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Abstract
One of the major objectives of the experimental programs at the Large Hadron
Collider (LHC) is the discovery of new physics. This requires the identification
of rare signals in immense backgrounds. Using machine learning algorithms
greatly enhances our ability to achieve this objective. With the progress of quan-
tum technologies, quantum machine learning could become a powerful tool
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for data analysis in high energy physics. In this study, using IBM gate-model
quantum computing systems, we employ the quantum variational classifier
method in two recent LHC flagship physics analyses: t̄tH (Higgs boson produc-
tion in association with a top quark pair, probing the Higgs boson couplings to
the top quark) and H → μ+μ− (Higgs boson decays to two muons, probing the
Higgs boson couplings to second-generation fermions). We have obtained early
results with 10 qubits on the IBM quantum simulator and the IBM quantum
hardware. With small training samples of 100 events on the quantum simulator,
the quantum variational classifier method performs similarly to classical algo-
rithms such as SVM (support vector machine) and BDT (boosted decision tree),
which are often employed in LHC physics analyses. On the quantum hardware,
the quantum variational classifier method has shown promising discrimination
power, comparable to that on the quantum simulator. This study demonstrates
that quantum machine learning has the ability to differentiate between signal
and background in realistic physics datasets. We foresee the usage of quantum
machine learning in future high-luminosity LHC physics analyses, including
measurements of the Higgs boson self-couplings and searches for dark matter.

Keywords: quantum machine learning, high energy physics, quantum computer,
LHC

(Some figures may appear in colour only in the online journal)

The discovery of the Higgs boson by the ATLAS and CMS experiments at the Large
Hadron Collider (LHC) in 2012 [1, 2] was a major milestone for high energy physics. Since
then, LHC experiments have been using the Higgs boson as a tool to pursue the discovery of
new physics. The discovery of new physics requires the identification of rare signals against
immense backgrounds. Using machine learning greatly enhances our ability to achieve this
objective.

The intersection between machine learning and quantum computing has been referred to as
quantum machine learning, and can possibly offer a valuable alternative to classical machine
learning by providing more efficient solutions [3]. In 2018, a quantum variational classifier
method was experimentally implemented with a quantum circuit of 2 qubits on a superconduct-
ing processor and successfully tested on synthetic datasets [4]. This method provides ‘tools for
exploring the applications of noisy intermediate-scale quantum computers to machine learning’
[4]. With the progress of quantum technologies, quantum machine learning could possibly
become a powerful tool for data analysis on real-world datasets such as those seen in high
energy physics.

In this study, we employ the quantum variational classifier method in a t̄tH (H→2 photons)
physics analysis and an H → μ+μ− physics analysis, two recent flagship physics analyses at
the LHC, using IBM gate-model quantum computers. Our goal is to explore and to demon-
strate, in a proof of principle experiment, the potential of quantum computers can be a new
computational paradigm for big data analysis in high energy physics. An earlier study in a
ggH (H → 2 photons) physics analysis using D-wave quantum annealers was performed by
Mott et al [5].

2



J. Phys. G: Nucl. Part. Phys. 48 (2021) 125003 S L Wu et al

Figure 1. Representative Feynman diagrams for (a) t̄tH production, (b) H → γγ decay,
(c) non-resonant two-photon production, (d) VBF Higgs production, (e) H → μ+μ−

decay, and (f) Z/γ
∗ → μμ production. In these diagrams, H denotes a Higgs boson, g

denotes a gluon, q denotes a quark, t denotes a top quark, b denotes a bottom quark, μ
denotes a muon, W denotes a W boson, Z denotes a Z boson, V denotes a W boson or Z
boson, and γ denotes a photon.

1. Two recent LHC flagship physics analyses

The observation of t̄tH production (Higgs boson production in association with a top quark
pair) in 2018 by the ATLAS and CMS experiments [6, 7] was a significant milestone for the
understanding of fundamental particles and interactions. It confirmed the interactions between
the Higgs boson and the top quark, which is the heaviest known fundamental particle. The
measurement of the Higgs-top coupling strength could refine our understanding of the Higgs
mechanism and provide important handles to new physics. As t̄tH only accounts for about
1% of the total Higgs boson production at the LHC, its observation was extremely challeng-
ing. Here we address a channel where the Higgs boson decays into two photons (H → γγ)
and the two top quarks decay into jets. To ensure the results are as realistic as possible, we
closely follow an analysis strategy similar to that employed by ATLAS [6]. Starting from
reconstructed events with two photons and at least three jets, we train classifiers to separate
the t̄tH (H → γγ) signal from the dominant background of this analysis, the non-resonant
two-photon production. See figure 1 for representative Feynman diagrams for t̄tH production
(a), H → γγ decay (b), and non-resonant two-photon production (c). The training is using 23
kinematic variables similar to those in [6]: the transverse momentum pT, pseudo-rapidity η
and b-tagging status of up to 6 leading jets, the magnitude of the missing transverse momen-
tum, as well as the pT/mγγ (mγγ denotes invariant mass of the photon pair) and η of the
two photons.

The searches for H → μ+μ− decay (Higgs boson decay into two muons) at the ATLAS and
CMS experiments [8, 9] have become one of the most important topics in the LHC physics pro-
gram. Although the coupling between the Higgs boson and third-generation fermions (e.g. top
quark) has been observed, currently there exist only first indications of the coupling between
the Higgs boson and second-generationfermions. H → μ+μ− decay is the most promising pro-
cess by which to observe such a coupling at the LHC. The strength of the Higgs-muon coupling
could be significantly modified by new physics. With more data in the future, the LHC exper-
iments could establish the Higgs couplings to muons, or exclude the Higgs-muon coupling:
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both will be an exciting discovery. In searches for H → μ+μ− decay, the challenge is mainly
due to the small H → μ+μ− decay branching ratio of about 0.02%. Again following an analy-
sis strategy similar to that used by ATLAS [8], we divide reconstructed two-muon events into
several nj ( jet multiplicity) channels, and focus on the nj � 2 channel to target vector boson
fusion (VBF) Higgs production, whose signature is two forward jets. We train classifiers to
distinguish between the H → μ+μ− signal and the dominant background of this analysis, pro-
duction of a pair of muons through the exchange of a Z boson or a virtual photon (Z/γ

∗ → μμ).
See figure 1 for representative Feynman diagrams for VBF Higgs production (d), H → μ+μ−

decay (e), and Z/γ
∗ → μμ production (f). The training is based on 13 kinematic variables sim-

ilar to those in [8]: the pT and rapidity Y of the two-muon system, the absolute value of the
cosine of the lepton decay angle cos θ

∗
in the Collins–Soper frame, the pT and η of the two

leading jets, the relative azimuthal angle of each jet with respect to the di-muon system, the
pT, Y and invariant mass of the two-jet system, as well as the relative azimuthal angle between
the two-jet system and the two-muon system.

In both the t̄tH and H → μ+μ− cases, we generate the signal and background events using
Madgraph5_aMC@NLO [10] plus Pythia6 [11]. The center-of-mass energy of the proton-
proton collisions of the generated events is set to 13 TeV (same as the ATLAS publications).
For each generated event, we simulate the detector response using Delphes [12]. A princi-
pal component analysis (PCA) method [13, 14] is employed for data compression, converting
the kinematic variables to a smaller number of PCA variables so that the number of encoded
variables matches the number of available qubits (which is 10 in this study). After PCA, the
data is transformed using MinMaxScaler in the scikit-learn package [15] so that it ranges from
−π to π. The events are then passed to the machine learning algorithms, whether classical or
quantum.

2. Quantum variational classifier algorithm and workflow

Following [4], we use the quantum variational classifier algorithm to classify physics events
of interest from background events. This quantum approach exploits the mapping of classical
input data to an exponentially large quantum feature space, which is based on quantum circuits
that are hard to simulate classically. It can be summarized in four main steps:

(a) Apply a feature map circuit UΦ(�x) to encode the input data�x (containing 10 PCA variables)
into a quantum state Φ(�x), as shown in figure 2(a). In our study the feature map encodes
N classical variables to the quantum state space of an N-qubit system.

(b) Apply a quantum variational circuit W(�θ) parameterized by gate angles �θ, as shown in
figure 2(b). Here the variational circuit takes the form

W(�θ) = Urot(θ)Uent . . .Urot(θ)Uent, (1)

where Urot(θ) refers to a variational circuit consisting of rotations on different qubits and
Uent refers to entanglement unitary operations [4].

(c) Measure the qubit state in the computational basis. The qubit measurement error is one
of the largest error sources on the quantum hardware and results in imprecision on the
classification result. To reduce this imprecision, we entangle every two qubits and then
measure half of the N qubits, as shown in figure 2(c). Additionally, a measurement error
mitigation method implemented by the Qiskit framework [16] is applied when measuring
qubits. This error mitigation method derives a relation matrix between the ideal results
and the noisy results, which is later used to correct the noisy results.
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Figure 2. Quantum circuits used in our quantum variational classifier studies. (a) The
quantum feature map. First, Hadamard gates H initialize every qubit to an equal superpo-
sition of all basis states. Then the feature map circuit UΦ(�x) encodes classical variables
to quantum states by applying a phase rotation RZ of an angle xi. The parameteriza-
tion of xi with the corresponding PCA variable is slightly different between the t̄tH and
the H → μ+μ− cases. The feature map circuits can be duplicated multiple times with
a depth parameter. (b) The quantum variational circuits W(�θ). The variational rotation
circuit Urot(θ) is parameterized by θ and is followed by the entanglement circuit Uent.
Urot(θ) consists of two rotations, RY and RZ, on every qubit with parameterized θ. For the
entanglement step Uent, we use the controlled phase gate CZ to entangle adjacent qubits.
In order to parallelize the qubit operations, we optimized the Uent circuit to reduce exe-
cution dependency by at first only entangling each even qubit to its following odd qubit
and then only entangling each odd qubit to its following even qubit. Multiple copies of
the variational and entanglement circuits with another depth parameter can be applied
to increase the number of degrees of freedom in a machine learning model [4]. (c) The
measurement circuit M(half) . To measure half of the qubits, a controlled phase gate oper-
ation CZ is applied on every two qubits and only one of the two entangled qubits is
measured.

(d) Classify the state through the action of a diagonal operator f in computational basis with
the eigenvalue being either +1 or −1. A discriminant is evaluated for the input data �x

5



J. Phys. G: Nucl. Part. Phys. 48 (2021) 125003 S L Wu et al

according to

〈Φ(�x)|W†(�θ)2−1(1 + f )W(�θ)|Φ(�x)〉 (2)

and used to assign an output label y ∈ {1, 0} denoting either a signal or background
process [4].

During the training phase, a set of input data�x and corresponding outputs y are used to train
the circuit W(�θ) to reproduce the correct classification. The set of optimized parameters �θ is
then kept fixed for all future classifications of the physical data.

3. Result from the IBM quantum computer simulator with 10 qubits

We employ quantum machine learning with 10 qubits on the ibmq QasmSimulator [16] to
classify signal and background processes for the t̄tH analysis and the H → μ+μ− analysis.
The ibmq QasmSimulator simulates executions and measurements on quantum circuits of the
IBM quantum computer hardware. The simulation incorporates a noise model generated from
the properties of real hardware device. In each analysis, we apply the quantum variational
classifier algorithm to ten independent datasets, each consisting of 100 events for training and
100 events for testing. The quantum circuits are optimized to best fit the constraints imposed by
the hardware (e.g. qubit connectivity, gate set availability, and hardware noise), as well as the
nature of the data. In the optimized configuration, the feature map depth is 1 and the variational
circuit depth is 1. With the present status of our accessed hardware, the limited circuit depths are
adopted to overcome the hardware noise when utilizing 10 qubits. The circuit implementation
uses linear qubit connectivity. The Spall’s simultaneous perturbation stochastic approximation
algorithm [17, 18] is used as the optimizer for the variational circuit parameters �θ in the training
process. With the same ten datasets and the same 10 variables processed with the PCA method,
we also train a classical SVM [19] classifier using the scikit-learn package [15] and a BDT
[20, 21] classifier using the XGBoost package [22]. The classical SVM and the BDT serve as
benchmarks for classical machine learning algorithms. Hyper-parameter tuning was performed
on these classical algorithms.

To study the discrimination power of each algorithm for both t̄tH and H → μ+μ−, the test-
ing events of the ten datasets are combined to make receiver operating characteristic (ROC)
curves as a benchmark in the plane of background rejection versus signal efficiency, as shown
in figure 3. We observe that in both the t̄tH analysis and the H → μ+μ− analysis, the quan-
tum variational classifier method on the ibmq QasmSimulator (blue) performs similarly to the
classical SVM (yellow) and the BDT (green). We quantify the discrimination power of each
classifier by the AUC (area under the ROC curve). In the t̄tH analysis, the AUC for the quan-
tum variational classifier method reaches 0.81± 0.04 on the ibmq QasmSimulator, compared to
0.83 ± 0.04 for the classical SVM and 0.83 ± 0.06 for the BDT. Similarly, in the H → μ+μ−

analysis, the AUC for the quantum variational classifier method reaches 0.83 ± 0.05 on the
ibmq QasmSimulator, compared to 0.82 ± 0.03 for the classical SVM and 0.80 ± 0.06 for
the BDT. The quoted errors are the standard deviations for the AUC values of the ten datasets.
This demonstrates the quantum algorithm can accurately distinguish signal from background
on realistic physics datasets; the performance is comparable to (within the margin of error)
state-of-the-art classical methods.

Ultimately, we can select events based on the classifier discriminant to maximize the quan-
tity S/

√
(B), where S is the number of signal events and B is the number of background events

remaining after the selection. S/
√

(B) is an approximation of the signal significance and is typ-
ically correlated with the classifier AUC, as both indicate the degree of separation between
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Figure 3. The ROC curves (as a benchmark in the plane of background rejection versus
signal efficiency) of the quantum variational classifier method on the ibmq QasmSimu-
lator (blue), the classical SVM (yellow), and the BDT (green) for (a) the t̄tH analysis
and (b) the H → μ+μ− analysis. In each analysis, the classifiers are constructed using
ten independent datasets, each consisting of 100 events for training and 100 events for
testing. All classifiers are trained with the same 10 variables processed with the PCA
method. In this study, 10 qubits are employed on the quantum computer simulator.
To visualize the discrimination power of each algorithm, the testing events of the ten
datasets are combined to make the ROC curves. We observe that the quantum varia-
tional classifier method on the ibmq QasmSimulator performs similarly to the classical
SVM and the BDT for both the t̄tH analysis and the H → μ+μ− analysis.
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signal and background. In the t̄tH analysis, a selection on the variational quantum classi-
fier discriminant with a signal acceptance of 0.70 is associated with a background rejection
of 0.78 (see the ROC curve in figure 3(a)), and hence improves S/

√
(B) by approximately

0.70/
√

(0.22) − 1 = 50% with respect to no selection. Similarly, in the H → μ+μ− analysis,
a selection on the variational quantum classifier discriminant with a signal acceptance of 0.70
is associated with a background rejection of 0.84 (see the ROC curve in figure 3(b)), hence
improving S/

√
(B) by approximately 0.70/

√
(0.16) − 1 = 75%.

4. Result from the IBM quantum computer hardware with 10 qubits

At this point, it is interesting to assess the potential of quantum hardware calculations on the
classification of the data presented in the previous section, and quantify the effect of the device
noise. For the t̄tH analysis and the H → μ+μ− analysis, we employ the quantum variational
classifier algorithm with 10 qubits on the ‘ibmq_boeblingen’ and ‘ibmq_paris’ quantum com-
puter hardware. ‘ibmq_boeblingen’ is a 20-qubit quantum processor and ‘ibmq_paris’ is a
27-qubit quantum processor. Both are based on superconducting electronic circuits. Due to
current limitation of the access time to the quantum processors, the quantum variational clas-
sifier algorithm is only applied to one of the ten datasets for each physics analysis. We pick the
dataset whose simulator AUC is closest to the average simulator AUC of the ten datasets. The
circuit, optimizer, and error mitigation configuration on the hardware is kept the same as for
the simulator jobs.

The ROC curves of the quantum variational classifier algorithm on the ‘ibmq_boeblingen’
quantum hardware (for t̄tH ) and ‘ibmq_paris’ quantum hardware (for H → μ+μ−) are shown
in red in figure 4. The ROC curves for the ibmq QasmSimulator with the same datasets are
overlaid in blue. We observe that for the quantum variational classifier method, the quantum
simulator and quantum hardware results appear to be in good agreement. In the t̄tH analysis,
the quantum hardware AUC is 0.82, while the quantum simulator AUC is 0.83. Similarly, in the
H → μ+μ− analysis, the quantum hardware AUC is 0.81, while the quantum simulator AUC
is 0.83. In each analysis, the difference between the hardware AUC and the simulator AUC is
found to be compatible with the test sample statistical error evaluated using a bootstrapping
re-sampling method. With the circuit configuration optimized for 10 qubits, the gate-model
quantum computers have achieved reasonable performance in exploiting a quantum state space
with 210 dimensions to distinguish signal from background at the LHC.

Figure 5 shows the evolution of the loss function versus the number of iterations during
the training process of the quantum variational classifier on the hardware (red) and simulator
(blue) for the t̄tH analysis and the H → μ+μ− analysis. The number of iterations indicates
the number of times the variational circuit parameters are updated in the training process. The
empirical loss function is defined by the error probability of incorrect assignment compared to
the exact solutions available for the training set. During the training process, the loss function is
minimized to penalize misassignment and to optimize classifier parameters. The loss function
improves and converges as the number of iterations increases, indicating that the quantum
algorithm on hardware is indeed learning the difference between signal and background in a
realistic high energy physics analysis at the LHC.

In our study, 200 hours are required to run 500 training iterations on 100 events of the t̄tH
or H → μ+μ− analyses on quantum hardware. This is longer than that of the classical algo-
rithms because today’s quantum hardware is not yet fully mature. However, with the present
rapid developments in quantum hardware, we expect in the future to see speed ups in quantum
machine learning applications to high energy physics.
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Figure 4. The ROC curves of the quantum variational classifier method with the
‘ibmq_boeblingen’ and ‘ibmq_paris’ quantum computer hardware (red) and with the
ibmq QasmSimulator (blue) for (a) the t̄tH analysis (using ‘ibmq_boeblingen’) and (b)
the H → μ+μ− analysis (using ‘ibmq_paris’). For each physics analysis, one dataset
consisting of 100 events for training and 100 events for testing is utilized to construct
the classifiers. This dataset is one of the ten datasets used in figure 3. All classifiers
are trained with the same 10 variables processed with the PCA method. In this study, 10
qubits are employed on the quantum computer hardware and the quantum computer sim-
ulator. To visualize the discrimination power of both the quantum simulator and quantum
hardware, the testing events of the dataset are used to make the ROC curves. We observe
that, for the quantum variational classifier method, the quantum simulator and quantum
hardware results appear to be in good agreement.
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Figure 5. The evolution of the loss function versus the number of iterations during the
training process of the quantum variational classifier on the quantum computer hard-
ware (red) and quantum computer simulator (blue) for (a) the t̄tH analysis and (b) the
H → μ+μ− analysis. The number of iterations indicates the number of times the varia-
tional circuit parameters are updated in the training process. The empirical loss function
is defined by the error probability of incorrect assignment compared to the exact solu-
tions available for the training set. The loss function improves and converges as the
number of iterations increases, indicating that the quantum algorithm on hardware is
indeed learning the difference between signal and background.

5. Conclusion

In this study, we have obtained early results in the application of quantum machine learn-
ing with 10 qubits on the imbq QasmSimulator and the ‘ibmq_boeblingen’ and ‘ibmq_paris’
quantum hardware to two recent LHC flagship physics analyses: t̄tH and H → μ+μ−. t̄tH ,
Higgs boson production in association with a top quark pair, probes the Higgs boson cou-
plings to the top quark, while H → μ+μ−, Higgs boson decays to two muons, probes the
Higgs boson couplings to second-generation fermions. In this study we do not attempt to do
a complete analysis of t̄tH and H → μ+μ−. Rather our goal is to perform proof of prin-
ciple in using quantum machine learning compared with popular classical machine learning
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methods, BDT for example. With small training samples of 100 events, the quantum varia-
tional classifier method on the ibmq QasmSimulator performs similarly to the classical SVM
algorithm and the BDT algorithm. The quantum variational classifier method on the quan-
tum hardware has shown promising discrimination power comparable to that on the quantum
simulation.

To study the discrimination power of quantum machine learning classifiers, we make use of
ROC curves in the plane of background rejection versus signal efficiency as a standard metric
in machine learning application for the high energy physics. We further quantify the discrim-
ination power of the classifiers by the AUC (area under the ROC curve). The use of ROC
curves and AUCs to be the metric of discrimination power compared with classical machine
learning methods is inspired by reference [5]. A difference is that reference [5] uses quan-
tum annealers while our work uses gate-based quantum computers. In the t̄tH analysis, the
quantum hardware AUC is 0.82, while the quantum simulator AUC is 0.83. Similarly, in the
H → μ+μ− analysis, the quantum hardware AUC is 0.81, while the quantum simulator AUC
is 0.83. These results demonstrate that quantum machine learning on the hardware of the gate-
model quantum computers has the ability to differentiate between signal and background in
a realistic high energy physics analysis at the LHC. Furthermore, although we have demon-
strated that the quantum and classical machine learning algorithms perform similarly, with the
rapid advance of the quantum computing technology, the use of quantum machine learning
may offer a ‘speed up’ advantage [3], which can be critical for the future of the high energy
physics community.

In the future, by exploiting the high dimensional feature space defined by a larger number
of qubits and by mitigating the impact of quantum hardware noise, quantum machine learning
classifiers could possibly outperform classical classifiers. We plan to explore quantum algo-
rithms to extend our analysis to more qubits and larger sample sizes. Moreover,we plan to apply
the quantum kernel classifier method proposed in [4] to our LHC flagship physics analyses.
We foresee the usage of quantum machine learning in future high-luminosity LHC physics
analyses, including measurements of the Higgs boson self-couplings and searches for dark
matter.
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