

The XX → ZZ;WþW− annihilations, with both vectors
on shell, are too efficient to account for a relic density in
accordance with observation within the standard cosmo-
logical model of freeze-out. This is the reason that DM
masses above 80 GeV do not feature in Table II. However,
many of the benchmark points in Table II survive because if
one of the vector bosons is off shell, the cross sections are
no longer so large. The 2 → 3 cross sections XX → Wff̄0

and XX → Zff̄ do carry the salient features of the on shell
production. It is much more transparent to investigate these
features on the 2 → 2 process rather than on the more
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technically challenging 2 → 3 processes that we will study
in Ref. [112]. Besides, XX → WþW−; ZZ for MX >
80 GeV may still be a viable model since it does not lead
to overabundance but would not account for all of DM. It
would then be supplemented by a new ingredient to the
IDM. In any case, our aim here is to unravel some
important characteristics of these 2 → 2 cross sections.
Because of SUð2Þ symmetry, XX → WþW− and

XX → ZZ share common features. At one loop, we will
concentrate first on XX → ZZ to bring up the most
important features that will help later understand both
our full one-loop calculation of both XX → Wff̄0 and
XX → Zff̄. We do this because XX → ZZ is easier to
compute since there is no need to consider real corrections
of the sort XX → WþW−γ that are necessary to regulate the
infrared divergences of the virtual corrections. We take
MX ¼ 100 GeV and require all constraints of Sec. IV to
hold, apart from the relic density within the Planck limit.
Independently of the direct detection limit, we keep λL very
small, so that we are in a similar situation as in the 2 → 3
processes that we will study and whose characteristics are
given by the benchmark points. For the same reason, the
different choices of MA, λL correspond to λ3, λ4, λ5 values
similar to those found in the benchmark points for
XX → WW⋆; ZZ⋆. At one loop, one needs to specify the
value of λ2. For each point, we take the values λ2 ¼ 0.01,
1, 2. These are the same values we considered in our study
of the heavy mass IDM [10]. The aim of this introductory
analysis serves to understand the following key points.

(i) Since we are in scenarios whereMh < 2MX and can
not take an OS definition of λL based on the input
Γh→XX, we have to rely on the MS renormalization
scheme. We therefore want to investigate how large
the scale dependence of the scheme is and whether
we can advocate a choice for the optimum scale.

(ii) Is perturbativity maintained at one loop? Could the
one-loop radiative corrections turn out to be too
large for certain combinations of the underlying
parameters?

(iii) How much do the corrections depend on λ2. If the
impact of λ2 is not small, phenomenological con-
siderations based on tree-level analyses should be
reconsidered.

(iv) As an aside, we can ask whether there could be
circumstances when a running of α (defined atMZ as
assumed in micrOMEGAs) could account for the bulk
of the corrections regardless of the value of λ2.

(v) The scale dependence and the λ2 dependence were
touched upon in our study of the heavy mass IDM
[10], and we promised to investigate these issues
further. We will see here how the scale dependence
can be derived quantitatively and how the λ2
dependence is not all contained in β̃λL .

Answers to these questions will guide us when we study
the 2 → 3 processes. Note that we investigate the first three

items above in our study of Γh→XX in the MS scheme
in Sec. III G.
To unravel some key features of the one-loop correc-

tions, we consider five test points. While the DMmass,MX,
is fixed at MX ¼ 100 GeV for all test points, we consider
different values of λ3;4;5 with the constraint that λL ≪ 1.
This allows us to generates different values for βλL as well
as different values of MA;H� with nonetheless MA ≃MH�

(within the T parameter constraint). Characteristics of the
test points are listed in Table IV.

A. XX → ZZ;W +W − at tree level. The λL dependence

The investigation of the tree-level cross section gives us
the λL dependence, which will then determine the scale
dependence at one loop in the MS. The λL dependence will,
at one loop, track the scale dependence, which is only
carried by the counterterm δλL.
At tree level, the XX → ZZ Born amplitude is built up

from the s-channel SM Higgs exchange, the quartic XXZZ
interaction, and the exchange of A in the t channel; see
Fig. 2. For XX → WþW−, it is H�, which is involved in
the t-channel exchange. The tree-level cross sections for
XX → WþW− and XX → ZZ for test point P1 are shown
in Fig. 3. Test point P1 is characterized by λL ¼ 10−4 and
MX;MA;MH� ¼ 100, 120, 130 GeV. The ratio between the
WW cross section and the ZZ cross section is almost
constant and only changes by about 6% in the range
v ¼ 0–0.9 (and less than 3% in the most relevant range
v ¼ 0–0.4), as shown in Fig. 3. For smaller v, XX→ZZ is
slightly impacted by the threshold factor (for MX ¼
100 GeV, ZZ is closer to the threshold than WþW−),
which explains why the ratio is higher for small v than
for larger vs. The tree-level behavior helps understand
why these two cross sections will share common features
also at one loop.
As we pointed out before, the λL dependence is not due

to Higgs exchange only, but it intervenes also in the XXZZ
quartic coupling. At the cross section level, these contri-
butions lead to the quadratic λ2L dependence. The interfer-
ence of these contributions with the t-channel amplitudes
leads to a (linear) λL dependence in the cross section. For
each point in parameter space and for any given energy, or
relative velocity, the λL dependence of the tree-level cross
section, σtree, can then be written as

σtree ¼ σ0 þ λLσ1 þ λ2Lσ2: ð7:1Þ

FIG. 2. Born contributions diagrams to XX → ZZ.
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For XX → ZZ, both the Higgs exchange and the XXZZ
quartic coupling contribute to σ2, whose value depends on
MX andMh given a specific relative velocity. The t-channel
A exchange diagrams and part of the XXZZ contribute to σ0
and depend therefore on MA (and the SM gauge coupling).
σ1 is the result of the interference of the amplitudes
contributing to σ2 and σ0. We choose to derive σ0;1;2
numerically from SloopS. For this purpose, we generate
three values of σtree corresponding to three values of λL (we
take λL ¼ 0, 1, 2) with all other parameters fixed. We are
then able to reconstruct the λL dependence in Eq. (7.1) from
a fit. Checks of the fit were found to be excellent when
comparing the result of the fit-cross section with a direct
(tree-level) calculation for a fourth value of λL not used for
the fit. Obviously, for this 2 → 2 process, the λL depend-
ence could have been derived analytically but the main
reason we propose this procedure is because we also use
this procedure for the 2 → 3 processes [112], where an
analytical expression is rather involved.

B. XX → ZZ at one loop. Some examples

We start by considering XX → ZZ for a fixed value of v,
v ¼ 0.4, before showing the full one-loop corrections for
both XX → ZZ in the range 0 < v < 0.9. At the heart of
our discussion is the λL dependence of the cross sections,
which we construct according to Eq. (7.1).
XX → ZZ at one loop shows a very a rich structure that

accesses the parameters of the full model, in particular the
λ2 parameter of the dark sector. The latter shows up as
rescattering effects XX → AA and XX → XX; see Fig. 4.
Before showing the results of the full one-loop correc-

tions in the MS scheme, let us derive the scale variation
from λL dependence of the tree-level cross section, σtree (see
(7.1). The scale variation only enters through the scale
variation of λL, ∂λL=∂ log μ ¼ −βλL=16π

2. Since

δσtree ¼
∂σ
∂λL δλL ¼ ðσ1 þ 2λLσ2ÞδλL; ð7:2Þ

one can relate the one-loop correction, δσ, between two
scales,

δσðμ̄2Þ¼δσðμ̄1Þ−
1

16π2
ðσ1þ2λLσ2Þβ̃λL lnðμ̄2=μ̄1Þ: ð7:3Þ

Equation (7.3) agrees perfectly with the numerical
results of the full one-loop corrections we obtain with
our code. The results are presented in Table IV. We could
have run the code for only one value of μdim and derived the
results for any other scale through Eq. (7.3). However,
extracting the results for the different scales from the code
is testimony that the code works very well, and the
implementation is consistent.
For a later reference, with the condition that λL ≪ 1, note

that in terms of relative correction (normalized to the tree-
level cross section), Eq. (7.3) turns into

δσðμ̄2Þ
σtree

¼ δσðμ̄1Þ
σtree

−
1

16π2

�
σ1 þ 2λLσ2

σ

�
β̃λL lnðμ̄2=μ̄1Þ

δσðμ̄2Þ
σtree

≃
δσðμ̄1Þ
σtree

−
1

16π2
σ1
σ0

β̃λL lnðμ̄2=μ̄1Þ: ð7:4Þ

Equation (7.4) indicates that the scale variation and the
associated correction is large when β̃λL is large but also
when σ1=σ0 is large. For the test points P0–P5, σ1=σ0 is
between 5 and 6.
Our results for the full one-loop corrections of the cross

section XX → ZZ for points P0–P5, evaluated at v ¼ 0.4,
are given in Table IV. Beside listing the characteristics of
the points P0–P5, Table IV provides the λL dependence
of the tree-level cross sections as well as the β̃λL of the
model such that the reader can compare the results of the
analytical scale variation [Eq. (7.4)] with the numerical
output of SloopS for the full one-loop corrections for
the different renormalization scales and values of λ2. In
passing, note that the relative dependence of the cross
section in λL is not large. This dependence will be stronger

FIG. 3. The ratio σvðXX → WþW−Þ=σvðXX → ZZÞ as a function of the relative velocity, v, shown here for model P1.
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when we study 2 → 3 processes [112]. Table IV is
extremely instructive. It reveals many important points.

(i) The rescattering effects within the dark sector,
through the λ2 dependence, are confirmed. The
one-loop calculation shows that λ2 enters the pre-
diction of the annihilation cross section not only
through the running of the coupling λL, through β̃λL ,
but there is also an added genuine one-loop con-
tribution. Indeed, we have chosen test point P0
because its β̃λL does not depend on λ2. Therefore,
the results for P0 do show a dependence of the
correction on λ2 that is not an effect of the scale
dependence of λL. For P0, this dependence can be
derived easily from Table IV, by taking the differ-
ence of any two columns (that is the difference
between two values of λ2 evaluated at the same
scale). We find that δσðλ2Þ ¼ −2.56λ2 or in terms of
relative correction −6.5λ2ð%Þ, which is not negli-
gible for values of λ2 > 1. For the other test points,
there is also a λ2 dependence that enters through β̃λL .
Therefore, only a full one-loop correction captures
the complete λ2 dependence, beyond the dependence
contained in β̃λL . The λ2 dependence is important.

(ii) The running of α at the scale of the process, of order
MZ, does not account for the full one-loop correc-
tion. It can be considered as an acceptable descrip-
tion only for an almost vanishing λ2 and very small

λ3;4;5. In fact, for the test point P0 with λ2 ¼ 2, the
corrections practically vanish showing that extra
corrections totally offset the correction from the
running of α. Therefore, the use of a running α is of
very limited applicability.

(iii) As the split between the DM mass and the mass of
the other scalars increases, the one-loop correction
and the scale dependence increase. This can be
(mostly) understood on the basis of the correspond-
ing value of β̃λL . A large β̃λL is a harbinger of a large
scale uncertainty. An inadequate choice of the scale
can further exacerbate a large correction driven by
β̃λL . β̃λL increases with λ2 but even for λ2 ∼ 0, β̃λL can
be large, leading to a large correction and casting
doubt on the perturbative expansion. For example,
P3 and most particularly P4, have very large scale
uncertainty for all values of λ2. Based on these one-
loop analyses, we make the proposal that such
models fail the perturbativity test and should there-
fore not be considered even though they may pass
the tree-level based experimental limits. One should
not consider models with β̃λL larger than 20. For a
starter, Table IV shows that when one reaches higher
values of β̃λL the corrections reach more than 100%
unless one has carefully picked up an optimal scale.
In any case, for large values of β̃λL , one is subject to
violent variations even if one moves slightly away

FIG. 4. A small selection of one-loop contribution diagrams to XX → ZZ. We only picked up some box and triangle contributions.
Note the rescattering XX → XX and XX → AA diagrams are solely within the dark sector (last two diagrams in the second row and the
last diagram in the third row).
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from the optimum scale. Second, if one takes QCD
as example with g2s ¼ 4παs one has (in our notation),
βgs ∼ −13 while (for the most relevant quantity),
βαs ¼ −2.5 at energy scales where αs is perturbative
(αs ∼ 0.12). For Q2 ∼ ð1 GeVÞ2 when QCD is non-
perturbative, βαs ∼ 20. Therefore, β̃λL ∼ 20 should
be a good indicator for the onset of the nonpertur-
bative regime. This indicator when translated in
terms of the underlying parameters of the IDM
suggests that we should not consider IDM bench-
marks points to be theoretically valid ifMAðMH�Þ >
MX þ 150 GeV; otherwise, the corresponding λ3;4;5
correspond to values that lead to β̃λL in excess of 20.
This requirement of one-loop perturbativity reduces
the IDM parameter space considerably. We will take

this conclusion into account to reduce the possibil-
ities for the benchmark points of Table II. We
consider the benchmark points B, C, D, H to be
theoretically unreliable.

(iv) In our study of the scale dependence for the partial
width Γh→XX in Sec. III, we advocated the use of
μ ¼ Maxð2MX;MAÞ as the optimum scale where the
radiative corrections were minimized. Table IV
suggests a very similar behavior. For the annihilation
processes, the typical energy scale of the problem set
by kinematics is

ffiffiffi
s

p
≃ 2MX, while the typical

internal mass is MA. Although we are dealing with
a process involving four-point functions, the argu-
ments put forward in the case h → XX remain the
same especially that the scale dependence is em-
bedded in two- and three-point functions. We find

TABLE IV. Tree-level cross section and one-loop correction, δσðμ̄dim; λ2Þ for different values of λ2 and for different renormalization
scales, μ̄dim, for λL, for XX → ZZ, and v ¼ 0.4 (

ffiffiffi
s

p ¼ 204.124). The percentage change of the one-loop correction is also given in
parenthesis unless the value is higher than 100% in which case the result is highlighted in bold as a warning for a breakdown of one-loop
perturbativity. The loop results (from the numerical evaluation of the automated calculations) are given with sufficient accuracy in order
to compare the results against those of the analytical computation given in Eq. (7.3). The first entry in the second column is the tree-level
cross section while the second entry in the second column corresponds to Δ ¼ σtreeðα−1ðM2

ZÞ ¼ 128.907Þ − σtreeðα−1ð0Þ ¼ 137.036Þ,
the “correction” that corresponds to using αðM2

ZÞ instead of α in the Thomson limit (tree level). The value of Δ needs to be compared to
the result of the full one-loop calculation. The first column gives the parameters of the model, with MX ¼ 100 for all points, and the
corresponding λ3;4;5. In the same column, we also give βλL and a fit of the tree-level cross section as a function of λL (see text). Cross
sections are for σv in units of 10−26 cm3 s−1.

(Model) λL, MX , MA, MH� Tree Δ μ̄dim λ2 ¼ 0.01 λ2 ¼ 1 λ2 ¼ 2

(P0)0., 100, 100, 100 39.6681 MX=2 4.9264 (12.4%) 2.3952 (6.04%) −0.1616 (−0.41%)
λ4 ¼ 0., λ5 ¼ 0., λ3 ¼ 0. 5.1608 (13%) MX ¼ MA 4.4240 (11.15%) 1.8928 (4.77%) −0.6639 (−1.67%)
β̃λL ¼ 0.469 2MX 3.9217 (9.89%) 1.3905 (3.51%) −1.1663 (−2.94%)

σtree ¼ 39.6681þ 244.184λL þ 435.584λ2L
≃39.67ð1þ 6.2λL þ 11λ2LÞ
(P1) 10−4, 100, 120, 130 46.2668 MX=2 5.9161 (12.78%) 4.6733 (10.10%) 3.4179 (7.39%)
λ4 ¼ −0.150; λ5 ¼ −0.070; λ3 ¼ 0.221 6.0173 (13%) MX 5.0211 (10.85%) 2.3894 (5.16%) −0.2689 (−0.58%)
β̃λL ¼ 0.731þ 1.165λ2 MA 4.7862 (10.34%) 1.7887 (3.87%) −1.239 (−2.68%)

σtree ¼ 46.2394þ 274.344λL þ 435.584λ2L 2MX 4.1261 (8.91%) 0.1055 (0.23%) −3.9557 (−8.55%)
≃46.24ð1þ 5.9λL þ 9.4λ2LÞ
(P2) 5 × 10−4, 100, 200, 200 62.0202 MX=2 16.2987 (26.28%) 26.7585 (43.14%) 37.3240 (60.18%)
λ4 ¼ λ5 ¼ −0.479; λ3 ¼ 0.959 8.0576 (13%) MX 10.5437 (17%) 12.8096 (10.65%) 15.0984(24.34%)
β̃λL ¼ 3.947þ 5.759λ2 2MX ¼ MA 4.7886 (7.72%) −1.1393 (−1.84%) −7.1271 (−11.49%)

σtree ¼ 61.8565þ 326.957λL þ 435.584λ2L
≃61.86ð1þ 5.3λL þ 7λ2LÞ
(P3) 5 × 10−4, 100, 250, 250 66.4210 MX=2 39.3295 (59.21%) 66.6048 94.1555
λ4 ¼ λ5 ¼ −0.839; λ3 ¼ 1.678 8.6297 (13%) MX 24.0102 (36.15%) 36.4168 (59.34%) 48.9487 (73.69%)
β̃λL ¼ 10.175þ 10.075λ2 2MX 8.6914 (13.08%) 6.2276 (9.38%) 3.7388 (5.63%)

σtree ¼ 66.25þ 339.199λL þ 435.583λ2L MA 3.7592 (5.66%) −3.4896 (−5.25%) −10.8115 (−16.28%)
≃66.25ð1þ 5.2λL þ 6.6λ2LÞ
(P4) 10−4, 100, 500, 500 73.0022 MX=2 944.4573 1170.1050 1398.0319
λ4 ¼ λ5 ¼ −3.836; λ3 ¼ 7.671 9.4949 (13%) MX 657.6667 811.9868 967.8657
β̃λL ¼ 182.758þ 46.029λ2 2MX 370.8766 453.8675 537.6966

σtree ¼ 72.9665þ 356.520λL þ 435.584λ2L MA −8.2405 (−11.28%) −19.5371 (−26.76%) −30.9477 (−42.38%)
≃72.97ð1þ 4.9λL þ 6λ2LÞ
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that μ ¼ Maxð2MX;MAÞ is once again the best
scale. Scales much smaller or larger than this choice
lead to very large corrections. This is most flagrant
for test points P3 and P4 that we dismissed on the
ground of perturbativity, to the point that following
this prescription would lead to acceptable correc-
tions if we choose μ ¼ MA. For the “perturbative”
test points P0, P1, and P2, the prescription is most
evident for P2. The indication from P1 with λ2 ¼ 2
is misleading although the corrections are small for
all scales (β̃λL is small here), μ ¼ 2MX does not give
the smallest correction because of the λ2 contribution
not originating from β̃λL . For λ2 ¼ 0.01, μ ¼ 2MX

gives the smallest correction. These observations
will be confirmed also when we study XX → Zff̄
and XX → Wff̄0 [112].

We also find that the λL dependence of the XX →
WþW− is practically the same as the XX → ZZ cross
section. XX → WþW− will therefore exhibit the same scale
dependence as we will see next.

C. XX → ZZ and XX → W +W − at one loop as a
function of the relative velocity

The particular study at v ¼ 0.4 summarizes in fact the
analyses for the whole range of v. We therefore briefly
discuss here the results for point 1 for the annihilations into
both ZZ and WW.
Recall that P1 has a small β̃λL , and therefore, the scale

variation is modest not only for v ¼ 0.4 as we have
discussed but is expected to hold for other values of v.
Indeed, Figs. 5 show that the radiative corrections, for the
range of v relevant for the calculation of the relic density,
are within a couple of percent of the results obtained with
v ¼ 0.4, for all cases of the scale μ and the parameter λ2.
The radiative corrections increase slightly, within a 2%
margin, with the relative velocity, the increase affects ZZ
more than WþW− as v increases and is due to the fact that
ZZ is more sensitive to the threshold for ZZ production for
MX ¼ 100 GeV. Otherwise, observe that, as expected, in
terms of relative corrections, the results are practically the
same for both ZZ and WþW− production when the same
configuration of the scale and λ2 is taken. More impor-
tantly, what the full one-loop correction teaches us is that
the “improved” tree-level cross section, with the use of
αðM2

ZÞ, as assumed by default in micrOMEGAs, is a good
approximation only for vanishingly small λ2. This
“improved” cross section can not, by construction, catch
the genuine one-loop effects from the full λ2 dependence.
The prediction of the αðM2

ZÞ approximation can be quite far
from the full one-loop correction for large values of λ2. For
instance, for μ ¼ 2MX and λ2 ¼ 2, the αðM2

ZÞ cross
sections are practically 20% higher than the full one-loop
correction. In general, we see that measured from the tree-
level cross section, the corrections decrease as λ2 increases,

FIG. 5. The relative (to the tree level) full one-loop corrections
to the cross sections XX → WþW−; ZZ as a function of the
relative velocity for test point P1 with μ ¼ MX=2;MX; 2MX
(from left to right). Three values of λ2 are considered. The
percentage deviation due to choosing as input αðM2

ZÞ instead of
αð0Þ is also shown. This correction (∼13%) is the same for both
ZZ and WW. It is therefore superimposed for the two cross
sections and appears as a common line.
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and they also decrease as the scale increases, a behavior
that is fully explained by our λL; β̃λL discussion exposed
through Eq. (7.4). Therefore, we recommend for such
scenarios, with small β̃λL , to apply a theoretical uncer-
tainty to the prediction of micrOMEGAs ranging from
−20% to −4% to account for the scale uncertainty and
the λ2 dependence that a tree-level calculation is not
sensitive to.

VIII. CONCLUSIONS

Compared to a much studied model like the MSSM, the
IDM with the addition of one scalar doublet to the SM is
quite simple and economical in terms of the number of
parameters it involves. Yet, it has a rich structure and
constitutes an excellent laboratory to address many tech-
nical issues about renormalization of a BSM model.
Namely, what physical input parameters could one define
to perform a full one-loop calculation. Using the masses of
the new fields (particles) of the model seem a most
unambiguous scheme to define the model. However, even
if all masses are given, we still need two more parameters,
λL (or some other combination of the underlying param-
eters of the Lagrangian) and λ2 to compute observables,
most importantly, cross sections. λL, which measures the
strength of the coupling of the SM Higgs boson to the DM
particle, is needed for the (tree-level) calculation of the
annihilation of DM to SM particles, besides the gauge
couplings that we define from SM observables. The quartic
coupling λ2 represents interactions solely within the dark
sector. Nonetheless, loop effects introduce an important λ2
dependence of the annihilation cross sections. This indirect
one-loop effect therefore introduces an uncertainty in the
prediction of an observable such as the relic density. λL also
introduces an uncertainty of a different sort. Either this
coupling is extracted from the partial invisible width of the
Higgs boson, phase space allowing, or as we advocated in
this paper, an MS scheme is prescribed to allow a full one-
loop calculation. The latter introduces a renormalization
scale dependence in the one-loop predictions. If the MS
prescription is applied to λL only, we have shown how the
scale dependence can be tracked through the β constant for
λL (β̃λL ) and the λL parametrization of the tree-level
observable. We have also argued how to reduce the scale
uncertainty by choosing an optimal scale which we con-
jecture to be close to the largest scale involved in the
process. The overall theoretical uncertainty should be
estimated by varying the scale around this optimal value
and also by varying λ2, a quantity the annihilation of DM to
SM particles does not depend on. The study of the
theoretical uncertainty at one-loop has also led us to
introduce a new criterion for the perturbativity requirement:
only configurations with small enough β̃λL qualify. An
important consequence from this requirement is that one
should restrict the study of the IDM to the range

MA;∼M�
H < MX þ 150 GeV. From the point of view of

the relic density calculation, the IDM, even in the narrow
range of low masses (55 < MX < 75 GeV), involves the
main known mechanisms in the freeze-out scenario: anni-
hilation in the continuum, coannihilation, annihilation
through a resonance. We have conducted a very thorough
investigation on the allowed parameter space of the model,
which includes new LHC and direct detection data to delimit
the range of the low mass IDM scenarios and the DM
annihilation mechanisms that are involved. A set of repre-
sentative IDM points covering these mechanisms was
presented. It will serve as a starting point to conduct full
one-loop calculations in these three scenarios. XX → Wff̄0
(a 2 → 3 process) at one-loop, which has never been
attended before, will figure in all three scenarios but with
varying degree of importance. Salient features of this process
are contained in the 2 → 2 processes XX → WþW−; ZZ,
which we studied in this paper. Crucial technical process
specific issues, beyond the general renormalization pro-
cedure presented at some length here, are presented in the
accompanying papers that cover each of the three scenarios.
The calculation of the relic density at one-loop when the
mechanism is dominated by coannihilation will be presented
in Ref. [111]. If we set aside the induced subdominant
production through XX → Wff̄0 (a 2 → 3 process), the
dominant mechanism is AX coannihilation to a fermion pair.
In Ref. [112], we consider three benchmark points to present
results for XX → Wff̄0; XX → Zff̄ and how the corrected
cross sections translate into the calculation of the relic
density. Finally in Ref. [110], the resonance region, we
show how to extend the OS scheme that we detailed in the
present paper by supplementing a complex scheme that
avoids the issue of double counting in the presence of a
width. The width, necessary in the tree-level calculation, is in
fact induced at the loop level calculation since the width
represents the imaginary part of the self-energy contribution.
Again, the IDM can be a good examplewhich illustrates how
a loop calculation for a process that proceeds through a
resonance should be conducted.
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