

SEARCH FOR HIGH MASS RESONANCES IN LEPTONIC FINAL STATES WITH THE ATLAS DETECTOR

Тне ШШ

OF IOWA

Dr. Marc Bret Cano On behalf of the ATLAS collaboration

Miami 2020 10-21 December, 2020 Lago Mart Resort, Fort Lauerdale Florida (USA)

Overview

Charged leptons: clear signature at hadron colliders

Wide variety of BSM physics searches involve leptons:

- Super Symmetry (SUSY): stops, neutralinos, charginos...
- Dark Matter searches
- New resonances (W', Z', Gravitons...)
- Heavy or composite fermions
- Lepton Flavour Violation

Performance of the LHC & ATLAS detector

- A total of 139 *fb*⁻¹ collected during the 2015-18 period at $\sqrt{s} = 13$ TeV
- Currently in Long Shutdown 2, expect to start operations again by the end of 2021

Outline

- Search in high-mass same-flavor dilepton final state (Phys Lett 796 (2019) 68)
- Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton (<u>Phys Lett B 798 (2019) 134942</u>)
- Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum (Phys Rev D 100 (2019) 052013)
- Search for Dark Matter in association with a single top quark and one or two charged leptons (arXiv 2011.09308)
- Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons (JHEP 10 (2020) 112)
- Search for trilepton resonances from chargino and neutralino pair production (<u>arXiv</u> <u>2011.10543</u>)
- Search for lepton-flavor violation in different-flavor, high-mass final states (<u>Phys Rev</u> <u>D 98 092008 (2018)</u>)

Dilepton Search: Analysis Strategy

First ATLAS full Run-2 result

AIM

 Search for "bumps" in the dielectron and dimuon invariant mass spectra

EVENT SELECTION

Look for events with exactly two electrons or two muons and an invariant mass below 6000 GeV

CERN-EP-2019-030

arXiv 1903.06248

BACKGROUND ESTIMATION

- Largely dominated by the Drell-Yan process
- Fit parametric function to data to model background (new with respect to previous versions of the analysis)
- Leads to spurious signal uncertainties, but those have a small impact on the final result

SIGNAL MODELLING

- Generic signal modelling using a convolution of Breitt-Wigner and a Gaussian to parametrize for various pole mass and width values
- Results interpreted in terms of Sequential Standard Model (<u>SSM</u>) and Heavy Vector Triplet (<u>HVT</u>)

Dilepton Search: Results

- Largest excess found at 264 GeV for 0-width with a local significance of 2.3σ for the combination of the dielectron and dimuon channels (assuming lepton flavor universality)
- No significant deviations for larger widths

Dilepton Search: Exclusion Limits

- Model-independent calculated for various width scenarios
- Limits can be re-interpreted for specific models
- Results re-interpreted in terms of HVT couplings, and will eventually be combined with an analogous W' search

Heavy Neutrino search: arXiv 1904.12679

- Search for a right-handed gauge boson (W_R) decaying into a boosted right-handed heavy neutrino (N_R) together with a lepton in the context of a Left-Right Symmetric model (LRSM)
- Focused on the regime where the mass of the heavy neutrino is less than 10% of the righthanded gauge boson
- The decay products of the heavy neutrino can be found within a jet within a large-R(or fat) jet
- For the electron channel the energy deposit is included in the large-R jet

Heavy neutrino search: m_{W_R}

ι_{W_R}	$ Signal \; (m_{W_{\rm R}} = 3 \; {\rm TeV}, m_{N_{\rm R}} = 150 \; {\rm GeV}) \\ Signal \; (m_{W_{\rm R}} = 3 \; {\rm TeV}, m_{N_{\rm R}} = 300 \; {\rm GeV}) \\ Signal \; (m_{W_{\rm R}} = 4 \; {\rm TeV}, m_{N_{\rm R}} = 400 \; {\rm GeV}) \\ $	Signal $(m_{W_R} = 3 \text{ TeV}, m_{N_R} = 150 \text{ GeV})$ 346^{+45}_{-75} 41 Signal $(m_{W_R} = 3 \text{ TeV}, m_{N_R} = 300 \text{ GeV})$ 471^{+42}_{-69} 420 Signal $(m_{W_R} = 4 \text{ TeV}, m_{N_R} = 400 \text{ GeV})$ 66^{+6}_{-10} 57 Signal $(m_{W_R} = 4 \text{ TeV}, m_{N_R} = 400 \text{ GeV})$ 66^{+6}_{-10} 57			
AS	Expected background Observed events Significance <i>p</i> -value	$2.8^{+0.3}_{-0.7}$ 8 2.4σ 0.0082	$1.9^{+0.0}_{-0.7}$ 4 1.2σ 0.12		
eV, 80 fb ⁻¹	 Signal region is de above 2 TeV in fat invariant mass 	fined to k jet-leptoi)e n		

 A validation region is defined with eµ events

Electron Channel Muon Channel

 Excess observed in the electron channel, but still in agreement with expectation

Heavy neutrino search: Exclusion contour

- Limits extracted in the m_{N_R} - m_{W_R} plane
- Slightly worse limits for the muon channel at high mass due to worse resolution
- Observed limits also shown for the resolved topology. The two approaches yield complementary results

Lepton+MET: Analysis Strategy

- Possible additional charged gauge • bosons
- Its decay would produce a signature • with a lepton and missing transverse energy coming from the neutrino
- Benchmark model used is the • Sequential Standard Model
- No interference between W and W' • considered

AIM

Search for deviations from Standard Model predictions in the m_T distribution

EVENT SELECTION

Identify events with one high-pT lepton and large missing transverse energy

BACKGROUND ESTIMATION

- Events with prompt leptons are estimated through the use of Monte Carlo simulation
- Backgrounds coming from non-prompt leptons are estimated through data-driven methods 11

arXiv 1906.05609

- Largest deviation found at 625 GeV in the muon channel with a local significance of 2.8 σ (1.3 σ global)
- Proceed to extract limits on the BSM model considered

Lepton+MET: Exclusion Limits

	m(W') lower limit [TeV]						
Decay	Observed	Expected					
$W' \to e \nu$	6.0	5.7					
$W' \to \mu \nu$	5.1	5.1					
$W' \to \ell \nu$	6.0	5.8					

 Bayesian Limits with flat prior on the signal cross-section as well as model independent results on generic resonances with varying width values

2HDM+a Dark Matter search

- Searches for Dark Matter (DM) usually rely on the presence of Weakly Interacting Massive Particle (WIMP), which would show up as missing transverse energy
- This paper considers a Two Higgs Doublet Model (2HDM) with an additional pseudoscalar (a) towards DM production
- Events with a single top quark are found to be sensitive to 2HDM+a type of models, with the tW diagrams providing the leading contributions to DM production
- Three channels are defined to exploit the characteristics of each of the final state, depending on its topology: tW_{1L} , tW_{2L} and tj_{1L}

Requirements for each Signal Region

arXiv 2011.09308

Variable	tW_{1L}	tW_{2L}	tj _{1L}
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	dilepton	$E_{\rm T}^{\rm miss}$ OR one-lepton
$N_{\ell}^{\rm signal}$	= 1	= 2 (OS)	= 1
$p_{\mathrm{T}}(\ell_1)$ [GeV]	> 30	> 25	> 30
$p_{\mathrm{T}}(\ell_2)$ [GeV]	-	> 20	-
N _{jet}	≥ 3	≥ 1	∈ [1,4]
$p_{\rm T}({\rm jet})$ [GeV]	> 30	> 30	> 30
N_{b-jet}	≥ 1	≥ 1	∈ [1, 2]
$p_{\mathrm{T}}(b_1)$ [GeV]	> 50	> 50	> 50
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	> 200	> 200
$m_{\rm T}^{\rm lep}$ [GeV]	> 30	-	> 60
$m_{\ell\ell}$ [GeV]	-	$\geq 40, \notin [71, 111] (ee/\mu\mu)$	-
$\Delta \phi_{\min}$ [rad]	> 0.5	-	> 0.5

2HDM+a Dark Matter search

Process	Generator	PDF set	PS and frag./hadr.	UE tune	Cross-section accuracy
Top pair $(t\bar{t})$	Powheg-Box v2	NNPDF 3.0 NLO	Рутніа 8	A14	NNLO+NNLL
Single top $\int t$ -channel	Powheg-Box v1	NNPDF 3.0 NLO	Рутніа 8	A14	NNLO+NNLL
single-top{ s- and Wt-channel	Powheg-Box v2	NNPDF 3.0 NLO	Рутніа 8	A14	NNLO+NNLL
V+jets ($V = W/Z$)	Sherpa 2.2.1	NNPDF 3.0 NNLO	Sherpa	Default	NNLO
Diboson	Sherpa 2.2.1 or 2.2.2	NNPDF 3.0 NNLO	Sherpa	Default	NLO
$t\bar{t} + V, V = W, Z, h$	MadGraph5_aMC@NLO 2.3.3	NNPDF 3.0 NLO	Рутніа 8	A14	NLO
tWZ	MadGraph5_aMC@NLO 2.6.7	NNPDF 3.0 NLO	Рутніа 8	A14	NLO

- For each channel, Control Regions (CRs) are defined to estimate the leading background in the signal region. A background-only fit is then performed, using the normalization to data in the CRs
- In addition, Validation regions are used to verify the extrapolation of the Monte Carlo simulation estimate
- The main backgrounds are top pair and singletop production, as well as W+jets
- A Boosted Decision Tree (BDT) score is used to further sub-categorize Signal Regions

Signal, control and validation region definitions used in tW_{1L}

Variable	SR	CR(tt)	CR(W)	VR1(tt)	VR2(tt)	VR1(W)	VR2(W)
$N_{b-\text{jet}}$	= 1 < 50	≥ 2	= 1	= 1	= 1	= 1	= 1
$p_{\text{T}}(b_2)$ [GeV]		> 50	< 50	< 50	< 50	< 50	< 50
$m_{W}^{\text{reclustered}}$ [GeV]	> 60	-	< 60	-	< 60	> 60	< 60
m_{T}^{lep} [GeV]	> 200	> 200	∈ [40, 100]	> 200	> 200	∈ [40, 100]	> 100
am_{T2} [GeV]	> 220	< 220	> 220	< 220	> 220	> 220	> 220

Signal, control and validation region definitions used in tW_{2L}

Variable	SR	CR(tt)	CR(ttZ)	CR(WZ)	VR(tī)	$VR(3\ell)$
N ^{signal}	= 2	= 2	= 3	= 3	= 2	= 3
ε	(OS)	(OS)	$(\geq 1 \text{ SFOS})$	$(\geq 1 \text{ SFOS})$	(OS)	$(\geq 1 \text{ SFOS})$
$p_{\rm T}(\ell_3)$ [GeV]	-	-	> 20	> 20	-	> 20
$m_{ee/\mu\mu}$ [GeV]	∉ [71, 111]	∉ [71, 111]	\in [71, 111]	\in [71, 111]	∉ [71, 111]	\in [71, 111]
N _{iet}	≥ 1	≥ 1	≥ 3	∈ [1,3]	≥ 1	≥ 1
N _{b-jet}	≥ 1	≥ 1	≥ 1	= 1	≥ 1	≥ 1
-			$(\geq 2 \text{ if } N_{\text{jet}} = 3)$			
$m_{b\ell}^{\min}$ [GeV]	< 170	< 170	< 170	> 170	< 170	varies
$m_{b\ell}^{t}$ [GeV]	> 150	< 150	-	-	> 150	-
$m_{\rm T2}$ [GeV]	> 130	∈ [40, 80]	> 90	> 90	∈ [40, 80]	> 90
$\Delta \phi_{\min}$ [rad]	> 1.1	> 1.1	-	-	> 1.1	-

2HDM+a Dark Matter: Validation region

 Good agreement is found in the validation region between expected and observed yields

2HDM+a Dark Matter: Results

	$SR^{Bin0}_{tW_{1L}}$	$SR^{Bin1}_{tW_{1L}}$	$SR^{Bin2}_{tW_{1L}}$	$SR^{Bin3}_{tW_{1L}}$	$SR^{Bin4}_{tW_{1L}}$	$SR_{tW_{2L}}$
Observed events	182	191	60	24	12	12
Fitted SM bkg events	169 ± 14	171 ± 13	55 ± 6	20.1 ± 2.8	15.6 ± 2.8	5.9 ± 1.2
tī	101 ± 12	84 ± 12	20 ± 5	5.1 ± 1.7	2.3 ± 1.5	1.2 ± 0.9
Single top	16.3 ± 5.2	17.3 ± 5.2	5.4 ± 3.2	2.0 ± 1.8	$1.7^{+2.0}_{-1.7}$	$0.26^{+0.27}_{-0.26}$
W+jets	28 ± 4	37.0 ± 4.3	14.2 ± 2.4	6 ± 1	5.9 ± 1.1	-0.20
Z+jets	2.0 ± 0.9	1.1 ± 0.7	0.3 ± 0.1	0.15 ± 0.04	0.15 ± 0.02	_
Diboson	7.2 ± 1.7	9.6 ± 2.0	4.6 ± 1.0	2.2 ± 0.5	2.7 ± 0.6	0.5 ± 0.2
$t\bar{t} V$	12.3 ± 1.4	19.5 ± 3.5	8.7 ± 1.2	4.0 ± 0.7	2.5 ± 0.5	2.9 ± 0.7
tWZ	1.7 ± 0.2	2.4 ± 0.5	1.17 ± 0.15	0.42 ± 0.09	0.39 ± 0.09	0.8 ± 0.1
Others	0.6 ± 0.1	0.6 ± 0.1	0.17 ± 0.02	0.06 ± 0.02	0.03 ± 0.01	0.16 ± 0.08

2HDM+a Dark Matter: Exclusion contours

m_{u≠} [GeV]

Signal channel	$\langle\epsilon\sigma angle_{ m obs}^{95}[{ m fb}]$	$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	CL_B	p(s=0) (Z)
$SR_{tW_{11}}^{250}$	0.72	100.6	67^{+33}_{-16}	0.85	0.12 (1.16)
$SR_{tW_{11}}^{300^{12}}$	0.51	70.8	54 ± 16	0.85	0.15 (1.02)
$SR_{tW_{11}}^{400}$	0.24	32.9	29^{+10}_{-6}	0.64	0.30 (0.52)
$SR_{tW_{11}}^{500}$	0.14	18.9	19^{+8}_{-5}	0.52	0.45 (0.13)
$SR_{tW_{1L}}^{600}$	0.08	10.6	12_{-4}^{+3}	0.24	0.94 (-1.54)
SR _{tW21}	0.10	13.8	$7.3^{+2.9}_{-1.1}$	0.97	0.02 (2.07)
$SR_{tj_{1L}}(BDT>0.9)$	0.10	14.4	19^{+6}_{-5}	0.24	0.50 (0.00)

Scalar Leptoquark searches

- Leptoquarks (LQs) are one of the possible solutions to the flavor anomalies observed at LHCb in B-meson g & decays
- They couple both to quarks and leptons and can mediate flavour-changing neutral current, enabling violation of Lepton Flavour Universality
- These searches focus LQ pair production, leading to • final states with two same-flavor leptons and at least two jets
- - 0000 \overline{LQ} LQ \overline{LQ}

ArXiv 2006.05872

ArXiv 2010.02098

Scalar Leptoquark search with b/c jets

ArXiv 2006.05872

Process		Concretor	PDF sot	PS and	UE tuno	Cross-section
Flocess	1100055	Generator	I DI Set	fragmentation/hadronisation	OL tune	order
Г	Top pair $(t\bar{t})$	Powheg-Box v2 $[49]$	NNPDF 3.0 [50]	Pythia 8	A14	NNLO+NNLL [51]
Single top	<i>t</i> -channel	Powheg-Box v1	NNPDF 3.0	Pythia 8	A14	NNLO+NNLL [52]
Single-top	s- and Wt -channel	Powheg-Box v2	NNPDF 3.0	Pythia 8	A14	NNLO+NNLL [53,54]
W+jets,	Z/Drell-Yan+jets	Sherpa 2.2.1 [55,56,57,58,59]	NNPDF 3.0	Sherpa	Default	NNLO [60]
	Diboson	Sherpa 2.2.1 – 2.2.2	NNPDF 3.0	Sherpa	Default	NLO [55]

- Main background is Z/Drell-Yan+Jets, modelled using Sherpa as it does a better job modelling the extra jets
- Top pair production is the subleading background, an eµ control region is used to validate its modelling
- Leptoquark masses from 400 to 2000 GeV are considered
- Events are categorized on the basis of the number of c- or b-tagged jets
- A powerful discriminant variable in the search for leptoquarks is the asymmetric mass, used to define the sideband/signal region:

$$m^{\text{asym}} = \frac{m_{\ell j}^{\text{max}} - m_{\ell j}^{\text{min}}}{m_{\ell j}^{\text{max}} + m_{\ell j}^{\text{min}}}$$

Preselection				
2 opposite	e char	ge leptons (e, μ)		
2	2 or m	ore jets		
$p_{\rm T}^{e} > 27 \text{ GeV}, \eta_{e} <$	< 2.47	$p_{\rm T}^{\mu} > 27 \text{ GeV}, \eta_{\mu} < 2.7$		
$p_{\mathrm{T}}^{j} > 4$	45 Ge ^v	$V, \eta_j < 2.5$		
, p	$p_{\rm T}^{\ell\ell} > 1$	75 GeV		
$E_{\mathrm{T}}^{\mathrm{miss}}/$	$\sqrt{H_{\mathrm{T}}}$ ·	$< 3.5 \text{GeV}^{1/2}$		
m	$\ell\ell > 1$	130 GeV		
SB	SR	Top CR		
<i>ee</i> or $\mu\mu$	eμ			
$0.2 < m^{asym} < 0.4$		$m^{\text{asym}} < 0.2$		

Scalar Leptoquark search with b/c jets

The MC simulation of the Drell-Yan and top pair production processes is validated in control regions, which are also used to extract systematic uncertainties on the shape

Scalar Leptoquark search with b/c jets

Limits are first extracted for each jet flavour and channel: c- and b-jet with 0, 1 and 2 tags, assuming a 100% branching ratio, and are shown as well as a function of the branching ratio chosen

Search for trilepton resonances

$p \qquad \tilde{\chi}_{1}^{\pm} \qquad \ell^{\pm} \qquad \ell$

SUSY can introduce processes that violate Baryon number (B) and lepton number (L) conservation

arXiv 2011.10543

- This search uses an extended Minimal Supersymmetric Standard Model (MSSM) as a benchmark, including a third generation right-handed sneutrino that can break the B-L symmetry
- In this scenario, two candidates for lightest SUSY particle (LSP) are the chargino and the neutralino, which can decay to SM particles, producing final states with three or more charged leptons, with the target being the trilepton resonance

Process	Event generator	PS and hadronization	PS tune	Cross section (in QCD)
Diboson, triboson, (Z+jets)	Sherpa 2.2	Sherpa 2.2	Default	NLO (NNLO)
$t\bar{t}W, t\bar{t}Z$, (Other top)	MadGraph5_aMC@NLO 2	Рутніа 8	A14	NLO (LO)
$t\bar{t}, (tW), [t\bar{t}H]$	Powheg-Box v2	Рутніа 8	A14	NNLO+NNLL (NLO+NNLL) [NLO]
Higgs: ggF, (VBF, VH)	Powheg-Box v2	Рутніа 8	AZNLO	NNNLO (NNLO+NNLL)
$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^0$	MadGraph 2.6	Рутніа 8	A14	NLO+NLL

Dominant background contributions are WZ, ZZ and top pair production in association with a Z boson

Search for trilepton resonances

Three signal regions defined to target the different decay modes:

- SR3l targets events with exactly three reconstructed leptons and a significant amount of missing energy
- SR4l looks for events with four or more leptons and a moderate amount of missing energy, assumed to be coming from a neutrino produced in the decay of the additional neutralino/chargino
- SRFR targets processes where all neutralino+chargino decay products are products are fully reconstructible, including a second W, Z or Higgs candidate

Higgs

Othe

120

Fake lepton

m,, [GeV]

Aim for trilepton events with $90 < m_{Z\ell} < 580 \text{ GeV}$

Search for trilepton resonances: Results

The data-driven fake lepton estimation uncertainty is dominant in many of the bins due to statistical limitations in the dataset, while experimental uncertainties are dominated by jet energy scale/resolution . Modelling uncertainties on the shape of the main background are also considered

No significant deviations over Standard Model expectation are observed

Search for trilepton resonances: Exc. contours

Assuming only decays to muons

Lepton Flavour Violation Phys. Rev D 98 (2018) 112010

- Follow-up to the result with the 2015+16 dataset
- Search in eµ,e τ and µ τ final states at high mass
- No analogous CMS search for τ-final states
- Main background are Top quark in eµ and W+jets for the τ-final states
- Consider 1 and 3-prong hadronic taus, currently studying if 2-prong are possible
- Cross-section Limits extracted on LFV Z' and RPV SUSY and converted to couplings limits, comparing to low-energy exp results

Summary

• More analyses still to come with the full Run-2 dataset in the coming months!

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2020

ATLAS Preliminary $\int f dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8.13 \text{ TeV}$

							$\int \mathcal{L} dt = 0$	5.2 105/10	$y_{3} = 0, 10 10$
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e,\mu\\ 2 \ \gamma\\ -\\ 2 \ 1 \ e,\mu\\ \end{array}$ multi-channe $\begin{array}{c} -\\ qq\\ 1 \ e,\mu\\ 1 \ e,\mu\\ 1 \ e,\mu \end{array}$	$\begin{array}{c} 1-4j\\ -\\ 2j\\ \geq 2j\\ \geq 3j\\ -\\ 2j/1J\\ \geq 1 b, \geq 1Ji\\ \geq 2 b, \geq 3 \end{array}$	Yes – – – – – Yes 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp Ms Mth Mth GKK mass GKK mass GKK mass KK mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$ \begin{split} &n=2 \\ &n=3 \; \text{HLZ NLO} \\ &n=6 \\ &n=6, M_D=3 \; \text{TeV, rot BH} \\ &k/\overline{M}_{Pl}=0.1 \\ &k/\overline{M}_{Pl}=1.0 \\ &k/\overline{M}_{Pl}=1.0 \\ &f/m=15\% \\ &\text{Tier (1,1), } \mathcal{B}(\mathcal{A}^{(1,1)} \to tt)=1 \end{split} $	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell\\ \mathrm{SSM}\ Z' \to \tau\tau\\ \mathrm{Leptophobic}\ Z' \to tt\\ \mathrm{Leptophobic}\ Z' \to tt\\ \mathrm{SSM}\ W' \to \ell\nu\\ \mathrm{SSM}\ W' \to \tau\nu\\ \mathrm{HVT}\ W' \to WZ \to \ell\nuqq\ m\\ \mathrm{HVT}\ V' \to WW \to qqq\ q\\ \mathrm{HVT}\ V' \to WH/ZH\ \mathrm{model}\ B\\ \mathrm{LRSM}\ W_R \to tb\\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2\ e,\mu\\ 2\ \tau\\ -\\ 0\ e,\mu\\ 1\ e,\mu\\ 1\ r\\ \text{odel B} 1\ e,\mu\\ \text{B} \text{multi-channe}\\ 0\ e,\mu\\ 2\ \mu\end{array}$	$\begin{array}{c} - & - \\ 2 b \\ \geq 1 b, \geq 2 \\ - & - \\ 2 j / 1 J \\ 2 J \\ \geq 1 b, \geq 2 \\ \epsilon \\ 1 J \end{array}$	_ J Yes Yes Yes J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass V' mass V' mass V' mass W' mass W mass W mass	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 6.0 TeV 3.7 TeV 4.3 TeV 3.8 TeV 2.93 TeV 3.2 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.08299 2005.05138 1906.05609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt		2 j 	– – Yes	37.0 139 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 CERN-EP-2020-066 1811.02305
DΜ	Axial-vector mediator (Dirac Colored scalar mediator (Di $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac	cDM) 0 e,μ (racDM) 0 e,μ 0 e,μ cDM) 0-1 e,μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, 0\text{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M, 700 GeV m_{\phi}	1.55 TeV 1.67 TeV 3.4 TeV	$\begin{array}{l} g_q {=} 0.25, g_\chi {=} 1.0, m(\chi) = 1 {\rm GeV} \\ g {=} 1.0, m(\chi) = 1 {\rm GeV} \\ m(\chi) < 150 {\rm GeV} \\ y {=} 0.4, \lambda = 0.2, m(\chi) = 10 {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ³ mass LQ ³ mass LQ ³ mass 970 GeV	1.4 TeV 1.56 TeV V	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb+J\\ VLQ\;BB \rightarrow Wt/Zb+X\\ VLQ\;T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt\\ VLQ\;Y \rightarrow Wb+X\\ VLQ\;Y \rightarrow Wb+X\\ VLQ\;B \rightarrow Hb+X\\ VLQ\;QQ \rightarrow WqWq \end{array} $	$ \begin{array}{c} X \qquad \mbox{multi-channe} \\ \mbox{multi-channe} \\ + X 2(SS)/\geq 3 \ e, \mu \\ 1 \ e, \mu \\ 0 \ e, \mu, 2 \ \gamma \\ 1 \ e, \mu \end{array} $	el $\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 2 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1. B mass 1.4 T 5 ₃ /s mass 1.4 Y mass 8 B mass 1.21 Q mass 690 GeV	37 TeV 14 TeV 1.64 TeV 1.85 TeV TeV	$\begin{array}{l} & \mathrm{SU}(2) \text{ doublet} \\ & \mathrm{SU}(2) \text{ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass t* mass v* mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \tau \tau$ Multi-charged particles Magnetic monopoles	$ \begin{array}{c} 1 e, \mu \\ 2 \mu \\ 2,3,4 e, \mu (SS \\ 3 e, \mu, \tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	≥ 2 j 2 j 5) - - - -	Yes - - - -	79.8 36.1 36.1 20.3 36.1 34.4	N ^e mass 560 GeV Ne mass H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1,22 monopole mass 1,22 1,22 1,22	3.2 TeV TeV 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \ \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, \ g = 5e \\ \text{DY production}, \ g = 1g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	√s = 8 TeV	partial data	full d	ata		10 ⁻¹	1 1	⁰ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Dilepton Search: Systematics

Uncertainty source	Dielectron		Dimuon	
for m_X [GeV]	300	5000	300	5000
Spurious signal	$\pm 12.5 (12.0)$	$\pm 0.1 \ (1.0)$	$\pm 11.7 (11.0)$	$\pm 2.1 \ (2.2)$
Lepton identification	$\pm 1.6 \ (1.6)$	± 5.6 (5.6)	$\pm 1.8 \ (1.8)$	$^{+25}_{-20} \begin{pmatrix} +25\\ -20 \end{pmatrix}$
Isolation	$\pm 0.3 (0.3)$	$\pm 1.1 \ (1.1)$	$\pm 0.4 \ (0.4)$	$\pm 0.4 \ (0.5)$
Luminosity	$\pm 1.7 \ (1.7)$	$\pm 1.7 \ (1.7)$	$\pm 1.7 \ (1.7)$	$\pm 1.7 \ (1.7)$
Electron energy scale	$^{-1.7}_{-4.0} \begin{pmatrix} +1.0\\ -1.8 \end{pmatrix}$	$^{+0.1}_{-0.4}$ (±0.8)	-	-
Electron energy resolution	$^{+7.9}_{-8.3}$ $\begin{pmatrix} +1.1\\ -0.9 \end{pmatrix}$	$^{+0.4}_{-0.9}~(\pm 0.1)$	-	-
Muon ID resolution	-	-	$^{+0.8}_{-2.3} \begin{pmatrix} +0.3\\ -0.8 \end{pmatrix}$	$^{+0.6}_{-0.4} \begin{pmatrix} +0.5\\ -0.3 \end{pmatrix}$
Muon MS resolution	-	-	$^{+2.8}_{-3.8} \begin{pmatrix} +1.0\\ -1.3 \end{pmatrix}$	$\pm 2.4 (2.1)$
'Good muon' requirement	-	-	$\pm 0.6 (0.6)$	$^{+55}_{-35} \begin{pmatrix} +55\\ -35 \end{pmatrix}$

Systematics for zero (10) % width

Lepton+MET: Systematics

Source	Electron channel		Muon channel	
	Background	Signal	Background	Signal
Trigger	negl. (negl.)	negl. (negl.)	1% (1%)	2%~(2%)
Lepton reconstruction and identification	negl. (negl.)	negl. (negl.)	7%~(21%)	5%~(29%)
Lepton momentum scale and resolution	4%~(3%)	4% (3%)	$3\%\;(12\%)$	$7\%\;(10\%)$
Multijet background	7% (113%)	N/A (N/A)	1% (1%)	N/A (N/A)
Top extrapolation	2%~(5%)	N/A (N/A)	3%~(3%)	N/A (N/A)
Top normalization	$< 0.5\% \ (< 0.5\%)$	N/A (N/A)	< 0.5%~(< 0.5%)	N/A (N/A)
Diboson extrapolation	2% (9%)	N/A (N/A)	3% (10%)	N/A (N/A)
PDF choice for DY	1% (14%)	N/A (N/A)	< 0.5%~(< 0.5%)	N/A (N/A)
PDF variation for DY	8% (12%)	N/A (N/A)	7% (11%)	N/A (N/A)
EW corrections for DY	4% (5%)	N/A (N/A)	4% (6%)	N/A (N/A)
Luminosity	2% (1%)	2%~(2%)	2%~(2%)	2% (2%)
Total	13% (115%)	4% (4%)	12% (29%)	9% (31%)

Dilepton Search: HVT Exclusion Contour

- Limits extracted on the Fermion-Higgs/Vector Boson and Quark-lepton coupling parameter space
- Area outside the curve is excluded
- HVT bosons can couple to fermions (f), leptons (l), and Higgs (h)

Dilepton Search: parametric

The smooth functional form for the background is based on fit performance studies on a MC background template. The associated uncertainties are also estimated through these studies. In order to minimise the statistical uncertainties in this procedure, the background template for DY is produced from large-statistics samples simulated only at generator level and smeared by the experimental dilepton mass resolution, described in the previous section, with mass-dependent acceptance and efficiency corrections applied. A similar procedure is applied to the generator-level dilepton mass distribution in the $t\bar{t}$ sample exploiting the larger number of events from the generator-level mass distribution. The distributions from the diboson and single-top simulated samples and, in the electron channel, a template for multi-jet and W+jet processes are also considered. All MC-based contributions are scaled by their respective cross-sections.

In order to select the background functional form, a fit to the dilepton mass background template is performed, under the signal plus background hypothesis, for various functional forms, following the procedure outlined in Ref. [47]. The chosen functional form is the one with the smallest absolute number of fitted signal events ('spurious signal'), which are determined as as a function of $m_{\ell\ell}$:

$$f_{\ell\ell}(m_{\ell\ell}) = f_{BW,Z}(m_{\ell\ell}) \cdot (1 - x^c)^b \cdot x^{\sum_{i=0}^3 p_i \log(x)^i},$$
(1)

where $x = m_{\ell\ell}/\sqrt{s}$ and parameters *b* and p_i with i = 0, ...3 are left free in the fit to data and independent for dielectron and dimuon channels. The parameter *c* is 1 for the dielectron and 1/3 for the dimuon channel. The function $f_{BW,Z}(m_{\ell\ell})$ is a non-relativistic Breit–Wigner function with $m_Z = 91.1876$ GeV and $\Gamma_Z = 2.4952$ GeV [48]. The normalisation of the background function is such that the integral *a* corresponds to the total number of background events. To further validate this functional form an extra degree of freedom (i = 4) is added to the fit function before the final data analysis, to check if it improves the likelihood value of the fit by more than 2σ . To check the fit stability in the high-mass region, signal injection tests are performed at various mass points. No significant bias in the number of extracted signal events is observed.

Search for trilepton resonances: systematics

Dilepton Search: 2-D width & mass scan

Scalar Leptoquark search with top quarks

- This search focuses on leptoquarks decaying to electrons/muons+top quarks, where the top decays hadronically
- It is optimized for LQ masses above 1 TeV, where the outgoing top is heavily boosted and a large-R jet can be used as proxy for it
- Control regions are used to extract the background normalization from data
- Due to the higher complexity, a Boosted Decision Tree is used to discriminate between signal- and background-like events

Scalar Leptoquark search with top quarks

No significant excess is found in the observed data

