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Abstract Hadronisation corrections are crucial in extrac-
tions of the strong coupling constant (cts) from event-shape
distributions at lepton colliders. Although their dynamics
cannot be understood rigorously using perturbative methods,
their dominant effect on physical observables can be esti-
mated in singular configurations sensitive to the emission of
soft radiation. The differential distributions of some event-
shape variables, notably the C parameter, feature two such
singular points. We analytically compute the leading non-
perturbative correction in the symmetric three-jet limit for
the C parameter, and find that it differs by more than a factor
of two from the known result in the two-jet limit. We estimate
the impact of this result on strong coupling extractions, con-
sidering a range of functions to interpolate the hadronisation
correction in the region between the 2 and 3-jet limits. Fitting
data from ALEPH and JADE, we find that most interpola-
tion choices increase the extracted o, with effects of up to
4% relative to standard fits. This brings a new perspective on
the long-standing discrepancy between certain event-shape
o, fits and the world average.

1 Introduction

The strong coupling constant «; is the least well known cou-
pling in the gauge sector of the Standard Model. The latest
Particle Data Group (PDG) average of g has an uncertainty
of about 1% [1,2], considerably larger than the error in the
other gauge coupling determinations. Given the importance
of QCD at LHC collider experiments, and rapid progress in
perturbative calculations [3] and experimental accuracy, the
uncertainty on «; is becoming increasingly critical for pre-
cision collider phenomenology. However, the headline fig-
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ure of 1% uncertainty from the PDG average masks signif-
icant discrepancies between different extractions. In partic-
ular two of the most precise oy determinations come from
event-shapes studies: oy = 0.1135 4 0.0010 [4] from fitting
thrust data and oy = 0.1123 £0.0015 [5] from C-parameter
data. These results are several standard deviations away from
the world average of 0.1179 £ 0.0010 [2,6] and from other
individual precise extractions, such as 0.1185 £ 0.0008 from
lattice step scaling [7] and 0.1188 £ 0.0013 from jet rates
[8].

These particular event-shape and jet-rate fits are among
the most precise of a wide variety of fits to eTe™ hadronic
final-state data [4,5,8-23]. Many of them use high-precision
perturbative calculations, however they also all require input
on non-perturbative (hadronisation) effects. These can be
estimated either using Monte Carlo (MC) event genera-
tors [8,11,14,17,20] or via analytic non-perturbative mod-
els [4,5,13,18,24]. The use of MC event generators has
long been criticised on two main grounds: they are tuned
on less accurate perturbative (shower) calculations, and the
separation between perturbative and non-perturbative com-
ponents cannot easily be related to today’s highest-accuracy
perturbative calculations. Conversely the analytic models fit
a non-perturbative parameter and the perturbative coupling
in a single, consistent framework. The low o values from
Refs. [4,5,18] use the latter method. The price to pay in this
approach is that the non-perturbative component is not con-
trolled beyond the first order in an expansion in powers of
1/ Q (the centre-of-mass energy) and furthermore only in the
2-jet limit, while fits cover both the 2 and 3-jet regions.

In this article we examine specifically the issue of going
beyond the 2-jet limit for the hadronisation correction. In
principle one might attempt a full calculation as carried out
for top-quark production in the large-n ¢ limit in Ref. [25].
Before embarking on such a calculation, we believe however
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that it is worth establishing whether 3-jet hadronisation cor-
rections bring a phenomenologically relevant effect. To do
so simply, we consider the example of the C-parameter. This
observable is special in that it has two singular points, one
at C = 0 and the other at a Sudakov shoulder at C = 3/4
[26,27]. Existing fits calculate the hadronisation correction
around the first singular point, C = 0 and extend it to the
whole C-parameter spectrum. Here we point out that one can
also quite straightforwardly calculate the power correction at
the other singular point C = 3/4. One can then consider a
range of schemes for interpolating between the two singular
points and examine their impact on strong coupling fits.

This letter is structured as follows: in Sect. 2 we briefly
recall the framework for perturbative fits with analytic hadro-
nisation estimates. In Sect. 3 we then review the determina-
tion of the C-parameter hadronisation correction in the 2-jet
limit and extend it to the symmetric 3-jet case (C = 3/4).
Section 4 presents the results of our new fits and we then
conclude in Sect. 5.

2 The C-parameter and its distribution

The C-parameter variable for a hadronic final state in e*e™
annihilation is defined as follows [28],
C =312+ A3 + A3h1), (1)

in terms of the eigenvalues A; of the linearised momentum
tensor ©%F [29,30],
1 pep!

e —
> lpil — Ipil

) @

where | p; | is the modulus of the three momentum of particle i
and p{ is its momentum component along spatial dimension
o (¢ = 1,2,3). In events where all particles are massless,
this can also be written as

-y

(p, Q)(p, o) ‘Zm] sin 6, (3)

where Q is the centre-of-mass energy, p; denotes the four-
momentum of particle i, x; = 2(p; - Q)/Qz, and 6;; is the
angle between particles i and j. We introduce the cumulative
distribution X' defined as

1 do
20 = /0 ac' i 4

The differential distribution do is known to next-to-next-to-
leading order (NNLO) in massless QCD [31-33], which can
be combined with the total cross section o [34] to obtain
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a N°LO prediction for Eq. (4). The effects of heavy-quark
(notably the bottom quark) masses on event shape distribu-
tions [35], as well as electroweak corrections [36], are known
to NLO, but we do not consider them in our study. Their omis-
sion does not affect in any way the conclusions of this article.
In the following we consider the massless-QCD NNLO pre-
dictions for the differential distribution from Ref. [33].

In the two-jet region, the fixed-order expansion is spoiled
by large logarithms of infrared and collinear origin, which
must be consistently resummed at all perturbative orders to
obtain a physical prediction. The resummation for the C-
parameter distribution has been carried out in different for-
malisms [27,37,38] and it is known up to N°LL [37]. In
our analysis we adopt the analytic next-to-next-leading loga-
rithmic (NNLL) calculation from the appendix of Ref. [38],
which is sufficient to illustrate our findings.

To obtain a perturbative prediction that is accurate across
the whole physical spectrum, we need to match the resummed
NNLL calculation to the fixed order result. This is done
by combining the N3LO calculation Z’NSLO(C ) with the
resummed prediction NNM(C) according to the log-R
scheme [39] as

NNLL N3Lo Exp.
Epel‘t.(c) = ean‘ (C)+In X (C)—In X&*P (C)7 (5)

where XFXP-(C) is the fixed-order expansion of ZNNLL(C)
to (’)((x? ). Detailed formulae are reported in Ref. [40]. Note
that specific choices need to be made to limit the impact of
the resummation in regions where C is not small. Our choices
are discussed in Appendix D.

The hadronisation corrections to the C parameter distri-
bution can be described in terms of an expansion in negative
powers of the centre of mass energy Q. The leading correc-
tion in this sense leads to a shift of the cumulative distribution
of the form

Ehadr.(c) — Zpen'(c — <8C>(C))v (6)

where (5C)(C) o 1/Q is the mean change in the C parame-
ter’s value due to the emission of soft non-perturbative radi-
ation. In most work, the power correction is taken to be inde-
pendent of the value of the observable, (§C)(C) = (§C)(0).
In this work we will be investigating the consequences of
having (6C)(C) vary with C.

We adopt the following form for (§C)(C),

4C
(8C) =~ ¢ (C)M %N—F [aow,) s (11%)
Bo KO
o (1)~ (21 —+%+2
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where ¢ (C) encodes the C-dependence of the correction. In
Eq. (7) we include the Milan factor M(ny = 3) ~ 1.490
[41-43] to account for the non-inclusive correction. Eq. (7)
involves the mean value of the strong coupling constant in
the soft physical scheme &; (see also Appendix A) at infrared
scales ; < w7y, above which the prediction is assumed to be
dominantly perturbative [44],

1 754
ap(u) = — / dp ag (u?). ®)
K1 Jo

Equation (7) also includes terms to subtract the contribu-
tions already accounted for in the perturbative calculation
[13,18,45]. The determination of the latter is not without
subtleties, in that it assumes that non-inclusive corrections to
such renormalon subtraction are described by the same mul-
tiplicative M factor as for the coefficient of ag ( M%). However
these subtleties are numerically subdominant relative to other
effects that we will be discussing here.

The core of this article relates to the coefficient ¢(C),
which entirely determines the C dependence of Eq. (7). The
calculation of ¢(C) at specific values of C is the subject of
the next section.

3 Non-perturbative corrections

The calculation of (§C) near a singular configuration requires
the amplitudes describing the emission of a “gluer” [44] k off
the hard partonic system defined by the set of momenta {p;}.
We can then calculate the mean change in the observable
caused by the emission of k, i.e.

AC(pi) pi}i k) = CUpi)i k) — CUpi)). ©))

where the momenta {p;} ({p;}) describe the hard configura-
tion before (after) the emission of the gluer. One can construct
arange of prescriptions for mapping {p;} — {p}} andin gen-
eral AC({p;}, {pi}; k) depends on the choice that is made.
However, in the immediate vicinity of a singular configu-
ration, it turns out that AC({p.}, {p;}: k)/k; is independent
of that prescription in the limit of k, — 0, where k; is the
transverse momentum of k. For the C-parameter, the singu-
lar points correspond to the 2-jet limit and the symmetric
3-jet limit. At these points the dependence on the choice of
recoil scales as k> and so vanishes in the k, — 0 limit of

AC({p;}. pi}y: k) / ks

Under such conditions, one can write

0

— & 2
£(C€) = lim a.Cr [dk] M~ (k)
x AC({pi}, pi}s k) 8 (ke — €, (10)

where [dk]M?%(k) is the phase space and eikonal squared
amplitude describing the emission of the gluer, and the {p;}
are the hard momenta associated with the singular configu-
ration. The coupling, colour factor and a dimensional factor
Q are divided out, since these are included in Eq. (7).

For an emission from a dipole {ij}, stretching between
particles with momenta p; and p;, the matrix element and
phase space are

2C dk; d
k] M2 (k) = 255 g PR 42 4 (11)
b4 k; 2w

where k;, n and ¢ are to be understood with respect to the

dipole; k; in the §(k; — €) factor in Eq. (10) is also to be
understood with respect to the emitting dipole.

3.1 Calculation of ¢ (0) (2-jet limit)

Let us start by considering the two-jet limit C = 0. The shift
in the C-parameter induced by a small-k; gluer is [27,39]

2
AC(k):ﬁ 3 +O<k’>, (12)

O cosh(n) 0?

where, for brevity, we have omitted the {p} and {p’} argu-
ments in AC (k). This leads us to

(0) = / dn 3 = 3w >~ 9.42478, (13)
—o0o  cosh(n)

where the rapidity limits can be taken to infinity because the
integral is convergent. This coincides (to within conventions
for normalisations) with the result that was given in [27,45,
46].

3.2 Calculation of ¢ (3/4) (Sudakov shoulder)
The leading order (LO) C-parameter distribution has an end-

point at 3/4. Just below this endpoint, the distribution tends
to a non-zero constant [26],

ldo (37\ @ . 256 5
~0 (2 )= B Va4 0@, 14
o dC (4) 2n CF 2gg™ V3 + 0@ a4

while above the endpoint the distribution is zero at order o.
This structure is known as a Sudakov shoulder. Parametrising
the energies of the two quarks and the gluon as Q/2(2/3 —

@ Springer
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€), 0/2(2/3 — €5), Q/2(2/3 + €, + €;) one obtains

c=2 -2 (2 tee+)+0(<). (15)

and the shoulder arises because of the absence of linear
dependence on the €’s. This absence of linear dependence
on € is also the reason that the choice of recoil prescription
affects AC only at order k,2 /Q?. Considering emission of a
gluon with momentum & from an {ij} dipole (withZ, j chosen

among ¢, ¢, g), one can then derive
k2
w0 (g:). oo

in terms of the k;, n and ¢ of the emission with respect to the
dipole (taken in the dipole’s centre of mass). The O(k;/ Q)
contribution arises only when k is out of the 3-jet plane.

The squared matrix element times phase space can be writ-
ten as a sum over three dipoles

3V3 sin(¢) ke
2 2cosh(n) — cos(¢) O

AC(k) =

3

[dip] , , [dip]
204 dk P gpldl
) _ K . t [dip]
[dkIM~ (k) = g § dlp—k[dip] —2]_[ dn

dip=q¢.98.99 t
(17

where Cy, = Cg, = Ca/2 and Cy5 = Crp — Ca/2. Note
that for each dipole we will use the corresponding kinematic
variables (k,[dip], etc.) in Eq. (16). This is equivalent to the
procedure used to calculate the power correction to the D-
parameter for arbitrary 3-jet configurations [47].

Integrating over nl4iPl and ¢4Pl and summing over
dipoles, we then obtain

00 27 in2
;(3/4):%5%/ dﬂ/ ;&L
E oo Jo 2m2coshn —cos¢
B CAR2CE p gy sk, a8)
4 Cr

The functions K and E are the complete elliptic integrals of
the first and second kind

/2
K(t) = / do(1 —tsin?9)~1/2, (19a)
0
/2
E(r) = / do(1 — 1sin0)"/2. (19b)
0
The numerical value of ¢ (3/4) reads
£(3/4) ~ 4.48628, (20)
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which provides the leading non-perturbative correction at
the shoulder.! This simple result reveals that the leading (~
1/Q) hadronisation correction at the (symmetric three-jet)
Sudakov shoulder is less than half that in the two-jet limit

(¢(0) = 3m).
3.3 Modelling of the 0 < C <3/4 region

Our calculations of ¢(0) and ¢ (3/4) relied critically on the
fact that recoil from the gluer emission had an impact that was
quadratic in the gluer momentum. Away from these special
points, the methods used here do not give us control over the
value of the power correction, because the result depends on
the prescription that we adopt for recoil (the impact of the
hard parton’s recoil becomes linear in the gluer momentum).
One could conceivably extend the methods of Ref. [25] to
attempt to determine the general dependence of ¢(C) on C,
however such a calculation is highly non-trivial. So here,
we want to establish whether such a calculation would be
phenomenologically important. To do so, we consider arange
of models that interpolate the power correction between the
known values at C = 0 and C = 3/4, some of which depend
on a parameter n > 0. These are:

20(C) = ¢(0) (21a)
4C

Can(C) =) —u")+¢@/Mu", u= 3 (21b)

o (C) =01 —w)"+:G/4H(1-0—-w"), (2l

£e(C) =¢(0) + (¢(3/4) — ¢(0) g(w), (21d)

where g(u) has the property that it is O (1) foru = 0 (1) and
its first derivative is zero atu = 0, 1,
gw) = —1+ (1 —u)?+3u—u. (2le)
The different forms for ¢ (C) are shown in Fig. 1.

The ¢ choice corresponds to using a constant shift, i.e. the
standard approach for earlier studies. For both ¢, , and ¢p 5,
using n = 1 corresponds to a linear interpolation between
the ¢(0) and ¢(3/4) values. For larger n, ¢, , is flat close
to C = 0, while ¢, ,, is flat close to C = 3/4. Finally ¢, is
flat near both C = 0 and C = 3/4. We stress that the vari-
ations in Eq. (21) are not normally taken into account when
estimating hadronisation with analytic models, which effec-
tively all assume the ¢y model, corresponding to a constant
shift across the whole differential distribution. In Sect. 4 we
will see what impact this has on fits for the strong coupling
from experimental data.

! The numerical value of ¢(3/4) was previously estimated in unpub-
lished work by one of us (GPS) in collaboration with Z. Trécsanyi (see
for instance Section 4.1.3 of Ref. [48]).
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Fig. 1 Different functional forms for ¢(C) function interpolating
between the results at C = 0 and C = 3/4

In order to gain some insight on how ¢(C) depends on
the recoil scheme, in Appendix B we carry out a fixed-order
calculation of this quantity within different schemes to dis-
tribute the recoil due to the emission of the gluer among the
remaining three partons. In reality, however, the behaviour
that we find at fixed order in Appendix B can be substantially
modified by the emission of multiple perturbative radiation
(as also discussed in Appendix B). Therefore we do not rely
on these calculations to assess the impact of ¢ (C) on the fits,
but rather use them as an insightful picture of how the lead-
ing non-perturbative correction scales across the spectrum of
the event shape. We do however note that the concrete recoil
schemes all yield shapes that fall below the ¢, 1 = &1 line.

4 Fit of oy and hadronisation uncertainties

To test how our results affect the extraction of «y, we per-
form a simultaneous fit of the strong coupling and of the
non-perturbative parameter o (,u%), using data at different
centre-of-mass energies from the ALEPH [49] and JADE
[50] experiments, as summarised in Table 1. This dataset
is smaller than that considered for a similar fit in Ref. [5],
but is largely sufficient for determining how the o fit result
depends on ¢(C).

The theory predictions are obtained using 50 bins in the
0 < C < 1 range, subsequently interpolated in order to be
evaluated in correspondence to the experimental data bins.
The fit is performed by minimising the x2 function defined
as

1 do data 1 do th
2 —1
= ——(C; — ——(C; V>
X inj(gdC< ) —c©)| Vs
Lar oo = L9 (22)
(190 o[ 1do
odc 7’ odc 7’ ’

Table 1 Data set considered for the simultaneous X2 fit of oy and g

Exp. Q(GeV)  Fitrange N.bins  References
ALEPH 91.2 0.27 < C < 0.69 22 [49]
ALEPH  133.0 0.20 < C < 0.675 6 [49]
ALEPH 161.0 0.16 < C < 0.675 7 [49]
ALEPH 172.0 0.16 < C < 0.675 7 [49]
ALEPH  183.0 0.16 < C < 0.675 7 [49]
ALEPH 189.0 0.16 < C < 0.675 7 [49]
ALEPH  200.0 0.125 < C < 0.675 8 [49]
ALEPH  206.0 0.125 < C < 0.675 8 [49]
JADE 44.0 0.61 < C < 0.68 2 [50]

where V;; is the covariance matrix that encodes the corre-
lation between the bins C; and C;. The general form of the
covariance matrix is V;; = S;; + E;;, where S;; = 802, ;5;j
is the diagonal matrix of the (uncorrelated) statistical errors
in the experimental differential distribution, while E;; con-
tains the experimental systematic covariances. The diago-
nal entries of E;; = (SUSZySw. are given by the experimental
systematic uncertainty on the i-th bin. For the off-diagonal
elements, which are not publicly available, a common choice
(used also in Refs. [4,5,18]) is to consider a minimal-overlap

model, which defines E;; as

Eij = min(803, ;. 805 ;)- (23)

For ease of comparison, we adopt the same choice, though
we note that for the normalised distributions that we fit here,
the true covariance matrix would also include some degree
of anti-correlation. The x? minimisation is carried out with
the TMinuit routine distributed with ROOT and the whole
analysis was implemented in the C++ code used for a similar
fit in Ref. [18]. Results with a diagonal covariance matrix,
i.e. without any correlations, are given in Appendix C. They
yield almost identical central results for g and o, smaller x 2
values, and an increase in the experimental errors of O (10—
20%), which however remain small compared to theoretical
uncertainties.

In order to estimate the theoretical uncertainties, we per-
form the following variations:

e the renormalisation scale pp is randomly varied in the
range Q/2 < ug < 2 Q, while the infrared scale p; is
set to 2 GeV;

e for ur = Q, the resummation scale fraction x¢ defined
in Appendix D (default value x¢c = 1/2) is randomly
varied by a factor 3/2 in either direction, namely in the
range 1/3 < xc < 3/4, following the prescription of
Ref. [9];

@ Springer
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Fig. 2 Fit results for oy and o« for different models of ¢(C). The
points indicate the fit corresponding to the central setup of scales and
parameters for a given model. The ellipses show the Ax? = 1 contours
associated with the experimental uncertainty. The shaded areas repre-
sent the theory uncertainties due to the variation of additional theoretical
parameters as described in the text

e for ug = Q and x¢ = 1/2, the Milan factor M is
randomly varied within 20% of its central value [41]
(M =~ 1.49) to account for non-inclusive effects in the
(8C) shift (7) beyond O(a?);

e keeping all of the above parameters at their central val-
ues, the parameter p in the modified logarithm defined in
Eq. (41) of Appendix D (default value p = 6) is replaced
by p = 5 and p = 7. This choice for p is discussed in
Appendix D.

The theory error is defined as the envelope of all the above
variations. When we quote overall results below, we add the
theoretical and experimental errors in quadrature.

We test several models for ¢(C) as given in Eq. (21) and
shown in Fig. 1. Specifically, we consider the constant &
choice, the ¢, , model for n = 1,2, 3, the ¢, model for
n =1,2,3, and the {, model (recall {,,1 = &p.1)-

The results of the fits are given in Fig. 2 and Table 2.
Figure 2 shows results for oy and «g: the points give the

Table 2 Results of fits for «y and oo using the different functional
forms for ¢(C) reported in Eq. (21). The quoted uncertainties encode
the total (statistical and systematic) experimental uncertainty (first num-
ber) and the total theoretical uncertainty (second number) estimated as

central result for each ¢ (C) choice, while the corresponding
shaded areas represent the envelope of results obtained vary-
ing scales and parameters in the theoretical calculation, i.e.
our overall theoretical uncertainty. Each point is accompa-
nied by the Ax? = 1 ellipse, whose projection along each
of the axes defines the 1 o experimental uncertainty. Table 2
provides the numerical values of the central results and over-
all errors for each ¢ (C) choice, and additionally includes the
x? result from the fit, Eq. (22), divided by the number of
degrees of freedom.

The results with the ¢y model correspond to the standard
implementation of the leading non-perturbative correction,
which is assumed to amount to a constant shift across the
whole C spectrum. The fit returns
o as(M2) = 0112170000 an(u?) = 0.53705%,
and agrees well with that of Ref. [5], albeit with larger uncer-
tainties, in part due to our use of NNLL+NNLO rather than
N3LL+NNLO theory predictions. We observe that several
models lead to a X2 value that is the same as, or smaller than,
that for the ¢p shape. In particular, the ¢, > model returns
ot as(M2) = 0.11637090%8  ap(u?) = 0.5175:99,
with a x2 that is similar to that of the ¢ fit. This corre-
sponds to an increase in aS(M%) of about 3.7%. In a num-
ber of models ({41 = &b.1, b2, &3, and ¢.) the val-
ues of oy become compatible with the world average [2]
aV-A = 0.1179 & 0.0010. The result with the smallest x>
is the ¢, » model, which yields a rather small value of oy =
0.1 1211“8:88%2. However the investigations of Appendix B,
with a variety of concrete recoil-scheme prescriptions, seem
to disfavour the ¢, » shape, suggesting that yet other factors
may be relevant for maximising the fit quality.

Overall, the results suggest that one should allow for a
3—4% uncertainty in o, extractions from eTe™ C-parameter

described in the text. The x2 values are those obtained with central
scales and setup. The results have been obtained with the minimum
overlap model, Eq. (23), for correlations between experimental system-
atic uncertainties

Model ag(M2) ) x%/d.of.
% 0.1121 £ 0.0006* 0003 0.53 £0.01700; 1.076
a1 = p1 0.1142 = 0.0005 7002 0.52£0.0175:9 1.045
Cap 0.1121 = 0.0006 00074 0.52 +0.017007 1.033
Ca3 0.1099 = 0.0007 0042 0.54 £0.017997 1.116
Cho 0.1163 % 0.0005" 90025 0.51 +£0.01790¢ 1.079
&3 0.1167 4 0.0004+0.0028 0.53 400170 1.143
¢ 0.1156 + 0.0005"9:9%27 0.48 +0.017003 1.074
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data, associated with limitations in our current ability to esti-
mate hadronisation corrections.

5 Conclusions

In this letter we have pointed out that the presence of a
Sudakov shoulder in the differential distribution of some
event-shape observables, such as the C parameter, can be
exploited to gain insight on the observable dependence of
the leading (~ 1/Q) hadronisation correction to the spec-
trum. We found that the leading hadronisation correction at
the Sudakov shoulder (C = 3/4) is over a factor of two
smaller than the corresponding value in the two-jet (C = 0)
limit.

In order to assess the impact of this observation on the fit of
the strong coupling constant, we performed a set of fits using
different assumptions on the scaling of the non-perturbative
correction between the two points.

Our study is by no means exhaustive, and the inclusion
of additional physical effects (such as the impact of bottom-
mass effects) as well as a careful assessment of other sources
of systematic uncertainty (such as the dependence on the
fit range and the choice of correlation model) is necessary.
However, it clearly reveals that current uncertainties in the
modelling of hadronisation corrections can arguably impact
the extractions of the strong coupling from event shapes at
the several percent level. In particular, some of the models
tested here lead to an increase in the extracted value of the
strong coupling by 3-4%, which then becomes compatible
with the world average to within uncertainties.

This necessarily raises the question of whether such
observables should still be adopted for percent-accurate
determinations of the strong coupling at LEP energies. Sim-
ilar considerations may apply to extractions of o obtained
with jet observables, for instance those relying on accurate
calculations for jet rates [32,51-54] (e.g. the fits of Refs.
[8,21]) or modifications of eTe™ event shapes by means of
grooming techniques [55-57] (an example being the analy-
sis of Ref. [58]). Further studies are certainly warranted to
investigate whether it is possible to better understand hadro-
nisation for such observables across their whole spectrum,
for example exploiting the large-n s calculational methods
of Ref. [25].
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Appendix A: Some relevant quantities

In the present section we report the expressions for the
anomalous dimensions used in the main text. The QCD B
function is defined by the renormalisation group equation
for the QCD coupling constant

2
dos () _ —as(u)(%(mﬂo+ o (/L)/31 +) 24)

dln u? T w2

where the first two coefficients read

4 ERLPS
0—12 A 3 FNF,
B 1702 5C T, 1C T, (25)
=—Cy — — ng— - ng.
1 24 A 12 ALFNF 4 FLFNF

The K@ coefficients that appear in the non-perturbative
shift (7) arise from the perturbative relation between the
strong coupling in the soft physical scheme [59-61], denoted
here by &y, and the MS coupling oy = o (MZ)

- s o \2
a5 (1?) = ay <1 + ﬁl((l) + (ﬁ) K@ + O(af)) )

(26)
They read [59-61]
k¢, (7 _7)_3 (272)
= _—— — —n N
8 6) 9
245 67 11 11
KO _c2 (22 Y i o,
a5z 9§2+6§3+5§2
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Appendix B: Fixed-order prediction for ¢(C) and recoil
scheme dependence

It is instructive to repeat the calculation (10) starting from a
generic gg g configuration in the region 0 < C < 3/4. In this
case the value of AC in Eq. (9) will depend on the specific
scheme used to distribute the recoil due to the emission of
the gluer among the remaining three partons. Therefore, the
definition of ¢(C) away from the singular points at C = 0
and C = 3/4 must be modified as follows

nQ
€C) = 37 lim 5= | dPyq [dk] M7z (pi}) M (k)
x AC({pi}, {pi}; )8 (C = C{pi}) 8k — e,
(28)
with the normalisation A/ given by
N = / dPyge M25,({pi1)) 8 (C — C{pi}). (29)

In the above two equations @5, denotes the phase space
of the ggqg system and ngg({pi}) is the corresponding
squared amplitude evaluated with the unrecoiled momenta
{pi} = {pg. 3. pg} prior to the emission of the gluer
k. We see that as we approach one of the singular points
AC({plf}, {pi}; k) =~ AC(k) and we reproduce Eq. (10).
Away from those points, the recoil will induce a linear depen-
dence on the gluer’s momentum, hence affecting the value of
£(C) in a way that potentially depends on the specific model
of recoil. The fixed-order calculation of Eq. (28) will provide
some level of insight into how the leading non-perturbative
correction varies across the spectrum of the event shape.

For an emission off a given dipole {ij} ({gg}, {¢q} or
{gg}), we express the gluer’s momentum k by means of the
Sudakov parametrisation

k= ogp; + Brpj + ki, (30)

where ax = (p; - k)/(pi - pj), Bk = (pi - k)/(pi - pj)
and k| = k; [nj_’l cos¢p+njy o sin¢], with ni)m = —1,
nim-pijj =00m=1,2),n11-ny1 72 =0.Weconsider the
following four recoil schemes

1. CS Dipole: the scheme is inspired by the Catani-Seymour

map [62]. For an emission k off adipole {ij } one identifies
the emitter and spectator by considering the following

@ Springer

quantity
yek = (pe - k)/ Eq, (3D

computed in the event centre-of-mass frame with { =
i, j. The emitter is then the dipole end corresponding to
the smaller yg.

Once the emitter (say p;) and the spectator (p ) are iden-
tified, the recoil is distributed as follows

, (k- pi)
i =pi —k+ i
B=p pi-pp)—k-ppl
/ (k'pi) )
Pi ( i pp)—k-pp) P G2

We also examined an alternative scheme in which the
distance yg; is computed in the dipole centre-of-mass
frame. The two schemes produce identical results for the
calculation considered in this appendix, and therefore we
omit further discussion of the latter variant.

. PanLocal [63] (antenna variant): the recoil is shared

locally within the dipole ends as

pi =aipi+ Bipj — [k,
Py =ajpi+Bipj— (1= kL. (33)

The quantities «;/; and B; / j in Eq. (33) are fully specified
by the requirements (p’ )l/] =0, (p; + p;. +k)=(p; +
pj)and p; = p; fork; — 0. The PanLocal [63] rapidity-
like variable 7 is defined as

- k [SiSij
).

wheres;; = 2p;-pj,s;i = 2p;-Q,and Q is the total event
momentum. In the event centre-of-mass frame, n = 0
corresponds to a direction equidistant in angle from p;
and p;.

The function f is responsible for sharing the transverse
recoil among p; and p; and it is defined as

27

_ e
f=f(n)=m' (35)
Finally, we have
(VA1 + VA2)? +4f2
o = a B,
4(1 — Br)
W = V)R +4f?
Bi = ) ay B,
(I — o)
WA - VA2)? 441 — f)?
aj = 41— Bo) P,
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_ WA+ VR)? 440 - f)?

Bj 40 —ap o P, (36)
with

A= —oax — B/ (arBr),

rM=A+4fA—=f). (37

3. PanGlobal [63]: the longitudinal recoil is assigned locally
within the dipole as

pi = (1 —ax)pi,
pj=0=B)pj, (38)

and the transverse recoil is assigned by applying a
Lorentz boost and a rescaling to the full event so as to
obtain final momenta {p’, k’} whose sum gives the orig-
inal total momentum Q (see [63] for details).

4. FHP: the scheme is inspired by that proposed by
Forshaw-Holguin-Plitzer in Ref. [64]. It is similar to
PanGlobal, with the difference that only the longitudi-
nal recoil along the emitter, say p;, is assigned locally

pi = —a)pi, (39)

and the remaining longitudinal and transverse recoil is
assigned by applying a Lorentz boost and a rescaling
to the full event as in the PanGlobal scheme. Unlike the
proposal in the original paper [64], we identify the emitter
pi with the dipole end closer in angle to k in the event
centre-of-mass frame, that is the one with the smaller y
defined in Eq. (31).

For our purposes, this is physically similar to what is done
in Ref. [64].

The results of the computation are reported in Fig. 3, where
for comparison we also report the curves corresponding to
the profiles ¢,.1 = ¢p.1, {42 and ¢, 2. We observe that the
CS Dipole, Panlocal and PanGlobal schemes yield nearly
identical results for ¢(C), which depart very sharply from
the asymptotic value in the two-jet limit and approach the
shape of the ¢;-type profiles at large values of C. Instead,
the FHP scheme gives a less convex shape, close to a linear
scaling in the fit region (indicated by the unshaded area in
the plot).

We believe that the similarity between the CS Dipole, Pan-
Local and PanGlobal schemes originates from the fact that,
in the presence of a single perturbative gluon, ¢ (C) is largely
insensitive to the precise distribution of the transverse recoil
among the particles in the event, which at this order and
for this particular observable, is washed out by the integra-
tion over the azimuth and rapidity of the perturbative gluon
pg- Conversely, the result does seem to depend on how the

4(©)
12 """ (a,z (a,ﬂ
¢b,2 b3
--@-- CS Dipole | PanLocal
10

-=-®-- PanGlobal ---&-= FHP

Cc

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 3 Fixed order calculation of ¢ (C) within different recoil schemes,
compared to the analytic profiles given in the main text. The unshaded
area indicates the typical C region where the fit of o is performed. The
CS Dipole, PanLocal and PanGlobal results coincide

longitudinal recoil is assigned. The CS Dipole, PanLocal and
PanGlobal schemes schemes all assign the longitudinal recoil
locally within the emitting dipole, while in the FHP scheme
part of the longitudinal recoil is shared among all particles
in the event.

Note that all recoil schemes appear to be below the ¢,,1 =
¢p.1 model. This tends to disfavour the ¢, » type model for
interpolation of ¢(C) between C = 0 and C = 3/4, even
though it gave the lowest x2 in the o fits in Sect. 4.

A final comment concerns the limitations of the fixed-
order nature of the study carried out in this appendix. At the
order at which we work, the fact that we force the perturbative
gqg system to have a given value of the C-parameter causes
the perturbative gluon to have a hardness comparable to C Q.
Were we to go to higher orders, it would become possible
for the perturbative event to contain additional, much softer
gluons. Those gluons could also be involved in the recoil
from the non-perturbative gluer, further altering the gluer’s
impact on the C-parameter. To take this into account, one
would need to carry out a non-global type resummation that
includes any number of perturbative soft gluons between the
momentum scale set by the C-parameter value and the non-
perturbative scale. First investigations in this direction (with
just the PanGlobal recoil for the gluer) suggest that the impact
of the resummation is non-negligible, and also continue to
favour ¢(C) profiles that are below the linear {,1 = &p1
profile.

Appendix C: Fits with uncorrelated systematic experi-
mental uncertainties

In this appendix we report the simultaneous fit of ¢« and «g

obtained with the same procedure outlined in the main text,
albeit replacing the model (23) with the simpler assumption

@ Springer
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Table 3 Results of fits for oy

2 2 2
and g using the different Model os (M7) 0 (17) x“/dof.
functional forms for ¢(C), as in 40,0024 1+0.07
Table 2, but with an assamption %0 0.1122 £ 0.0007 30024 0.52 £ 0.0175:%7 0.813
of uncorrelated experimental Cal = b1 0.1142 £ 0.0006 70 002¢ 0.52 +0.0179:9 0.796
un.a?rtamtles instead of the Can 0.1121 + 0‘00071—8488%51 0.52 + 0.01f8‘81 0.787
minimum overlap model ’ 0022 :

Ca3 0.1100 = 0.0008 700073 0.54 £0.017907 0.845
b2 0.1162 = 0.0005 0 0015 0.51£0.0170:9 0.822
8b3 0.1167 £ 0.0005 007 0.53 £0.0175:9 0.870
¢ 0.1156 % 0.0006 790027 0.48 +£0.01700 0.807
of uncorrelated systematic uncertainties in the experimental L
data, namely n
50\
Eij = aaszyst,i 8ij- (40) 4 :j"‘-“ - \\ ----- Soft profiled logarithm
S N Modified logarithm p = 5
The results are given in Table 3. Relative to Table 2, the 35 \‘ Modified logarithm p = 6
absence of correlations leads to an increase in the experi- ; N Modified logarithm p = 7
mental uncertainties for ag; of O(10% — 20%), and the X2 2 T
values decrease. The central oy and o results are essentially e T S
. r N e,
unchanged, as are the theory systematics. 1 g S “
\\\ -:
L L L ~ L C
0.2 0.4 0.6 0.8 1.0

Appendix D: Modified logarithms and comparison to pro-
file functions

In order to properly ensure that the resummation is turned off
at the kinematic endpoint of the differential distribution, we
modify the resummed logarithms by making the replacement

6xc
In—
C

Sr=lp (1 CLO (6“)p) . @D
)4

C P CIII’]aX

where p denotes a positive parameter, and Cpax is the kine-
matic endpoint of the C-parameter distribution in the multi-
jetregime, i.e. Cmax = 1. The prescription of Eq. (41) is but
a possible choice and other sensible solutions can be found
in the literature (see e.g. Ref. [5]). This ambiguity introduces
an additional theoretical uncertainty in the calculation that
must be carefully estimated. The quantity x¢ is of order one
and its variation estimates the resummation uncertainty due
to missing higher-logarithmic corrections. Specifically, the
ENkLL(C) resummed cross section acquires a net x¢ depen-
dence such that,

dENkLL(C)

= ONKHLL),
dlnxc ( )

(42)

in the logarithmic limit as C — 0. Similarly, the parameter
p determines how quickly the resummation is turned off in
the region C ~ Cpax.-

@ Springer

Fig. 4 The figure displays a comparison between the resummed mod-
ified logarithm (41) with different p values and the profiled logarithm
In(Q/ s (C)) where the profiled soft scale 5 (C) is defined in Ref. [5].
The centre-of-mass energy Q is set to the Z-boson mass

The choice of p must guarantee that the resummation
does not substantially affect the prediction in regions of
the spectrum dominated by hard radiation. An inspection of
the first-order C-parameter distribution reveals contributions
suppressed by a (linear) power of C relative to the dominant
(In C)/C dependence. Were we to take p = 1, the first-order
expansion of the resummation would be associated with per-
turbative linear power-suppressed contributions whose coef-
ficient would be larger than that observed in the exact fixed-
order calculation. Accordingly, we believe it is sensible to
apply the restriction p > 1 to avoid such contributions, and
ensure that the resummation does not affect the dominant
scaling at subleading power. With this constraint, we find
that the extracted value of oy depends only very mildly on
the choice of p and well within the quoted theoretical uncer-
tainties. We then choose p = 6 and x¢c = 1/2 and vary both
parameters as outlined in Sect. 4 in the uncertainty estimate.
This specific choice is motivated by the fact that the scaling
of the modified logarithm (41) in most of the fit range that we
adopted in Sect. 4 happens to reproduce that of the profiled
logarithms of the soft function of Ref. [5], which we use as
a reference benchmark in our study. A comparison between
the two prescriptions is shown in Fig. 4.
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