002748557 001__ 2748557
002748557 005__ 20231004084922.0
002748557 0247_ $$2DOI$$9arXiv$$a10.1016/j.cpc.2020.107713$$qpublication
002748557 0248_ $$aoai:cds.cern.ch:2748557$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002748557 037__ $$9arXiv$$aarXiv:2007.02591$$cphysics.ins-det
002748557 035__ $$9arXiv$$aoai:arXiv.org:2007.02591
002748557 035__ $$9Inspire$$aoai:inspirehep.net:1805276$$d2023-10-03T08:47:17Z$$h2023-10-04T02:20:02Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002748557 035__ $$9Inspire$$a1805276
002748557 041__ $$aeng
002748557 100__ $$aAiola, Salvatore$$jORCID:0000-0001-6209-7627$$uMilan U.$$vUniversità di Milano, Milano, Italy
002748557 245__ $$9Elsevier$$aHybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb
002748557 260__ $$c2021-03
002748557 269__ $$c2020-07-06
002748557 300__ $$a7 p
002748557 500__ $$9arXiv$$a7 pages, 6 figures
002748557 520__ $$9Elsevier$$aWe describe the Hybrid seeding , a stand-alone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.
002748557 520__ $$9arXiv$$aWe describe the Hybrid seeding, a standalone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.
002748557 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002748557 542__ $$fElsevier B.V.
002748557 65017 $$2arXiv$$ahep-ex
002748557 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002748557 65017 $$2arXiv$$aphysics.ins-det
002748557 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002748557 690C_ $$aCERN
002748557 690C_ $$aARTICLE
002748557 693__ $$aCERN LHC$$eLHCb
002748557 700__ $$aAmhis, Yasmine$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002748557 700__ $$aBilloir, Pierre$$jORCID:0000-0001-5433-9876$$uParis U., VI-VII$$vLPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
002748557 700__ $$aKishor Jashal, Brij$$jORCID:0000-0002-0025-4663$$uValencia U., IFIC$$vIFIC, Valencia, Spain
002748557 700__ $$aHenry, Louis$$iINSPIRE-00390866$$jORCID:[email protected]$$uValencia U., IFIC$$uMilan U.$$vIFIC, Valencia, Spain and Universit`a di Milano, Milano, Italy
002748557 700__ $$aOyanguren Campos, Arantza$$uValencia U., IFIC$$vIFIC, Valencia, Spain
002748557 700__ $$aMarin Benito, Carla$$jORCID:0000-0003-0529-6982$$uIJCLab, Orsay$$vUniversit´e Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002748557 700__ $$aPolci, Francesco$$jORCID:0000-0001-8058-0436$$uParis U., VI-VII$$vLPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
002748557 700__ $$aQuagliani, Renato$$jORCID:[email protected]$$uParis U., VI-VII$$vLPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
002748557 700__ $$aSchiller, Manuel$$jORCID:0000-0001-8750-863X$$uGlasgow U.$$vUniversity of Glasgow, UK
002748557 700__ $$aWang, Mengzhen$$jORCID:0000-0003-4062-710X$$uTsinghua U., Beijing, CHEP$$vCenter for High Energy Physics, Tsinghua University, Beijing, China
002748557 773__ $$c107713$$pComput. Phys. Commun.$$v260$$y2021
002748557 8564_ $$82271532$$s196064$$uhttps://cds.cern.ch/record/2748557/files/BField.png$$y00003 Dependency of the $B_{y}$ magnetic field component as a function of the bending plane in the acceptance region of the SciFi detector. The magnetic field intensity decreases as a function of $z$ and can be written in a first approximation as $B_{y}=B_{0}+B_{1}\cdot z $, where $B_{1}/B_{0}$ is roughly constant.
002748557 8564_ $$82271533$$s41384$$uhttps://cds.cern.ch/record/2748557/files/SearchSketch.png$$y00004 Illustration of the two- and three-hit searches in the $x$-$z$ plane.
002748557 8564_ $$82271534$$s175008$$uhttps://cds.cern.ch/record/2748557/files/TrackTypes.png$$y00000 Track types defined in \lhcb. It is worth noting that Long tracks do not need to leave hits in the Upstream Tracker (UT). The SciFi is composed of the T1, T2 and T3 stations, and the \lhcb magnet is represented between the UT and the SciFi. Upstream tracks are formed by a combination of hits in the \velo and the UT.
002748557 8564_ $$82271535$$s266134$$uhttps://cds.cern.ch/record/2748557/files/XYHitMap.png$$y00001 Top: event average hit density in a single layer of the \scifi. The hole in the middle corresponds to the beam hole. Bottom: information provided after detector readout to the \HS ($y$-information is integrated out).
002748557 8564_ $$82271536$$s7654$$uhttps://cds.cern.ch/record/2748557/files/GhostnPV.png$$y00008 Dependency of the seeding fake rates as a function of the number of primary vertices in the event.
002748557 8564_ $$82271537$$s9079$$uhttps://cds.cern.ch/record/2748557/files/HitsX.png$$y00002 Top: event average hit density in a single layer of the \scifi. The hole in the middle corresponds to the beam hole. Bottom: information provided after detector readout to the \HS ($y$-information is integrated out).
002748557 8564_ $$82271538$$s2590730$$uhttps://cds.cern.ch/record/2748557/files/2007.02591.pdf$$yFulltext
002748557 8564_ $$82271539$$s22773$$uhttps://cds.cern.ch/record/2748557/files/P.png$$y00007 Dependency of the seeding efficiencies with respect to (top) pseudorapidity, (middle) the number of primary vertices and (bottom) momentum. Blue and red refer to electron and non-electron tracks, respectively. Tracks are taken within the $2 < \eta < 5$ interval.
002748557 8564_ $$82271540$$s20173$$uhttps://cds.cern.ch/record/2748557/files/Eta.png$$y00005 Dependency of the seeding efficiencies with respect to (top) pseudorapidity, (middle) the number of primary vertices and (bottom) momentum. Blue and red refer to electron and non-electron tracks, respectively. Tracks are taken within the $2 < \eta < 5$ interval.
002748557 8564_ $$82271541$$s9339$$uhttps://cds.cern.ch/record/2748557/files/nPVs.png$$y00006 Dependency of the seeding efficiencies with respect to (top) pseudorapidity, (middle) the number of primary vertices and (bottom) momentum. Blue and red refer to electron and non-electron tracks, respectively. Tracks are taken within the $2 < \eta < 5$ interval.
002748557 960__ $$a13
002748557 980__ $$aARTICLE