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Abstract: The resummation of radiative corrections to collider jet observables using

soft collinear effective theory is encoded in differential renormalization group equations

(RGEs), with anomalous dimensions depending on the observable under consideration.

This observable dependence arises from the ultraviolet (UV) singular structure of real phase

space integrals in the effective field theory. We show that the observable dependence of

anomalous dimensions in SCETI problems can be disentangled by introducing a suitable UV

regulator in real radiation integrals. Resummation in the presence of the new regulator can

be performed by solving a two-dimensional system of RGEs in the collinear and soft sectors,

and resembles many features of resummation in SCETII theories by means of the rapidity

renormalization group. We study the properties of SCETI with the additional regulator

and explore the connection with the system of RGEs in SCETII theories, highlighting some

universal patterns that can be exploited in perturbative calculations. As an application,

we compute the two-loop soft and jet anomalous dimensions for a family of recoil-free

angularities and give new analytic results. This allows us to study the relations between the

SCETI and SCETII limits for these observables. We also discuss how the extra UV regulator

can be exploited to calculate anomalous dimensions numerically, and the prospects for

numerical resummation.
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1 Introduction

The resummation of radiative corrections in the framework of soft collinear effective theory

(SCET) [1–4] is achieved by integrating renormalization group equations (RGEs) in the ef-

fective theory. The anomalous dimensions governing such RGEs depend on the observable

under consideration. In the resummation of jet collider observables, this observable depen-

dence is related to the presence of ultraviolet (UV) divergences in real radiation integrals

of the effective theory originating from the expansion of the physical phase space using

power counting dictated by the SCET Lagrangian. At the same time some elements of

the anomalous dimensions, those arising from virtual UV divergences are universal across

observables for a given physical process. An interesting question is whether such observ-

able dependent and independent components can be understood and disentangled, hence
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unveiling some common patterns and consistency relations that can be exploited when

performing perturbative calculations.

We limit ourselves to collider jet observables in SCETI and SCETII. In SCETII prob-

lems, the UV singularities of the phase space integrals can be handled with the rapidity

renormalization group [5, 6], which encodes the full observable dependence in the rapidity

anomalous dimension. An alternative approach to this problem was originally formulated

in Refs. [7, 8]. In SCETI problems this separation does not occur as both UV and IR

divergences are regulated by pure dimensional regularization.

To be concrete, we consider the toy example of generalized angularities in electron-

positron collisions (an analogous jet-based observable was defined in Ref. [9])

τ =
∑
i

(
ki,⊥
Q

)α
e−β|ηi| , (1.1)

where the transverse momentum ki,⊥ and pseudorapidity ηi are taken with respect to the

recoil-free winner-take-all axis, and Q is the center-of-mass energy of the collision. Note

that, if the sum runs over (massless) partons in the event, this observable is only collinear

safe for α = 1 (with β > −α to ensure IR safety). This is the case of conventional

angularities [10] for which one has α = 1 and β = 1−a; the case a = 0 (β = 1) corresponds

to a thrust-like angularity (denoted by thrust in the rest of the paper), while a = 1

(β = 0) corresponds to a recoil-free version of jet broadening. For α 6= 1, an alternative

collinear safe version of the observable (1.1) with the same scaling behavior as in Eq. (1.2)

can, for instance, be defined as in Ref. [11] by using Lund Jet Plane [12] clusters rather

partons. Alternatively, one can adopt a track based definition as in Ref. [9]. All explicit

computations in this article will refer to the simple case of Eq. (1.1) of α = 1 with the

sum running over massless partons. However, since many of the considerations made in

the paper only depend on the scaling (1.2), we will keep the dependence on α in the rest

of the paper. While any explicit results given in the paper that refer to the factorization

theorem (1.3) only hold for α = 1, by keeping the general dependence on α and β we

make our results easily extendable to other observables, albeit with different factorization

theorems.

In the limit τ → 0, the logarithms of τ can be resummed to all orders in perturbation

theory [10, 13–18] (see also Ref. [19] for groomed angularities at hadron colliders). In

SCETI (β 6= 0), this resummation is accomplished by observing that the problem contains

three separate mass scales, a hard, jet and soft scale

MH = Q , MJ = Qτ1/(α+β) , MS = Qτ1/α , (1.2)

and the differential cross section can be expressed by means of the following factorization

theorem valid for the recoil-free case at leading power [15]

1

σBorn

dσ

dτ
= H(MH , µ)

∫
dτn dτn̄ dτs Jn(MJ , τn)Jn̄(MJ , τn̄)S(MS , τs) δ(τ − τs − τn − τn̄) ,

(1.3)
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where the soft and jet functions have the standard definitions

Jn(MJ , τn) =
2π

Nc
tr〈0|

/̄n

2
χnδ(n̄ · p−Q)δ(τn − τ̂n)χ̄n|0〉 ,

Jn̄(MJ , τn̄) =
2π

Nc
tr〈0|χ̄n̄δ(n · p−Q)δ(τn̄ − τ̂n̄)

/n

2
χn̄|0〉 ,

S(MS , τs) =
1

Nc
tr〈0|S†n̄Snδ(τs − τ̂s)S†nSn̄|0〉 , (1.4)

and τ̂n, τ̂n̄ and τ̂s are operators that return the value of the generalized angularity in

the n-collinear, n̄-collinear and soft sector, respectively. The operators depend on the

parameters α and β, and therefore introduce dependence on these parameters into the jet

and soft function which we have not indicated explicitly.

Notice that for angularities defined with respect to the winner-take-all axis the factor-

ization theorem in Eq. (1.3) is the same in both SCETI and SCETII (with β = 0). This

allows us to study the transition between the two theories. For general observables (e.g. if

one takes the thrust axis as a reference), the factorization theorem is different between the

SCETI and SCETII case. The full structure of the SCETII results can not be obtained as

the limit of the SCETI result in this case. The results of this paper regarding the structure

of the anomalous dimensions in SCETI however still hold.

In Laplace space, the factorization theorem (1.3) becomes a simple product between

the hard function and the Laplace transform of the soft (Ŝ) and jet (Ĵn,n̄) functions, namely

σ̂[u] ≡
∫ ∞

0
dτe−uτ

1

σBorn

dσ

dτ
= H(MH)Ĵn(MJ [u]) Ĵn̄(MJ [u]) Ŝ(MS [u]) , (1.5)

where we have defined1

F̂ (MF [u]) =

∫ ∞
0

dτ e−u τF (τ) , (1.6)

with F = S, Jn, Jn̄. The scales MF [u] in Laplace space are given by the replacement τ →
e−γE/u in Eq. (1.2). The SCETII case (β = 0) obeys the same factorization theorem (1.3)

although the soft and jet functions do not depend on a single scale like in the SCETI case.

In effective field theories such as SMEFT, anomalous dimensions are purely of short

distance nature and do not depend on any long distance parameters such as the Higgs

vacuum expectation value or the observable being measured. Therefore, in SCET the

observable dependence of the anomalous dimensions might seem at first sight to be in

contradiction with their short-distance nature. In other words, one might expect that UV

divergences arise from virtual corrections, whereas real radiation describes the propagation

of on-shell degrees of freedom which should only give rise to infrared divergences, and

not contribute to anomalous dimensions. The reason this is not true in SCET is that in

the effective theory phase space constraints need to be multipole expanded [1, 2, 20, 21]

as dictated by the power counting. Therefore, real particles can have energies that are

1In this paper, we will often use the symbol F to denote F = S, J . This means that the equation is

valid for both the soft and jet sectors, with all all quantities with subscripts F being replaced by their soft

and collinear values, respectively.
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arbitrarily large, and are integrated over phase space regions which go to infinity. This

induces an observable dependence in the UV singularities originating from real radiation

integrals. The above discussion hints at the fact that the observable dependence of the

anomalous dimensions can be identified by introducing an additional UV regulator in the

phase space integrals. As we discuss in this paper, an exponential regulator analogous

to that proposed in Ref. [22] for SCETII problems can be introduced to render the real

contributions UV finite, while keeping the structure of the virtual corrections unchanged.

As we show in this paper, introducing such an extra regulator in SCETI calculations has

several advantages, as it allows one to disentangle the observable dependence. It introduces

a new scale ν, and resummation in SCETI problems can be performed by solving a two-

dimensional system of RGEs in the soft and each of the collinear sectors. In particular, it

can be shown that the µ anomalous dimension is independent of the observable, while all

observable dependence is contained in the ν anomalous dimension. Differential equations

in µ and ν are analogous to the rapidity RG equations [6] that are commonly used in

SCETII theories, where a rapidity regulator is required to render the soft and collinear

contributions separately finite. Our approach highlights a number of similarities with the

SCETII case, and allows us to study the connections and differences between the two

theories. These lead to consistency conditions for the anomalous dimensions that can be

exploited in perturbative calculations. Moreover, the introduction of the extra regulator

allows one to make integration over the real radiation suitable for a numerical calculations,

as discussed in the conclusions. This has the advantage that complicated observable-

dependent integrals can be computed numerically in four dimensions. This is also being

exploited in the ongoing effort at obtaining a numerical resummation framework that is

systematically extendable to higher perturbative accuracy in SCET [23, 24].

Introducing an extra UV regulator, however, also has some side effects. In standard

SCETI regularized in dimensional regularization in the regime MJ > MS (or equivalently

β > 0), collinear degrees of freedom are integrated out below MJ . The collinear jet function

is the matching coefficient between SCET with both soft and collinear degrees of freedom,

and a low-energy soft theory containing only Wilson lines interacting via soft degrees of

freedom. The introduction of an extra UV regulator introduces a new scale into the soft

and jet functions which seemingly breaks the above factorization picture. However, we

show that the above issue can be handled by observing that the dependence on the new

scale can be completely factorized within the soft and jet functions, which allows one to

preserve the properties of standard SCETI theories.

This paper is organized as follows: In Section 2 we briefly summarize the structure of

the RGEs in SCETI and SCETII theories. This section also serves to define the notation

and conventions used throughout the paper. Section 3 discusses the effect of an extra UV

regulator and the conditions it needs to satisfy to regularize the real phase space integrals.

Section 4 discusses the similarities and differences between SCETI and SCETII RGEs in the

presence of the extra UV regulator. In Section 5 we show how these considerations allow one

to isolate the observable dependence in the anomalous dimensions and how the dependence

on the new UV regularization scale ν can be factorized separately within the soft and

collinear sectors making its cancellation manifest. In Section 6 we explicitly calculate the
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anomalous dimensions at one- and two-loop order for the recoil-free angularities introduced

above, and relate our findings to existing results in the literature. Our conclusions and

outlook are given in Section 7.

2 Resummation of radiative corrections in SCETI and SCETII

In this section we briefly summarize the resummation of leading power logarithmic correc-

tions in SCETI and SCETII theories, and present some of the results from a different point

of view. The section also serves to define the notation we will use throughout the paper.

Before we start, we want to make a brief comment about our notation of scale de-

pendence in the various objects appearing in the factorization theorems of SCETI and

SCETII. The SCET objects depend on a single characteristic scale for both the rapidity

and renormalization scales, and for each function F we denote the characteristic scales cor-

responding to µ by MF and those for ν by NF . So for example, in SCETI the ingredients

of the factorization theorem F = H,J, S depend on the renormalization scale µ and the

characteristic scales MF through the ratio of these two scales. Similarly in SCETII, the jet

and soft functions depend on the renormalization scale µ, the rapidity scale ν, as well as

the characteristic scales MF , NF through the ratios µ/MF and ν/NF . In order to simplify

the notation, we will omit the dependence on the characteristic scales in the rest of this

paper, unless this dependence is important for clarity of the discussion. This means that

we will use

F (µ) ≡ F (MF ;µ) , F (µ, ν) ≡ F (MF , NF ;µ, ν) , (2.1)

and similarly for anomalous dimensions

γF (µ) ≡ γF (MF ;µ) , γF (µ, ν) ≡ γF (MF , NF ;µ, ν) . (2.2)

2.1 Resummation in SCETI

Resummation of large logarithms in SCETI is accomplished by using a sequence of effective

field theories, each of which has a single characteristic scale, and with the scales being

widely separated from one another [1]. The first step is to match QCD onto SCETI by

writing the QCD currents in terms of operators containing SCETI fields, combined with

short distance Wilson coefficients. For many applications of interest, the current in the full

theory is conserved and hence µ-independent, and we will assume this here for simplicity.

This allows one to write the matching in position space onto SCETI as

JQCD
bare (x) = JQCD

ren (x) = Cbare J
SCET
bare (x) = Cren(µ) JSCET

ren (x;µ) . (2.3)

In this article we specialize to the case in which JSCET contains a single operator. The

considerations below can be easily generalized to the case of multiple operators for which the

evolution between two scales can be expressed in terms of µ-ordered matrix exponentials.

The factorization theorem holds for the differential cross section, not the amplitude,

and we therefore consider the quantity (MH = Q)∫
d4x eiq·x〈0|JQCD(x)JQCD †(0)|0〉 = Hbare(MH)Obare = Hren(MH , µ)Oren(µ) , (2.4)
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where we defined the matrix element of the squared SCET current as

O ≡
∫

d4x eiq·x〈0|JSCET(x)JSCET,†(0)|0〉 , (2.5)

and introduced the hard function

H(MH) ≡ |C(MH)|2 . (2.6)

The bare and renormalized coefficients and matrix element of the operator in SCETI are

related by

Hbare(MH) = Z−1
O (µ)Hren(MH ;µ) , Obare = ZO(µ)Oren(µ) . (2.7)

The µ dependence of the renormalized matching coefficient is obtained from the µ inde-

pendence of the bare matching coefficient,

d

d lnµ
Hbare(MH) = 0 , (2.8)

from which follows the RG equation

γH(µ) ≡ d

d lnµ
lnHren(µ) =

d

d lnµ
lnZO(µ) . (2.9)

We will suppress the subscript ren in the remaining discussion, unless there is a possibility

of confusion. We have also dropped the MH dependence in γH , as mentioned at the

beginning of this section.

The anomalous dimension has been proven to have the all-order form [25–27]

γH(µ) = −4Γcusp[αs(µ)] ln
µ

MH
+ γ̂H [αs(µ)] , (2.10)

and contains only a single logarithm of µ to all orders. The coefficient of the logµ term

is the cusp anomalous dimension, and the non-log term is denoted by γ̂H . Equation (2.9)

can be integrated to obtain Hren giving the well-known result

H(µ2) = H(µ1)UH(µ1, µ2) , UH(µ1, µ2) = exp

[∫ µ2

µ1

dµ′

µ′
γH(µ′)

]
. (2.11)

Given Eq. (2.11), one can write

H(µ)Oren(µ) = H(µH)UH(µH , µO)Oren(µO) . (2.12)

The matching coefficient has no large logarithms at the scale µH ∼ MH . If one could

find a scale µO at which the matrix element of the operator is free of large logarithms

one could sum all large logarithms in the required product of H and O using the right

hand side of Eq. (2.12). However, the matrix elements of SCETI operators still contain

multiple scales, and it is not possible to identify a single scale µO at which they have no

large logarithms.
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One can further factorize Oren into a convolution of soft and jet functions, each of

which depends on a single scale. As long as β > 0, the two scales satisfy MS � MJ for

τ � 1, and the two scales can be disentangled by another matching step. In particular,

at the scale µJ ∼ MJ one can match SCET onto a soft theory containing only Wilson

lines interacting with soft degrees of freedom.2 This low energy effective theory reproduces

exactly the soft function, and the matching coefficient onto this theory is given by the two

jet functions. After this matching step, one continues running in the soft theory. In the

case of recoil-free angularities Eq. (1.1) in e+e− → 2 jets, described by the factorization

formula Eq. (1.3), the soft and jet functions are defined in Eq. (1.4). By means of a Laplace

transform, the factorization formula for β 6= 0 becomes a simple product and the soft and

jet functions satisfy RGEs similar to Eq. (2.9), i.e.

d ln Ŝ(µ)

d lnµ
= γα,β;S(µ) ,

d ln Ĵn,n̄(µ)

d lnµ
= γα,β;J(µ) , (2.13)

with

γα,β;S(µ) = −4
α

β
Γcusp[αs(µ)] ln

µ

MS
+ γ̂SCETI

α,β;S [αs(µ)] ,

γα,β;J(µ) = 2
α+ β

β
Γcusp[αs(µ)] ln

µ

MJ
+ γ̂SCETI

α,β;J [αs(µ)] . (2.14)

The non logarithmic terms γ̂ of the anomalous dimensions above will be given in Section 6.3

(see also Ref. [14]). We have also added a superscript SCETI since we introduce many

closely related anomalous dimensions later in the paper. The cusp and non-cusp terms

depend on the angularity parameters α, β.3

The above RGEs can be solved starting from initial conditions at µS ∼ MS and

µJ ∼ MJ , at which the soft and jet functions are free of large logarithms of µ. The

factorization theorem Eq. (1.5) including the scale dependence of the renormalized soft, jet

and hard functions becomes

σ̂[u] = H(µH)U2
H(µH , µ) Ĵn(µJ) Ĵn̄(µJ)U2

J (µJ , µ) Ŝ(µS)US(µS , µ) , (2.15)

on evolving to a common scale µ. In Eq. (2.15), we have as usual suppressed the dependence

on MF and

lnUS(µS , µ) =

∫ µ

µS

dµ′

µ′

[
−4

α

β
Γcusp[αs(µ)] ln

µ

MS
+ γ̂SCETI

α,β;S [αs(µ)]

]
,

lnUJ(µJ , µ) =

∫ µ

µJ

dµ′

µ′

[
2
α+ β

β
Γcusp[αs(µ)] ln

µ

MJ
+ γ̂SCETI

α,β;J [αs(µ)]

]
, (2.16)

are the evolution factors in the soft and collinear sectors.

2For work towards a formulation of SCET without the separation of collinear and soft modes, see

Refs. [28, 29].
3We remind the reader that we specifically refer to the choice α = 1, although in the expressions that

follow the α dependence is kept explicit as the conclusions made here can be extended to observables other

than conventional angularities.
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2.2 Resummation in SCETII

In SCETII, matching QCD onto the effective theory proceeds in the same way as in SCETI,

and Eq. (2.3) through Eq. (2.12) still hold. As in SCETI, these equations could be used

to resum all large logarithms if one identifies two (initial) scales µH and µO at which the

Wilson coefficient and the matrix element of the operator have no large logarithms. This

was not possible in SCETI because two separate scales are still present in the effective

theory, which were disentangled by defining jet and soft functions, each of which depended

on a single scale. Unlike SCETI, in SCETII the jet and soft functions actually live at the

same scale, and one might naively think that at that common scale µO the perturbative

expression of Oren(µO) contains no large logarithms. However, one can show that to all

orders in αs a single logarithm of the hard scale µ/MH survives in the combination of the

soft and jet functions [7, 27, 30–33], as a consequence of the presence of rapidity divergences

in the calculation of radiative corrections to the soft and jet functions. The introduction

of an additional (rapidity) regulator, associated with a new scale ν, allows one to define

separately the soft and jet functions and compute the coefficient of this residual single

logarithm [7, 8, 27, 34].

A related approach is the so-called rapidity renormalization group [5, 6], where one

derives a coupled system of two RGEs in the scales µ and ν, whose solution can be exploited

to sum all sources of large logarithms. Consider the example of the factorization theorem

in Eq. (1.3) for β = 0. The Laplace transform Ôbare of the operator matrix element Obare

in Eq. (2.5) can be written as

Ôbare = Ŝbare(ν) Ĵn,bare(ν) Ĵn̄,bare(ν) . (2.17)

One can subtract the 1/ε divergences by defining

Ŝbare(ν) = ZS(µ, ν) Ŝsub(µ, ν) , Ĵbare(ν) = ZJ(µ, ν) Ĵsub(µ, ν) , (2.18)

so that Ŝsub(µ, ν) and Ĵsub(µ, ν) are finite. Specific rapidity regularization schemes (for

example [22, 35]) regulate only the real radiation integrals but not the virtual corrections.

Of course, a consistent scheme requires using the same regulators in the real and virtual

corrections in order not to break unitarity (see also the discussion in Ref. [35]). The

breaking of unitarity is reflected in an apparent IR unsafety of the soft and jet functions,

which implies that some of the 1/ε divergences are of IR nature. However, this issue

can be overcome by noticing that these spurious divergence cancel in the computation of

physical quantities, that is in the combination of soft and jet functions that appear in

the factorization theorem. Therefore, schemes of this type can still be used for practical

computations and one can still define

Ôren(µ) = Ŝsub(µ, ν) Ĵn,sub(µ, ν) Ĵn̄,sub(µ, ν), Ôbare = ZO,ren(µ)Ôren(µ) , (2.19)

with

ZO,ren(µ) = ZS(µ, ν)Z2
J(µ, ν) . (2.20)

– 8 –



We have deliberately denoted the renormalized soft and jet functions with the subscript

sub to emphasize that in some regularization schemes the definition Eq. (2.18) is not a

renormalization in the strict sense. For the same reason, in the derivation of the RGEs

that follows, we do not explicitly use the fact that the 1/ε divergences are of UV origin4.

In this sense, the use of the rapidity renormalization group is to be interpreted only as a

computational tool.

One can now derive the differential evolution equations in the renormalization scale µ

as

d

d lnµ
lnFsub(µ, ν) = − d

d lnµ
lnZF (µ, ν) ≡ γ(µ)

F (µ, ν) , (2.21)

with F = Ŝ, Ĵn, Ĵn̄. The ν dependence in the µ-anomalous dimensions cancels in the

combination

γ
(µ)
O (µ) = γ

(µ)
S (µ, ν) + 2γ

(µ)
J (µ, ν) = −γ(µ)

H (µ) , (2.22)

since Hren(µH) does not depend on ν.

Consistency arguments can be used to derive an all order expression for the form of

the µ-anomalous dimensions. First, using arguments analogous to those in Refs. [25–27],

Eq. (2.22) implies that the soft and collinear µ-anomalous dimensions can depend at most

on a single logarithm of the rapidity regularization scale ν. Second, since the ν dependence

cancels between the soft and jet functions, it is determined by the simultaneous soft and

collinear limit, and is therefore proportional to the cusp anomalous dimension. Third, the

rapidity regulator regulates the entire UV divergence in the simultaneous soft and collinear

limit, so that the jet anomalous dimension does not contain an explicit lnµ. We use these

three conditions together with the fact that the µ and ν dependence enters in ratios µ/MF

and ν/NF and that the canonical scales satisfy

νJ ∼ NJ ≡MH , νS ∼ NS ≡MS . (2.23)

One finds5

γ
(µ)
S (µ, ν) = 4Γcusp[αs(µ)] ln

µ

ν
+ γ̂S [αs(µ)] ,

γ
(µ)
J (µ, ν) = 2Γcusp[αs(µ)] ln

ν

NJ
+ γ̂J [αs(µ)] . (2.24)

The observable dependence in SCETII anomalous dimensions arises from real diagrams in

the large rapidity region. Since those divergences are regulated by the rapidity regulator,

the µ anomalous dimension is observable independent.

The solution to Eq. (2.21)

Fsub(µ, ν) = Fsub(µF , ν) exp

[∫ µ

µF

dµ′

µ′
γ

(µ)
F (µ′, ν)

]
≡ Fsub(µF , ν)UF (µF , µ; ν) , (2.25)

4This means we don’t assume that the 1/ε divergences cannot depend on infrared scales, or cannot have

observable dependence.
5Note that the anomalous dimensions γ̂F [αs(µ)] is not the same as the SCETI anomalous dimension

γ̂SCETI
α,β;F [αs(µ)] discussed in Eq. (2.14)
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is not sufficient to perform the resummation since the initial condition Fsub(µF , ν) still

contains large logarithms of the ratio ν/NF . Therefore a second differential equation in

the rapidity scale ν is necessary. The nature of the scale ν is quite different from that

of the renormalization scale µ. Unlike for the scale µ, the dependence on ν cancels only

between the soft and the zero-bin subtracted [36] collinear sectors, since Ŝbare(ν) and

Ĵbare(ν) depend on ν, so that

d

d ln ν
lnFsub(µ, ν) 6= − d

d ln ν
lnZF (µ, ν) . (2.26)

However, a differential equation describing the change in ν can be obtained by taking the

derivative of Eq. (2.25) with respect to ν. This yields

d

d ln ν
Fsub(µ, ν) =

[
d

d ln ν
Fsub(µF , ν)

]
UF (µF , µ; ν) + Fsub(µF , ν)

[
d

d ln ν
UF (µF , µ; ν)

]
= Fsub(µ, ν)

[
d

d ln ν
lnFsub(µF , ν) +

∫ µ

µF

dµ′

µ′
d

d ln ν
γ

(µ)
F (µ′, ν)

]
= Fsub(µ, ν)

[
d

d ln ν
lnFsub(µF , ν)− 2aF

∫ µ

µF

dµ′

µ′
Γcusp[αs(µ)]

]
, (2.27)

with

aS = 2 , aJ = −1 , (2.28)

and where we have used Eq. (2.24) in the last line of (2.27).

One can obtain more constraints on the ν dependence, following again an argument

similar to that in Refs. [25–27]. The combination of soft and jet functions in the fac-

torization theorem, Eq. (2.19), is independent of ν. The last term in square brackets

vanishes when the soft and jet contributions in the factorization theorem are combined, by

Eq. (2.22). This gives a constraint on the first term in square bracket of Eq. (2.27),

d

d ln ν
ln Ŝsub(µS , ν) + 2

d

d ln ν
ln Ĵsub(µJ , ν) = 0 . (2.29)

Since any dependence on ln ν of d lnSsub(µS , ν)/d ln ν and d lnJsub(µJ , ν)/d ln ν is through

the ratios ν/NS and ν/NJ , respectively, these derivatives can in fact not depend on ν at

all. Combining this with (2.29) implies

d

d ln ν
lnFsub(µ, ν) ≡ γ(ν)

α,β;F (µ) , (2.30)

with

γ
(ν)
α,β;F (µ) = aF

[
γ

(ν)
α,β(µF )− 2

∫ µ

µF

dµ′

µ′
Γcusp[αs(µ

′)]

]
. (2.31)

An important observation is that the derivatives in µ and ν commute[
d

d ln ν
,

d

d lnµ

]
lnFsub(µ, ν) = 0 , (2.32)
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since

d

d lnµ
γ

(ν)
α,β;F (µ) =

d

d ln ν
γ

(µ)
α,β;F (µ, ν) , (2.33)

and therefore one can resum all logarithms of µ and ν by solving the system of differential

equations in Eq. (2.21), (2.27)

Fsub(µ, ν) = Fsub(µF , νF )UF (µF , νF , µ, ν) , (2.34)

where Fsub(µF , νF ) is now free of large logarithms. To obtain the evolution kernel UF , one

performs the integration along the path (µF , νF )→ (µ, νF )→ (µ, ν),6 obtaining

UF (µF , νF , µ, ν) = U
(µ)
F (µF , µ; νF )U

(ν)
F (νF , ν;µ) , (2.35)

with

lnU
(µ)
S (µS , µ; νS) =

∫ µ

µS

dµ′

µ′

[
4Γcusp[αs(µ

′)] ln
µ′

νS
+ γ̂S [αs(µ

′)]

]
, (2.36a)

lnU
(µ)
J (µJ , µ; νJ) =

∫ µ

µJ

dµ′

µ′
γ̂J [αs(µ

′)] , (2.36b)

lnU
(ν)
S (νS , ν;µ) =

∫ ν

νS

dν ′

ν ′

[
−4

∫ µ

µS

dµ′

µ′
Γcusp[αs(µ

′)] + 2γ
(ν)
α,β[αs(µS)]

]
=

[
−4

∫ µ

µS

dµ′

µ′
Γcusp[αs(µ

′)] + 2γ
(ν)
α,β[αs(µS)]

]
ln

ν

νS
, (2.36c)

lnU
(ν)
J (νJ , ν;µ) =

∫ ν

νJ

dν ′

ν ′

[
2

∫ µ

µJ

dµ′

µ′
Γcusp[αs(µ

′)]− γ(ν)
α,β[αs(µJ)]

]
=

[
2

∫ µ

µJ

dµ′

µ′
Γcusp[αs(µ

′)]− γ(ν)
α,β[αs(µJ)]

]
ln

ν

νJ
. (2.36d)

U
(µ)
J (µJ , µ; νJ) has no cusp piece, and the µ dependence in the jet function is therefore

single logarithmic. Note that in SCETII µJ ∼ µS ∼MS = MJ , and hence the argument of

γ(ν) is evaluated at the ν-independent scale µF . This ensures that the net effect of the ν

dependence in the combination of soft and jet functions is only single logarithmic. Given

these evolution equations, the factorization theorem Eq. (1.5) can be written as

σ̂[u] = H(µH)U2
H(µH , µ) Ĵn(µJ , νJ)Ĵn̄(µJ , νJ)UJ(µJ , νJ , µ, ν) Ŝ(µS , νS)US(µS , νS , µ, ν) ,

(2.37)

where we have again not shown explicitly the dependence on MF .

We conclude this section by pointing out that the fact that the combination of the

functions Ŝ(µ, ν)Ĵn(µ, ν)Ĵn̄(µ, ν) has to be independent of the rapidity scale ν can be used

to derive a tight constraint on the functional form of the functions Ŝ(µ, ν) and Ĵ (µ, ν).

Obviously one needs to have

d ln Ŝ
d ln ν

(MS , NS ;µ, ν) = −d ln Ĵn
d ln ν

(MJ , NJ ;µ, ν)− d ln Ĵn̄
d ln ν

(MJ , NJ ;µ, ν) . (2.38)

6Due to Eq. (2.32), one can perform the integration along any path in µ and ν, and the path chosen

here is just a convenient choice
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Using that the dependence is only through the ratios µ/MF and ν/NF , and that MS = MJ

(but NS 6= NJ) in SCETII, one finds that the derivatives can not depend on the ratios

ν/NF and therefore

d ln Ŝ
d ln ν

(MS , NS ;µ, ν) =
d ln Ŝ
d ln ν

(µ/MS) ≡ c(µ/MS) ,

d ln Ĵn̄
d ln ν

(MJ , NJ ;µ, ν) =
d ln Ĵn
d ln ν

(MJ , NJ ;µ, ν) =
d ln Ĵn
d ln ν

(µ/MJ) = −1

2
c(µ/MJ) , (2.39)

where it is crucial that MS = MJ . This means that the soft and jet functions have the

general form

ln Ŝ(µ, ν) = ln S̃(µ/MS) +

∫ ν

NS

dν ′

ν ′
c(µ/MS) = ln S̃(µ/MS) + c(µ/MS) ln

ν

NS
,

ln Ĵn(µ, ν) = ln J̃n(µ/MJ)− 1

2

∫ ν

NJ

dν ′

ν ′
c(µ/MJ) = ln J̃n(µ/MJ)− 1

2
c(µ/MJ) ln

ν

NJ
.

(2.40)

All functions in the above two equations depend on αs(µ), which can be equivalently

rewritten in terms of αs(MS) = αs(MJ) and a different functional dependence on µ/MS

or µ/MJ . One can easily see that the solution to the RGEs given in Eqs. (2.36) satisfies

this constraint.

3 Choice of UV regulator in real radiation integrals

In this section we discuss the criteria for choosing a regulator for real phase space integrals.

As already discussed in the introduction, these integrals become UV divergent in the effec-

tive theory after the integration measure and physical phase space constraints have been

multipole expanded. This can be easily seen by considering the angularity Eq. (1.1) that

for a single parton state can be expressed as

τα,β(k+, k−) =
[min(k+, k−)]

α+β
2 [max(k+, k−)]

α−β
2

Q
, (3.1)

which, at the one-loop level, gives rise to the following schematic phase space integral7∫ ∞
0

dk⊥

k1+2ε
⊥

∫ ∞
0

dk−

k−
Θ

(
k− −

k2
⊥
k−

)
δ

(
τ − τα,β

(
k2
⊥
k−

, k−
))

. (3.2)

The k⊥ integral is regulated by standard dimensional regularization both in the IR and

UV limits. In the SCETI case (β 6= 0), this is sufficient also to regulate the integral over

the light cone component k− due to the constraint imposed by the observable τα,β that

relates k⊥ and k−. As is well known, this is not the case in SCETII (β = 0), and one has

an additional rapidity divergence from the limit in which one of the light cone components

of k tends to infinity.

7We assume, without loss of generality, that k− > k+, and we impose the on-shell condition k2⊥ = k+k−.
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In order to cope with these divergences, common rapidity regularization schemes in

SCETII [6, 22, 35, 37–41] proceed by introducing a new regulator in the k− integral (3.2),

which effectively acts to damp the integral above a certain scale k−, k+ ∼ ν. This regulates

the divergence of the integral over the light cone variables k±, while the value of k⊥ is

instead fixed by the observable’s measurement function. In general, one does not want

the rapidity regulator to affect the infrared divergences of the phase space integral, and

this is easily avoided by taking the limit in the regulator before one takes the ε→ 0 limit.

This ensures that the infrared limit is regulated by dimensional regularization, and the

infrared structure of QCD is reproduced on combining the soft and collinear sectors. In

problems involving the resummation of jet observables, such as the one discussed in this

article, one often regulates only real radiation integrals while leaving the virtual integrals

untouched by the regularization procedure. As discussed in the context of SCETII theories

(cf. Section 2.2), some care is needed to ensure that the dependence on the rapidity

regulator in the real radiation cancels in physical quantities. As a result, all UV divergences

associated with real radiation in SCETII are captured by the rapidity regulator. This makes

the anomalous dimension governing the µ RGEs of the soft and jet functions observable

independent, while the rapidity anomalous dimension governing the ν RGE is observable

dependent.

We wish to achieve the same separation for the SCETI anomalous dimension into an

observable independent and an observable dependent component, as for SCETII. In SCETI,

the observable dependent contribution will arise from the large momentum region of the

real radiation phase space, but separating them from other singularities is a little more

subtle than in the SCETII case. In analogy with SCETII, we consider the introduction

of an extra UV regulator (we refrain from calling it a rapidity regulator as no rapidity

divergences are present in SCETI theories). The important property required for the

extra UV regulator is that it should not modify the IR structure of the effective theory,

and that it cancels between soft and jet functions, leaving the hard function unaffected.

This ensures that the IR structure continues to reproduce that of QCD, which removes

the condition that the ε → 0 has to be taken last. Contrary to what happens in SCETII,

dimensional regularization is sufficient to regulate all UV divergences in SCETI. Therefore,

separating out the observable dependence in the SCETI case crucially requires taking the

ε → 0 limit first, otherwise the procedure would naively collapse to standard dimensional

regularization.

A second important condition is that the introduction of the extra regulator must lead

to a consistent system of RGEs to perform the resummation. In particular, this implies

that there needs to be an integration path in the {µ, ν} plane that allows one to resum all

large logarithms. If [
d

d lnµ
,

d

d ln ν

]
lnF = 0 , (3.3)

where F = Ŝ, Ĵn, Ĵn̄ are the terms in the factorization theorem Eq. (1.3), then the inte-

gration is path independent and any path can be used to integrate the RGEs.

It is natural to expect that a subset of the regularization schemes currently used for

rapidity regularization satisfy the two criteria above and thus can be adopted for this
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task. In particular, the condition stemming from the first criterion requires that the limit

ε→ 0 and the limit in the rapidity regulator commute in SCETII problems. For instance,

the analytic regulator proposed in Ref. [6] does not satisfy this requirement and therefore

cannot be adopted for our purposes. However, the exponential regulator of Ref. [22] satisfies

both criteria given above. This procedure amounts to replacing the integration measure

for each real particle as follows

ddk δ(k2)θ(k0)→ ddk δ(k2)θ(k0) e−
k++k−

ν
e−γE , (3.4)

which regulates the integral when its energy (or equivalently either of its light cone compo-

nents) becomes larger than a regularization scale ν.8 In coordinate space, this procedure

amounts to shifting the light cone coordinates x± by an imaginary amount ie−γE/(2ν),

hence regularizing the x± → 0 UV singularity. At the same time, the prescription Eq. (3.4)

does not affect the IR limit of phase space integrals, which is dealt with in standard di-

mensional regularization.

One can understand the effect of the extra UV regulator by looking at the phase space

for the one-loop soft function in the {k+, k−} plane for the cumulative distribution, shown in

Fig. 1 for a conventional angularity α = 1 and β = 1−a. The virtual graphs are integrated

over all k±, whereas the real radiation graphs are constrained to have τα,β(k+, k−) < τs.

The IR singularities cancel between real and virtual graphs, and we have shaded the region

where there is only a virtual contribution. The fact that without the extra UV regulator

(shown on the left) UV divergences are observable dependent can be understood quite

easily from this phase space diagram. The difference between two observables (in the

figure represented by the two values a = 0.1 and a = 0.8) is computed by integrating over

the region shaded blue but not red, which extends all the way to infinity. Thus, the 1/ε

divergences, and therefore the anomalous dimensions are observable dependent. In the

presence of the extra UV regulator (shown on the right) there are no 1/ε divergences in

the difference between two observables, from which one can expect that the µ anomalous

dimensions are observable independent. The dependence on the extra UV regulator ν, on

the other hand, does depend on the observable.

4 Structure of the RGEs and relationship between SCETI and SCETII

In this section we will derive and discuss the system of RGE in SCETI in the presence

of the extra UV regulator. We begin by briefly discussing the case of the one loop soft

function, where one can explicitly see some of the features introduced to all perturbative

orders later.

8This also regulates the k⊥ integral in the UV due to the on-shellness condition k+k− = k2⊥.
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Figure 1. Phase space diagram in the {k+, k−} plane. The phase space region where there is a

virtual contribution but no real radiation is shaded, a = 0.1 (red) and a = 0.8 (blue). On the left

we show the phase space region without the extra UV regulator, and on the right the region with

the extra UV regulator which has been drawn as a hard cutoff k+ . ν, k− . ν for illustrative

purposes.

4.1 An example: the one loop soft function for a = 0

Consider the soft function Eq. (1.4) in the case of thrust (α = β = 1) supplemented with

the exponential regulator prescription Eq. (3.4). At one loop in the MS scheme,

Ŝbare(µ, ν) = 1 + 2
αs(µ)

π
CF e

−γE Qτ
ν

(
µ2

Qν

)ε
τ−1−ε

Γ
(
−ε, e

−γEQτ
ν

)
Γ(1− ε)

. (4.1)

Taking the Laplace transform (1.6) of the soft function and performing the Laurent expan-

sion for ε→ 0 followed by that for ν →∞ gives (with u0 = e−γE )

Ŝbare(µ, ν) = 1 +
αs(µ)

π
CF

(
1

ε2
+

2

ε
ln
µ

ν
+ ln2 µ

ν
− ln2 µu

Qu0
+ 2 ln

µ

ν
ln

µu

Qu0
− π2

12

)
.

(4.2)

We now renormalize the ε singularities using the standard procedure outlined in Section 2

and obtain the renormalized soft function

Ŝren(µ, ν) = 1 +
αs(µ)

π
CF

(
ln2 µ

ν
− ln2 µu

Qu0
+ 2 ln

µ

ν
ln

µu

Qu0
− π2

12

)
. (4.3)
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It is instructive to first analyze the system of RGEs governing the evolution of the soft

function in the {µ, ν} plane in a fixed coupling approximation, obtaining

d ln Ŝren

d lnµ
= 4CF

αs(µ)

π
ln
µ

ν
,

d ln Ŝren

d ln ν
= −2CF

αs(µ)

π

[
ln
µ

ν
+ ln

µu

Qu0

]
, (4.4)

where the two differential equations are coupled due to the contribution to the single pole

proportional to ln ν. Using Eq. (1.2) with τ → u0/u in Laplace space, we can write the

second of these as

d ln Ŝren

d ln ν
= −2CF

αs(µ)

π
ln

µ2

MSν
= −4CF

αs(µ)

π
ln

µ

µ(ν)
, (4.5)

where µ(ν) = MS

√
ν/NS =

√
MSν (since NS = MS) is a new scale that appears in the soft

and jet functions, which will be discussed in more detail in the sections below. Including

the running coupling effects, the RGEs become

d ln Ŝren

d lnµ
= 4CF

αs(µ)

π
ln
µ

ν
,

d ln Ŝren

d ln ν
= −

∫ µ

µ(ν)

dµ′

µ′
4CF

αs(µ
′)

π
. (4.6)

4.2 Evolution equations of SCETI with a UV regulator for real radiation

As illustrated in the one-loop example of the previous section, in the presence of an addi-

tional UV regulator for the real radiation, the soft and jet functions depend both on µ and

ν, and much of the discussion will proceed along very similar lines to what was discussed

for the case of SCETII in Section 2.2, with a few crucial differences. At the canonical scales

µS = MS , µJ = MJ , νS = NS = MS , νJ = NJ = MH , (4.7)

with the MF defined in Eq. (1.2), the soft and jet functions contain no large logarithms.

As in SCETII, the µ dependence of the soft and jet functions is obtained by requiring that

the bare functions are independent of the scale µ, leading to Eq. (2.21), repeated here for

convenience

d

d lnµ
lnFsub(µ, ν) = − d

d lnµ
lnZF (µ, ν) = γ

(µ)
F (µ, ν) , (4.8)

with F = Ŝ, Ĵn, Ĵn̄. The form of the anomalous dimensions γ
(µ)
F (µ, ν) are also the same

as in SCETII,

γ
(µ)
S (µ, ν) = 4Γcusp[αs(µ)] ln

µ

ν
+ γ̂S [αs(µ)] ,

γ
(µ)
J (µ, ν) = 2Γcusp[αs(µ)] ln

ν

NJ
+ γ̂J [αs(µ)] . (4.9)

– 16 –



However, extra care must be taken because, contrary to SCETII, one has

µS ∼MS 6= MJ ∼ µJ . (4.10)

In particular, the arguments given at the end of Section 2.2 leading to the general form for

the soft and jet functions need to be revisited. Following similar arguments as in SCETII

one can show that the most general form has to be

ln Ŝ(µ, ν) = ln S̃(µ/MS) +

∫ ν

NS

dν ′

ν ′
c(µ/µS(ν)) ,

ln Ĵ (µ, ν) = ln J̃ (µ/MJ)− 1

2

∫ ν

NJ

dν ′

ν ′
c(µ/µJ(ν)) . (4.11)

and we introduced the new scales µS(ν) and µJ(ν) such that µS(ν) = µJ(ν) ≡ µ(ν), in

order for the ν dependence to cancel in the combination of the soft and jet functions.

Each function in the above equation also depends on αs(µ) which can in turn be re-

expressed in terms of αs(µ(ν)) in all quantities (upon changing the functional dependence

on µ/µ(ν)). Since the dependence on µ and ν is always through the ratio with MF and

NF , by dimensional analysis the most general form for µF (ν) is

µF (ν) = MF f(ν/NF ) , (4.12)

and one needs to find a function f for which µS(ν) = µJ(ν).

In order for the function F (MF , NF ) to be free of large logarithms one requires

µF (NF ) = MF and therefore f(1) = 1. The functional form for the function f can be

found by evaluating µF (ν) for ν = NJ = MH . This gives

µS(ν = MH) = MS f(MH/MS)
!

= µJ(ν = MH) = MJf(MH/MH) = MJ . (4.13)

Using Eq. (1.2), this immediately implies f(z) = zβ/(α+β), therefore

µF (ν) = MF

(
ν

NF

) β
α+β

, (4.14)

and µF (ν) is in fact independent of F

µ(ν) ≡ µS(ν) = µJ(ν) = ν
β

α+βQ
α

α+β τ
1

α+β . (4.15)

From this discussion one sees that the results are very similar to the SCETII case, with

the only difference being that the derivatives with respect to ν are functions of µ/µF (ν),

rather than µ/MF .

Given this, one can now write the solution to the differential equation Eq. (4.8) as

Fsub(µ, ν) = Fsub(µF (ν), ν) exp

[∫ µ

µF (ν)

dµ′

µ′
γ

(µ)
F (µ′, ν)

]
≡ Fsub(µF (ν), ν)UF (µF (ν), µ; ν) , (4.16)
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but as in SCETII it is not sufficient to perform the resummation. A second differential

equation in the new regularization scale ν can however be derived as in Sec. 2.2 by taking

the ν derivative of the resummed result Fsub(µ, ν)

d

d ln ν
Fsub(µ, ν) =

[
∂ lnµF (ν)

∂ ln ν
γ

(µ)
F (µF (ν), ν)Fsub(µ, ν) + UF (µF (ν), µ; ν)

∂

∂ ln ν
Fsub(µF (ν), ν)

]
+

[
−∂ lnµF (ν)

∂ ln ν
γ

(µ)
F (µF (ν), ν) +

∫ µ

µF (ν)

dµ′

µ′
∂

∂ ln ν
γ

(µ)
F (µ′, ν)

]
Fsub(µ, ν)

= Fsub(µ, ν)

[
∂

∂ ln ν
lnFsub(µF (ν), ν) +

∫ µ

µF (ν)

dµ′

µ′
∂

∂ ln ν
γ

(µ)
F (µ′, ν)

]
.

(4.17)

One can define in analogy with Eq. (2.30)

∂

∂ ln ν
lnFsub(µF (ν), ν) ≡ aF γ(ν)

α,β[αs(µF (ν))] , (4.18)

with aF given in Eq. (2.28). This is possible because µF (ν) is the same function for the

soft and jet sector, and because the ν dependence cancels between the two sectors. We

therefore obtain from Eq. (4.17)

d

d ln ν
lnFsub(µ, ν) = aF

[
γ

(ν)
α,β[αs(µF (ν))]− 2

∫ µ

µF (ν)

dµ′

µ′
Γcusp[αs(µ

′)]

]
≡ γ(ν)

α,β;F (µ, ν) , (4.19)

analogous to Eq. (2.31).

With the dependence of Fsub(µ(ν), ν) on µ and ν, given in Eqs. (4.8) and (4.19),

respectively, one can sum all logarithms by performing the integration along the path

(µF , νF )→ (µ, νF )→ (µ, ν), just as was done for SCETII. This gives

UF (µF , νF ;µ, ν) = U
(µ)
F (µF , µ; νF )U

(ν)
F (νF , ν;µ) , (4.20)

with

lnU
(µ)
S (µS , µ; νS) =

∫ µ

µS

dµ′

µ′

[
4Γcusp[αs(µ

′)] ln
µ′

νS
+ γ̂S [αs(µ

′)]

]
, (4.21a)

lnU
(µ)
J (µJ , µ; νJ) =

∫ µ

µJ

dµ′

µ′
γ̂J [αs(µ)] , (4.21b)

lnU
(ν)
S (νS , ν;µ) =

∫ ν

νS

dν ′

ν ′

[
−4

∫ µ

µ(ν′)

dµ′

µ′
Γcusp[αs(µ

′)] + 2γ
(ν)
α,β[αs(µ(ν ′))]

]
, (4.21c)

lnU
(ν)
J (νJ , ν;µ) =

∫ ν

νJ

dν ′

ν ′

[
2

∫ µ

µ(ν′)

dµ′

µ′
Γcusp[αs(µ

′)− γ(ν)
α,β[αs(µ(ν ′))]

]
. (4.21d)

U
(µ)
J (µJ , µ; νJ) has no term proportional to the cusp anomalous dimension. The factoriza-

tion theorem Eq. (1.5) in the presence of the extra UV regulator takes the same form as
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SCETII Eq. (2.37), namely

σ̂[u] = H(µH)U2
H(µH , µ) Ĵn(µJ , νJ)Ĵn̄(µJ , νJ)UJ(µS , νS , µ, ν) Ŝ(µS , νS)US(µS , νS , µ, ν) ,

(4.22)

and as before we have not explicitly shown the dependence on the scales MH ,MJ ,MS .

It is illustrative to compare these equations with the SCETII equations obtained in

Sec. 2.2. The crucial difference is that the scales µF that appeared in the functions U
(ν)
F

are now replaced by the scale µ(ν) that is common to the soft and zero-bin subtracted jet

functions. As already mentioned, this is a consequence of the fact that the dependence

on the new unphysical regularization scale ν must cancel in their combination. In the

following section we will discuss the implications of introducing an extra UV regulator in

the effective theory.

5 Implications of the ν regulator on SCETI

We have shown that with the introduction of a suitably defined UV regulator into SCETI

theories, resummation of large logarithms can be achieved via a system of RGEs that

involves two types of anomalous dimensions, namely the µ anomalous dimensions

γ
(µ)
S (µ, ν) = 4Γcusp[αs(µ)] ln

µ

ν
+ γ̂S [αs(µ)] ,

γ
(µ)
J (µ, ν) = 2Γcusp[αs(µ)] ln

ν

NJ
+ γ̂J [αs(µ)] , (5.1)

and the ν anomalous dimension

γ
(ν)
α,β;F (µ, ν) = aF

[
γ

(ν)
α,β[αs(µ(ν))]− 2

∫ µ

µ(ν)

dµ′

µ′
Γcusp[αs(µ

′)]

]
. (5.2)

This has a number of implications that we would like to comment upon below and in more

detail in the subsections that follow.

Observable (in)dependence of the anomalous dimensions, and implications for

multi-leg processes. As was already discussed, the extra regulator handles all UV di-

vergences in the real contributions to operator matrix elements, while not affecting the

virtual corrections. This implies that the µ anomalous dimension is related to the vir-

tual diagrams, and therefore independent of the observable, which only affects real phase

space integrals. It is therefore identical to the µ anomalous dimension in SCETII prob-

lems, that does not depend on the specific constraint on the real radiation. The term in

γ
(ν)
α,β;F proportional to the cusp anomalous dimension is also universal, and only depends

on the observable through the definition of the scale µ(ν) given in Eq. (4.14). All observ-

able dependence is therefore contained in the non-cusp term of the ν anomalous dimension

Eq. (5.2), which is determined by the real contributions to the matrix elements of oper-

ators. As discussed, this ν dependence has to cancel between the jet and soft functions,

and as we will see shortly it can be seen to arise from the zero-bin region [36] of phase

space integrals, which are expanded simultaneously around the soft and collinear limit, and
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are therefore significantly easier to compute. This observation is particularly useful when

tackling the computation for multi-leg processes, in which case the factorization theorem

will be of the (schematic) form

σ ∼ HS
∏
i

Jni , (5.3)

where now the hard and soft functions will be matrices in color space.9 In this case, the

considerations above suggest that the observable dependence of the anomalous dimensions

is entirely of soft-collinear origin and it can be extracted from a calculation of the zero-bin

subtraction [36] in the presence of the extra UV regulator, which is a diagonal quantity in

color space, and hence would not require the explicit computation of the more complicated

soft function. We leave the exploration of this property to future work.

Connection to SCETI. While one can directly perform the resummation in SCETI in

the presence of the extra UV regulator, one can also connect the new system of RGEs

to the standard SCETI case regularized in dimensional regularization. This results in an

interesting connection between the anomalous dimensions obtained with and without the

extra UV regulator. As will be shown in detail in Section 5.1, and explicitly at 2-loop

order in Section 6, this can be used to carry out the direct derivation of SCETI anomalous

dimensions starting from a computation in the presence of the extra UV regulator. This

property can become quite useful for perturbative calculations.

Numerical resummation. Another important feature discussed in more detail in the

next section is that when we perform the explicit 2-loop calculation of the soft function,

the observable dependence can be computed by dividing the real phase space integrals into

different separate contributions. One can for instance define a first contribution where a

simplified version of the observable is used rather than the full observable. This simplified

observable only depends on the singular scaling of the original observable and is therefore

universal and gives rise to much simpler integrals. The observable dependence in this

contribution can be determined relatively straightforwardly. The second contribution, that

we call non-inclusive, computes the difference of the full observable to the simplified version.

While this contribution depends on the full details of the observable, the difference is

infrared and collinear finite, hence allowing one to perform the computation numerically

in a rather efficient fashion. This observation is the basis of the numerical resummation

technique developed recently in the framework of SCET [23, 24].

5.1 Zero-bin subtraction and refactorization: relation with standard SCETI

We now relate the system of RGEs given by Eqs. (4.8), (4.19) to the standard SCETI

case in pure dimensional regularization. The solutions to the equations in Eqs. (4.21) sum

the logarithmic corrections in a form that is similar for both SCETI and SCETII. To

compare with the usual SCETI form, we invert the order of the ν and µ integration in the

ν evolution equations Eq. (4.21c) and Eq. (4.21d). From now on we will always assume

9Here we assume the absence of additional modes, e.g. Glauber in the corresponding SCET Lagrangian.
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µS = MS , µJ = MJ and µH = MH , as well as νJ = MH and νS = MS , and use the

notation interchangeably. Using Eq. (4.14) one can write∫ ν

νF

dν ′

ν ′

∫ µ

µ(ν′)

dµ′

µ′
=

{∫ µ
µF

dµ′

µ′

∫ ν(µ′)
νF

dν′

ν′ +
∫ µ
µ(ν)

dµ′

µ′

∫ ν
ν(µ′)

dν′

ν′ β 6= 0∫ µ
µF

dµ′

µ′

∫ ν
νF

dν′

ν′ β = 0
, (5.4)

with ν(µ) being the inverse of µ(ν)

ν(µ) = νF

(
µ

µF

)α+β
β

. (5.5)

Note that we had to distinguish between β = 0 (SCETII) and β 6= 0 (SCETI), since for

β = 0 the quantity ν(µ) is clearly not defined and µ(ν) is independent of ν.

For β 6= 0 we can rewrite the solution to the ν evolution as

lnU
(ν)
S (νS , ν;µ) = −4

α+ β

β

∫ µ

µS

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µS
(5.6)

+ 4
α+ β

β

∫ µ

µ(ν)

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µ(ν)
+ 2

∫ ν

νS

dν ′

ν ′
γ

(ν)
α,β[αs(µ(ν ′))] ,

lnU
(ν)
J (νS , ν;µ) = 2

α+ β

β

∫ µ

µJ

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µJ

− 2
α+ β

β

∫ µ

µ(ν)

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µ(ν)
−
∫ ν

νJ

dν ′

ν ′
γ

(ν)
α,β[αs(µ(ν ′))] ,

where we have used

ln
ν(µ)

νF
=
α+ β

β
ln

µ

µF
, ln

ν

ν(µ)
= −α+ β

β
ln

µ

µ(ν)
, (5.7)

which follow directly from Eqs. (4.14) and (5.5). Using this in Eq. (4.20) one finds

lnUS(µS , νS ;µ, ν) =

∫ µ

µS

dµ′

µ′

[
−4

α

β
Γcusp[αs(µ

′)] ln
µ′

µS
+ γ̂S [αs(µ

′)]

]
(5.8)

+ 4
α+ β

β

∫ µ

µ(ν)

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µ(ν)
+ 2

∫ ν

νS

dν ′

ν ′
γ

(ν)
α,β[αs(µ(ν ′))] ,

lnUJ(µJ , νJ ;µ, ν) =

∫ µ

µJ

dµ′

µ′

[
2
α+ β

β
Γcusp[αs(µ

′)] ln
µ′

µJ
+ γ̂J [αs(µ

′)]

]
− 2

α+ β

β

∫ µ

µ(ν)

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µ(ν)
−
∫ ν

νJ

dν ′

ν ′
γ

(ν)
α,β[αs(µ(ν ′))] .

The first line in each of the two parts of Eq. (5.8) starts resembling the usual SCETI

evolution with an integration over d lnµ between the scales µF and µ, and an anomalous

dimension that depends on α and β. The second line in each equation on the other hand

does not have this form. Using Eq. (4.14), however, one can change the integration variable

from ν to µ(ν) ∫ ν

νF

dν

ν
f(ν) =

α+ β

β

∫ µ(ν)

µF

dµ(ν)

µ(ν)
f(ν(µ)) . (5.9)
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This leads to

lnUS(µS , νS ;µ, ν) =

∫ µ

µS

dµ′

µ′

[
−4

α

β
Γcusp[αs(µ

′)] ln
µ′

µS
+ γ̃α,β;S [αs(µ

′)]

]
+ 2Rα,β(µ(ν);µ) ,

lnUJ(µJ , νJ , µ, ν) =

∫ µ

µJ

dµ′

µ′

[
2
α+ β

β
Γcusp[αs(µ

′)] ln
µ′

µJ
+ γ̃α,β;J [αs(µ

′)]

]
−Rα,β(µ(ν);µ) ,

(5.10)

where we have used (5.5) and defined

γ̃α,β;S [αs(µ)] = γ̂S [αs(µ)] + 2
α+ β

β
γ

(ν)
α,β[αs(µ)] ,

γ̃α,β;J [αs(µ)] = γ̂J [αs(µ)]− α+ β

β
γ

(ν)
α,β[αs(µ)] , (5.11)

and

Rα,β(µ(ν);µ) =
α+ β

β

∫ µ

µ(ν)

dµ′

µ′

[
2 Γcusp[αs(µ

′)] ln
µ′

µ(ν)
− γ(ν)

α,β[αs(µ
′)]

]
. (5.12)

Eq. (5.10) indicates that the evolution operator of each of the soft and jet functions in the

SCETI case (β 6= 0) can be factorized into the product in Laplace space of a term that

only depends on the ratio of scales µ/µF and a term R(µ(ν);µ) that depends on the ratio

µ/µ(ν) which cancels in the physical cross section.

In order to complete this re-factorization, we need to consider the factorization of the

initial condition to the soft and jet functions in (4.22) which, as already explained, depends

on two canonical scales µF , νF . The full soft and jet function in the presence of the extra

UV regulator can be written in terms of those in standard SCETI as

Ŝ(µS , νS ;µ, ν) = ŜSCETI
(µS ;µ)∆α,β;S(µS , νS ;µ, ν) ,

Ĵ (µJ , νJ ;µ, ν) = ĴSCETI
(µJ ;µ)∆α,β;J(µJ , νJ ;µ, ν) , (5.13)

which defines the functions ∆α,β;F (µF , νF ;µ, ν). Given the importance of the scale depen-

dence in the soft and functions in what follows, we show them explicitly in these equations.

Using, as before, the fact that the ν dependence cancels in the combination of jet and soft

functions, leads to the important relations 10

∆α,β;S(µS , νS ;µ, ν) = ∆2
α,β(µ(ν);µ) , ∆α,β;J(µJ , νJ ;µ, ν) = ∆−1

α,β(µ(ν);µ) , (5.14)

and that the function ∆α,β has no large logarithms when evaluated at the scale µ = µ(ν).

Given this general form, one can write the evolution kernel for the soft sector as (and

10This refactorization is similar in spirit to that performed in Section 4.2 of Refs. [42, 43], albeit in a

different physical context.
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similarly for the collinear sector)

US(µS , νS , µ, ν) =
Ŝ(µS , νS ;µ, ν)

Ŝ(µS , νS ;µS , νS)
(5.15)

=
ŜSCETI

(µS ;µ)

ŜSCETI
(µS ;µS)

∆2
α,β(µ(ν);µ)

∆2
α,β(µ(νS);µS)

= USCETI
S (µS , µ)

∆2
α,β(µ(ν);µ)

∆2
α,β(µ(ν);µ(ν))

∆2
α,β(µ(ν);µ(ν))

∆2
α,β(µ;µ)

∆2
α,β(µ;µ)

∆2
α,β(µS ;µS)

=

[
USCETI
S (µS , µ)

∆2
α,β(µ;µ)

∆2
α,β(µS ;µS)

][
∆2
α,β(µ(ν);µ)

∆2
α,β(µ(ν);µ(ν))

∆2
α,β(µ(ν);µ(ν))

∆2
α,β(µ;µ)

]
,

where we have used that µ(νF ) = µF . Here the term in the first square bracket only

depends on the scales µ and µS , while the one in the second square bracket depends on

the scales µ and µ(ν). Since ∆(µ(ν);µ(ν)) has no large logarithms, we can write it as

∆α,β[αs(µ(ν))] ≡ ∆α,β(µ(ν);µ(ν)) = 1 +
∑
n=1

(
αs(µ(ν))

4π

)n
d

(n)
α,β , (5.16)

where the coefficients d
(n)
α,β can be obtained by taking the ratio between the SCETI initial

conditions with and without the ν regulator. This means that we can write

∆α,β(µ1;µ1)

∆α,β(µ2;µ2)
= exp

{∫ µ1

µ2

dµ′

µ′
2β[αs(µ

′)]
d ln ∆α,β

dαs

}
, (5.17)

where d ln ∆α,β/dαs is a function of αs. The QCD β function is given by

β[αs(µ)] =
dαs(µ)

d lnµ2
= −αs(µ)

(
b0
αs(µ)

4π
+ . . .

)
, (5.18)

where b0 = (11CA − 2nF )/3. This allows us to write

lnUS(µS , νS , µ, ν) =

[
lnUSCETI

S (µS , µ) + 2

∫ µ

µS

dµ′

µ′
2β[αs(µ

′)]
d ln ∆α,β

dαs

]
(5.19)

+

[
2 ln

∆α,β(µ(ν);µ)

∆α,β(µ(ν);µ(ν))
− 2

∫ µ

µ(ν)

dµ′

µ′
2β[αs(µ

′)]
d ln ∆α,β

dαs

]
.

Comparing this result to Eq. (5.10), and equating the terms that involve the evolution

between µS and µ and the ones that involve the µ(ν)→ µ evolution, one can read off

lnUSCETI
S (µS ;µ) =

∫ µ

µS

dµ′

µ′

[
−4

α

β
Γcusp[αs(µ

′)] ln
µ′

µS
+ γ̃α,β;S [αs(µ

′)]− 4β[αs(µ
′)]

d ln ∆α,β

dαs

]
,

ln
∆α,β(µ(ν);µ)

∆α,β(µ(ν);µ(ν))
= Rα,β(µ(ν);µ) +

∫ µ

µ(ν)

dµ′

µ′
2β[αs(µ

′)]
d ln ∆α,β

dαs
. (5.20)
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From this, we obtain the anomalous dimension in standard SCETI (see Eq. (2.16)), and

the non-cusp pieces γ̂SCETI
α,β;F are

γ̂SCETI
α,β;S [αs(µ)] = γ̃α,β;S [αs(µ)]− 4β[αs(µ)]

d ln ∆α,β

dαs

= γ̂S [αs(µ)] + 2
α+ β

β
γ

(ν)
α,β[αs(µ)]− 4β[αs(µ)]

d ln ∆α,β

dαs
,

γ̂SCETI
α,β;J [αs(µ)] = γ̃α,β;J [αs(µ)] + 2β[αs(µ)]

d ln ∆α,β

dαs

= γ̂J [αs(µ)]− α+ β

β
γ

(ν)
α,β[αs(µ)] + 2β[αs(µ)]

d ln ∆α,β

dαs
, (5.21)

where we have used Eq. (5.11) and analogous arguments to obtain the jet anomalous

dimension.

Eqs. (5.21) relate the anomalous dimensions calculated with the additional ν regulator

to the standard SCETI result calculated in dimensional regularization. Notice that due

to the presence of β[αs(µ)] in the last term, to compute an anomalous dimension at k-th

order one only requires the initial condition for ∆α,β at (k − 1)-th order. It is important

to stress again that the above discussion relating the system of RGEs in the presence of a

UV regulator to the standard RGE is clearly not allowed when β = 0 (i.e. in SCETII), in

which case one is forced to keep a coupled system of evolution equations.

The above discussion highlights an important point: as mentioned in Section 2.1,

SCETI is characterized by a scale separation between the soft and the collinear sectors. In

particular, if MJ �MS the two jet functions can be interpreted as a matching coefficient

between SCETI and the lower-energy purely soft theory, described by the soft function.

The introduction of the extra UV regulator, however, introduces a new scale µ(ν) that

interpolates between the soft scale MS and the collinear scale MJ depending on the value

of the regularization scale ν. Defining the soft theory as before, namely only containing

Wilson lines regulated by dimensional regularization, the dependence on the extra UV

regulator cancels in the matching coefficient. This is because the matching coefficient

(defined by the difference of the theory above and below the matching scale) is not equal

to the jet functions with the extra UV regulator. It also includes the ∆α,β;S from the soft

function in Eq. (5.14). This is never possible in SCETII, since the soft theory is not defined

without a rapidity regulator.

It is interesting to understand if one can formulate an operator definition of ∆α,β de-

fined in this section. The quantity ∆α,β has to cancel in the product (in Laplace space for

the observables considered here) between the soft and jet functions, and hence it neces-

sarily has to be entirely determined by radiation that is simultaneously soft and collinear.

Contrary to the standard SCETI case, the introduction of the extra UV regulator implies

the existence of a non-vanishing zero-bin subtraction [36] that induces a cross-talk between

the soft and the jet functions. It is then natural to identify this cross talk, parameterized

by ∆α,β, with the eikonalized jet function that enters the zero-bin subtraction calculated

with the additional ν regulator. This is an interesting observation as it implies that a cal-

culation of the zero-bin subtraction is sufficient to determine both the coefficients d
(n)
α,β of
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Eq. (5.16) and the anomalous dimension γ(ν) that provides the only observable-dependent

contribution to the anomalous dimension. As a result, the structure of the anomalous di-

mension is entirely constrained by consistency of the theory, and the observable dependence

is only encoded in a specific contribution arising from the soft-collinear region. In partic-

ular, since any result in the soft-collinear region, as in the collinear region itself, depends

on only a single light-cone direction, it is diagonal in color space, and for example, does

not depend on Tn1 · Tn2 , the dot product of color generators in two different directions.

This significantly simplifies part of the calculation of the anomalous dimensions in SCETI

problems. Notice that these constraints only apply to the anomalous dimensions and not

to the constants (i.e. the initial conditions to the RGEs), which still require an explicit

calculation.

5.2 Dependence of γ(ν) on the ν-regularization scheme

We now wish to discuss the dependence of the soft and jet anomalous dimensions on the

specific regularization scheme used to single out the UV divergences in the real radia-

tion, and contrast the results between SCETI and SCETII. We first consider SCETI. In

Eq. (5.21), the left hand side is obviously independent of the specific scheme used to reg-

ulate the UV limit of the real radiation integrals. On the right hand side, the anomalous

dimensions γ̂S [αs], γ̂J [αs] are scheme independent by definition, and therefore one obtains

α+ β

β
γ

(ν)
α,β[αs]− 2β[αs]

d ln ∆α,β

dαs
→ ν scheme invariant in SCETI . (5.22)

The previous equation can be used to relate the γ(ν) anomalous dimension calculated in

different schemes. On the other hand, in SCETII one has β = 0 and therefore Eq. (5.22) is

not defined. Given that γ̂S [αs], γ̂J [αs] are independent of the UV regularization scheme for

real corrections, and the ν dependence must cancel in the product of soft and jet functions,

one trivially gets that

γ
(ν)
α,β[αs]→ ν scheme invariant in SCETII , (5.23)

consistent with the conclusion of Ref. [22]. This marks another important difference be-

tween the two theories. The properties (5.22) and (5.23) are quite powerful and can be very

useful in practical calculations, for example to carry out the calculation for the anomalous

dimensions numerically. As we will show in Section 6.4, one can adopt a UV regularization

scheme that is suitable for numerical calculation, for instance a cutoff on the light-cone

momentum components, and then use the equations obtained in this section to convert

the result to a scheme with better theoretical properties (e.g. boost invariance) such as the

exponential regulator used in this article.

6 Soft and jet anomalous dimensions for angularities up to two loops

In this section we perform a computation of the anomalous dimensions up to two loops,

which allows us to explicitly verify the structure of the system of RGEs and the relations
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Figure 2. Diagrams contributing to the one-loop soft function.

between anomalous dimensions derived in Sections 4 and 5 in the case of recoil-free an-

gularities in e+e−. The relevant factorization theorem is given in Eq. (1.3), where we set

α = 1, β = 1 − a. We adopt the exponential regulator [22], and we also report results

with an alternative regulator in Section 6.4. Throughout the section we use the following

notation for the perturbative expansion of the anomalous dimensions:

Γcusp[αs(µ)] =
∑
n=0

(
αs(µ)

4π

)n+1

Γ(n)
cusp ,

γ
(ν)
α,β[αs(µ)] =

∑
n=0

(
αs(µ)

4π

)n+1

γ
(ν, n)
α,β ,

γ̂F [αs(µ)] =
∑
n=0

(
αs(µ)

4π

)n+1

γ̂
(n)
F , F = {S, J} ,

γH [αs(µ)] =
∑
n=0

(
αs(µ)

4π

)n+1

γ
(n)
H ,

∆α,β[αs(µ)] = 1 +
∑
n=1

(
αs(µ)

4π

)n
d

(n)
α,β . (6.1)

6.1 One loop result

The one-loop result is a generalization of that for thrust given in Sec. 4.1. The soft function

is given by the diagrams given in Fig. 2 (and the corresponding mirror conjugate ones).

For a generic angularity one obtains in Laplace space

Ŝbare(µ, ν) = 1 +
αs(µ)

π
CF

[
1

ε2
+

2

ε
ln
µ

ν

+
1

2− a

(
2(1− a) ln2 µ

ν
− 2 ln2 µu

Qu0
+ 4 ln

µ

ν
ln

µu

Qu0
− π2

12
(2 + 3a)

)]
.

(6.2)

The soft anomalous dimensions are then extracted using Eq. (4.8) and (4.18), which at one

loop give

γ
(µ)
S (µ, ν) = 4

αs(µ)

π
CF ln

µ

ν
+O(α2

s) ,

γ
(ν)
1,1−a;S(µ, ν) =− 4

αs(µ)

π
CF ln

µ

µ(ν)
+O(α2

s) . (6.3)
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Figure 3. Diagrams contributing to the one-loop jet function. The jet function is given by the

sum over all cuts.

This verifies Eqs. (4.9) and (4.19) to O(αs) and gives the well known results Γ
(0)
cusp = 4CF ,

γ̂
(0)
S [αs(µ)] = 0 , (6.4)

and

γ
(ν, 0)
1,1−a[αs(µ)] = 0 . (6.5)

Similarly, the zero-bin subtracted one-loop jet function is given by all possible cuts of

the diagrams shown in Fig. 3. After performing the zero-bin subtraction, which becomes

non-trivial in the presence of the extra UV regulator, we get

Ĵn,bare(µ, ν) = 1 +
αs(µ)

π
CF

{
3

4ε
+

ln ν
Q

ε

+
1

2− a

[
ln

(
µ

Q

(
u

u0

) 1
2−a
)(

3− 3

2
a+ 2(2− a) ln

ν

Q

)
− (1− a) ln2 ν

Q

+
1

12

(
60− 39a+ π2(6a− 8)− 18 ln 2

)]}
, (6.6)

from which we obtain the one loop anomalous dimensions of the jet function

γ
(µ)
J (µ, ν) =

αs(µ)

π
CF

(
2 ln

ν

Q
+

3

2

)
+O(α2

s),

γ
(ν)
1,1−a;J(µ, ν) = 2

αs(µ)

π
CF ln

µ

µ(ν)
+O(α2

s) . (6.7)

One therefore confirms Eq. (6.5) and obtains

γ̂
(0)
J [αs(µ)] = 6CF . (6.8)

Note that at one-loop order the ν anomalous dimension is independent of the observable

since γ
(ν, 0)
1,1−a = 0. It is necessary to go to two loop order in order to analyze its observable

dependence.
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Figure 4. Diagrams contributing to the non-Abelian part of the two-loop soft function. The gray

blobs include the contribution of quarks, gluons and ghosts to the self energy of the gluon.

6.2 Two loop result

We now describe the main steps of the two loop calculation of the soft anomalous di-

mensions, while the jet anomalous dimensions can be derived via consistency relations by

requiring the physical distribution of the angularities to be both µ and ν independent. The

relevant Feynman diagrams are given in Fig. 4, where the mirror conjugate graphs have

been omitted for simplicity. We start from the standard Sudakov decomposition for the

two soft partons ka and kb,

kµa = k−a
nµ

2
+ k+

a

n̄µ

2
+ kµa,t ,

kµb = k−b
nµ

2
+ k+

b

n̄µ

2
+ kµb,t , (6.9)

with k+
i = n · ki, k−i = n̄ · ki, and n · n̄ = 2. We also define k2

i,⊥ = −k2
i,t and k+

i k
−
i = k2

i,⊥.

The double virtual diagrams give a scaleless contribution. For the real-virtual corrections,

the one-loop amplitude for the emission of a soft gluon was derived in [44], and the phase

space of the real gluon is parameterized as

ddka
(2π)d−1

δ(k2
a) Θ(k0

a) =
1

2
dk+

a dk−a
d2−2εka,t
(2π)3−2ε

δ(k+
a k
−
a − k2

a,⊥) . (6.10)

For the double real correction, we introduce the variable z as

k−a = zk−, k−b = (1− z)k− , (6.11)

where k± are the light cone components of the kµ ≡ kµa + kµb momentum of invariant mass

m and now

k+k− = k2
⊥ +m2 . (6.12)
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The d-dimensional phase space for the emission of ka and kb can then be parameterized as

[dkab] ≡
ddka

(2π)d−1

ddkb
(2π)d−1

δ(k2
a) Θ(k0

a) δ(k
2
b )Θ(k0

b )

=
1

2
dk+dk−

d2−2εkt
(2π)3−2ε

dm2

m2ε
δ(k+k− − k2

⊥ −m2)
1

(4π)2
dz z−ε(1− z)−ε dΩ2−2ε

(2π)1−2ε
,

(6.13)

with Ω2−2ε being the (2− 2ε)-dimensional solid angle

dΩ2−2ε

(2π)1−2ε
=

(4π)ε
√
πΓ
(

1
2 − ε

)dφ sin−2ε φ . (6.14)

The CFCA and CFnF contributions to the double soft, tree-level squared amplitude (hereby

denoted by M2
s,0(ka, kb)) can be found in several places and it is given in the above pa-

rameterization in Appendix A. Due to the non-Abelian exponentiation theorem [45, 46]11,

we do not consider the C2
F contribution from the radiation of two independent gluons off

the Wilson lines, as that is determined entirely by the leading order calculation given in

the previous subsection and hence does not contribute to the two-loop soft anomalous

dimension.

For a given angularity τa(ka, kb) evaluated on a double real final state {ka, kb}, we then

organize the calculation as follows:

• We express the value of the angularity τa(ka, kb) in terms of the above phase space

variables as

τa(ka, kb) =
k⊥
Q
e−(1−a)|η| (1 + µ2)

a−1
2 fa(z, µ, φ) ,

fa(z, µ, φ) =

[
z

(
1 + 2

√
1− z
z

µ cosφ+
1− z
z

µ2

)1−a
2

+ (1− z)
(

1− 2

√
z

1− z
µ cosφ+

z

1− z
µ2

)1−a
2

]
, (6.15)

where µ2 ≡ m2/k2
⊥ and η = 1

2 ln k−

k+
.

• We split the double-real correction into two terms as follows

IRR ≡
1

2

∫
[dkab] e

−(k++k−) e
−γE
ν M2

s,0(ka, kb) δ(τ − τa(ka, kb)) = I(I)
RR + I(NI)

RR ,

(6.16)

where the factor 1/2 in Eq. (6.16) is a combinatorial factor in the case of two gluons,

and represents TF = 1/2 in the case of a gluon splitting into two quarks (factored

11Note that the exponential regulator preserves the structure predicted by the non-Abelian exponentiation

theorem.
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out from the squared amplitude given in Appendix A). We introduce a simplified

observable τ̃a(k) defined as

τ̃a(k) =
k⊥
Q
e−(1−a)|η| , (6.17)

with, as above, η = 1
2 ln k−

k+
. The double real contribution can then be split as the

sum of the following two integrals

I(I)
RR =

1

2

∫
[dkab] e

−(k++k−) e
−γE
ν M2

s,0(ka, kb) δ(τ − τ̃a(k)) , (6.18)

I(NI)
RR =

1

2

∫
[dkab] e

−(k++k−) e
−γE
ν M2

s,0(ka, kb) [δ(τ − τa(ka, kb))− δ(τ − τ̃a(k))] ,

The inclusive integral I(I)
RR is defined by the first equation in (6.18), that is replacing

the angularity with the observable τ̃a. The non-inclusive correction I(NI)
RR , defined

by the second equation in (6.18), accounts for the difference between the actual

observable τa(ka, kb) and its inclusive approximation τ̃a(k).

The reason for splitting the calculation into an inclusive and non-inclusive contribution

is that, as discussed in this paper, I(NI)
RR encodes the difference between two IRC safe

observables which only depends on the extra UV regulator, but is finite in dimensional

regularization and does not contribute to the γ̂S [αs(µ)] anomalous dimension. Therefore

this non-inclusive piece, which contains the complexity associated with the observable

definition, is defined solely in terms of double real diagrams and can be evaluated directly

in four dimensions (numerically if necessary). Similar ideas were proposed and exploited

in Refs. [47–50]. Conversely, the inclusive contribution is considerably simpler and can

be easily computed analytically for a generic observable. The γ
(ν)
1,1−a[αs(µ)] anomalous

dimension governing the ν RGE receives contributions from both integrals. We recall

that, in general, one should take the limit ε → 0 first, in order to isolate the observable

dependence with the ν exponential regulator. An exception is given by the case a = 1

(broadening-like angularity), where the two limits ε → 0 and ν → ∞ commute with the

regulator adopted here.

Working in the MS scheme, we obtain the following two-loop anomalous dimensions

γ̂
(1)
S [αs(µ)] = 2CFCA

(
808

27
− 11

9
π2 − 28ζ3

)
− 2CFnFTF

(
224

27
− 4

9
π2

)
= 2CFCA

(
808

27
− 28ζ3

)
− 2CFnFTF

224

27
− 2

3
π2CF b0 ,

γ
(ν, 1)
1,1−a[αs(µ)] = −CFCA

(
808

27
− 28ζ3

)
+ CFnFTF

224

27
− 4

3
π2CF

2− a(2− a)

(2− a)2
b0

− 16CF

(
CAγ

(CA)
a + TFnFγ

(nF )
a

)
, (6.19)

with b0 = (11CA − 2nF )/3. In the computation we expanded the part of the exponen-

tial function in the integrand relative to the smaller light cone component, and neglect

subleading power corrections that would not contribute to the (leading power) anomalous
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dimensions. The inclusive contribution was evaluated analytically using sector decomposi-

tion with the help of HypExp [51], and cross checked numerically with pySecDec [52]. The

quantities γ
(CA)
a and γ

(nF )
a arise from the non-inclusive correction which can be calculated

in four dimensions. They are given by the finite integrals

γ(CA)
a =

1

2− a

∫ ∞
0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π

1

2!
(2Ss.o. +Hg) ln fa(z, µ, φ) , (6.20)

γ(nF )
a =

1

2− a

∫ ∞
0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π
Hq ln fa(z, µ, φ) , (6.21)

where the functions Ss.o.,Hg andHq are given in Appendix A, and the function fa is given in

Eq. (6.15). A numerical computation shows that γ
(CA)
a , γ

(nF )
a (for a < 2) exhibit an almost

exactly linear dependence on a, as displayed in Fig. 5. One can therefore expand these

functions in a Taylor series around a = 0, and consider the first few terms as an analytic

approximation of the exact result. We evaluate the φ integrals by contour integration

and, after integrating over µ, we carry out the final integration over z either analytically

or numerically with O(100) significant digits, which allows us to reconstruct the analytic

answer by means of the PSLQ algorithm [53]. We also perform a numerical cross check

using the Cuba libraries [54]. We give here the expansion to third order, which is sufficient

to reach a few-permille accuracy in the interesting range a ∈ [−1, 1] considered in our

study:

CAγ
(CA)
a + TFnFγ

(nF )
a = −ζ2

4
b0 +

[
CA

(
41

96
− ζ2

4
− ζ3

4

)
− 10

96
TFnF

]
a

+

[
CA

(
57 941

537 600
+

277

163 840
ζ2 −

9

32
ζ2 ln 2 +

121

640
ζ3

)
+ TFnF

(
− 131

1440
+

3

40
ζ3

)]
a2 +O(a3) .

(6.22)

The numerical value (i.e. not based on a Taylor expansion) for γ
(CA)
a , γ

(nF )
a for a < 2 is

given in Table 1 for several values of a. The third order expansion of Eq. (6.22) provides an

excellent approximation of the full result over the whole a range relevant for the theoretical

considerations made here on the transition between the SCETI and SCETII regimes, as

can be seen from the comparison in Fig. 5.

As advertised, γ̂S [αs(µ)] now does not depend on the specific observable, and it is

given by the single logarithmic part of the soft anomalous dimension of the quark form

factor, which coincides with the DGLAP soft anomalous dimension used for threshold

resummation. Conversely, the entire observable dependence is now encoded in γ
(ν)
1,1−a,

which is common to the soft and jet functions and technically simpler to compute in that

it only depends on the soft and collinear limit encoded in the zero-bin subtraction as

discussed in Section 5.1. The corresponding anomalous dimensions for the jet function can

be immediately derived from the standard consistency relation

γ̂
(µ)
S [αs(µ)] + 2 γ̂

(µ)
J [αs(µ)] + γH [αs(µ)] = 0 , (6.23)

and from Eq. (4.19). In the next section we will show how to obtain the anomalous dimen-

sions in standard SCETI starting from the results obtained above using the considerations

of Section 4.
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Figure 5. The functions γ
(nF )
a (left) and γ

(CA)
a (right) as a function of a. The dashed (green) line

shows the analytic result based on a third order Taylor expansion, while the points (red) represent

the result of the numerical integration.

a γ
(nF )
a γ

(CA)
a

-1. 0.650 -1.201

-0.9 0.640 -1.234

-0.8 0.630 -1.266

-0.7 0.620 -1.298

-0.6 0.610 -1.330

-0.5 0.600 -1.361

-0.4 0.590 -1.391

-0.3 0.579 -1.421

-0.2 0.569 -1.450

-0.1 0.559 -1.479

a γ
(nF )
a γ

(CA)
a

0. 0.548 -1.508

0.1 0.538 -1.536

0.2 0.527 -1.564

0.3 0.517 -1.592

0.4 0.507 -1.620

0.5 0.496 -1.647

0.6 0.486 -1.674

0.7 0.475 -1.701

0.8 0.465 -1.729

0.9 0.454 -1.756

a γ
(nF )
a γ

(CA)
a

1. 0.444 -1.784

1.1 0.434 -1.811

1.2 0.423 -1.839

1.3 0.413 -1.868

1.4 0.402 -1.896

1.5 0.392 -1.925

1.6 0.381 -1.955

1.7 0.371 -1.984

1.8 0.361 -2.015

1.9 0.350 -2.046

Table 1. Full numerical values for the functions γ
(nF )
a and γ

(CA)
a for different angularities corre-

sponding to the parameter a, contributing to the soft anomalous dimensions of Eq. (6.19). The

values for γ
(nF )
a are rounded to the nearest 0.001, while for γ

(CA)
a the numerical uncertainty is at

most ±1 in the last digit.

6.3 Relation to standard SCETI anomalous dimensions

While for a = 1 the results of the previous section directly provide the standard SCETII

soft anomalous dimension, they can also be used to derive the SCETI soft anomalous di-

mension as obtained in pure dimensional regularization by means of Eqs. (5.21). Analogous

considerations hold for the jet function, therefore we focus on the soft function first.

The quantities γ̂S [αs(µ)] and γ
(ν)
1,1−a[αs(µ)] entering Eqs. (5.21) are given in Eq. (6.19),

and the only missing quantity is the one-loop coefficient d
(1)
1,1−a of the initial condition of

the ∆1,1−a function (cf. Eq. (5.20)). This can be determined either by taking the square

root of the ratio between the initial condition (constant part) of the one-loop soft func-

tion (6.2) and the corresponding result in pure dimensional regularization, or equivalently

by calculating the zero-bin subtraction and taking its constant part. The one-loop soft

function in dimensional regularization can be found in Ref. [55], and its initial condition
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in Laplace space reads

ŜSCETI(µ = MS) = 1− αs(µS)

4π

π2

1− a
CF . (6.24)

Taking the square root of the ratio of the constant part of Eq. (6.2) to the latter equation

we obtain

d
(1)
1,1−a =

π2

6
CF

4 + a(3a− 4)

(2− a)(1− a)
. (6.25)

We set α = 1 and β = 1− a in Eqs. (5.21), and consider the series

γ̂SCETI
1,1−a;F [(αs(µ))] =

∑
n=0

(
αs(µ)

4π

)n+1

γ̂
(n), SCETI

1,1−a;F , (6.26)

finding

γ̂
(0),SCETI

1,1−a;S = 0 ,

γ̂
(1),SCETI

1,1−a;S =
1

1− a

[
− 2CFCA

(
808

27
− 28ζ3

)
+ 2CFTFnF

224

27
+

2

3
π2CF (2a− 3)b0

− 32(2− a)CF

(
CAγ

(CA)
a + TFnFγ

(nF )
a

)]
, (6.27)

where an analytic approximation of γ
(CA)
a and γ

(nF )
a is given in Eq. (6.22) or, alternatively,

their numerical value is reported in Table 1.

To check this result, we compare the second of Eqs. (6.27) to the result of Ref. [56],

where the soft function was computed numerically.12 In order to compare to Figure 1 of

Ref. [56], we consider the quantity

1− a
2

γ̂
(1), SCETI

1,1−a;S , (6.28)

and we show the result in Fig. 6, where we have used Table 1 for the constants γ
(CA)
a and

γ
(nF )
a . The result of Eq. (6.27) is given by the red dashed line, while the green triangles

are the numerical result of Ref. [56] for selected values of the parameter a. The two results

are in perfect agreement. As an additional check, we compare the NNLL resummed cross

section (1.3) to the analytic formulae of Refs. [16, 49], reproducing the results given there.

As a final check, for a = 0 the result of Eq. (6.27) reproduces the soft anomalous dimension

for thrust derived in Refs. [57–60]. Analogous considerations can be used to derive the

two loop jet anomalous dimension, that can be obtained by combining Eq. (5.21) and

the consistency relation (6.23). Alternatively, it can be directly extracted from the soft

anomalous dimension and the hard anomalous dimension (extracted from Refs. [61–65]),

by imposing that the cross section is independent of the unphysical scales µ and ν. We

obtain

γ̂
(1), SCETI

1,1−a;J = C2
F

(
3− 4π2 + 48ζ3

)
+
CF CA
1− a

(
1769

27
− 80ζ3 −

961

27
a− 11

9
π2(5a− 6) + 52ζ3a

)
− CF nF

1− a

(
242

27
+

4

3
π2 − 130

27
a− 10

9
π2a

)
+ 16

2− a
1− a

CF

(
CAγ

(CA)
a + TFnFγ

(nF )
a

)
.

(6.29)
12We are grateful to G. Bell for sharing with us the numerical results of Ref. [56] for selected angularities.
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Figure 6. Soft anomalous dimension for angularities (multiplied by (1 − a)/2) corresponding to

the parameter a: coefficient of TFCFnF (left) and CACF (right) color factors.

6.4 Study of the ν-regularization scheme dependence of γ(ν)

We finally wish to discuss the dependence of the soft and jet anomalous dimensions on the

specific regularization scheme used to single out the UV divergences in the real radiation.

In order to verify the validity of Eq. (5.22), we perform the calculation of the two loop soft

anomalous dimensions discussed in the previous section using a different UV regularization

scheme for the real radiation integrals. As an alternative to the exponential regulator, we

simply impose a cutoff in the light cone component of the momentum of each real particle,

that is the constraint

Θ(ν −max{k+, k−}), ∀ real k . (6.30)

The integrals in this scheme are similar to the full QCD case with soft amplitudes. Following

the same procedure outlined in the previous section, we obtain

γ̂
(1)
S [αs(µ)] = 2CFCA

(
808

27
− 28ζ3

)
− 2CFnFTF

224

27
− 2

3
π2CF b0 ,

γ
(ν, 1)
1,1−a[αs(µ)] = −CFCA

(
808

27
− 28ζ3

)
+ CFnFTF

224

27
− 4

3
π2CF

b0
(2− a)2

− 16CF

(
CAγ

(CA)
a + TFnFγ

(nF )
a

)
, (6.31)

where γ
(CA)
a and γ

(nF )
a are the same as before. We see that γ̂

(1)
S [αs(µ)] is independent of the

choice of the regulator as expected, while γ
(ν, 1)
1,1−a[αs(µ)] is regulator dependent and differs

from Eq. (6.19). In order to connect the two results, we need the one loop coefficient d
(1)
1,1−a

that we can extract from the finite part of the renormalized one loop soft function in the

light cone cutoff scheme, which reads

Ŝ(µ, ν) = 1 +
αs(µ)

π
CF

[
1

2− a

(
2(1− a) ln2 µ

ν
+ 4 ln

µ

ν
ln

µu

Qu0
− 2 ln2 µu

Qu0
− π2

12
(6− a)

)]
.

(6.32)
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The coefficient d
(1)
1,1−a is then obtained as the square root of the ratio of the constant term

of the above soft function to the result in pure dimensional regularization (6.24), obtaining

d
(1)
1,1−a =

π2

6
CF

a(4− a)

(2− a)(1− a)
. (6.33)

One can then verify that the quantity (5.22) evaluated at two loops, namely

2− a
1− a

γ
(ν, 1)
1,1−a[αs(µ)]− 2β(αs)

d ln ∆1,1−a
dαs

→ ν scheme invariant in SCETI , (6.34)

is identical in the two schemes. This observation can be very useful in performing per-

turbative calculations for the anomalous dimensions. Specifically, one can carry out the

computation semi-analytically in a scheme that is very suitable for a numerical evaluation

(such as the light-cone cutoff scheme), and later convert the result into a scheme with better

analytic properties such as boost invariance, as in the case of the exponential regulator.

One last comment concerns the constant terms of the two loop soft function in the extra

UV regulator. These are unconstrained by theoretical arguments and only the combination

of soft and jet functions is independent of the particular UV regularization scheme adopted

in real radiation integrals.

7 Conclusions and Outlook

In this article we have studied the observable dependence of anomalous dimensions in

SCETI problems, and showed that the introduction of an extra UV regulator in real radia-

tion integrals can be used to disentangle this dependence in perturbative calculations. The

system of RGEs of the theory with the additional regulator shares many analogies with that

of SCETII problems in the formalism of the rapidity renormalization group. This connec-

tion highlights some similarities between the two theories. Notably, the whole observable

dependence is encoded in a single anomalous dimension ruling the evolution in the new

UV regularization scale ν (corresponding to the rapidity regularization scale in the SCETII

case), and in the definition of the initial and final scales of the RGE evolution. Unlike in

the SCETII case, however, the dependence of the new soft and jet functions on the extra

UV regulator can be completely refactorized and shown to cancel in their combination,

without leaving behind a factorization (collinear) anomaly like in SCETII. The explicit

cancellation of the ν dependence makes it natural to identify the source of the observable

dependence in the anomalous dimensions with the eikonalized jet function that defines the

zero-bin subtraction, which becomes non-trivial in the presence of the extra UV regulator.

We derived an all-order relation between the anomalous dimensions of the version of

SCETI with the extra UV regulator, and the standard SCETI regulated in pure dimensional

regularization. We verified this relation explicitly at 2-loop order for the family of recoil-

free angularities in e+e− defined with respect to the winner-take-all axis. In this context,

we carried out a computation of the two loop soft anomalous dimension and show how

to derive the standard SCETI soft anomalous dimension from it. This results in new

analytic expressions for the perturbative expansion of this quantity up to two-loop order.
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Comparing to previous numerical results from the literature we find perfect agreement.

We also calculate the new jet functions at one-loop, while the two loop jet anomalous

dimension can be extracted exclusively from consistency relations, hence providing all

necessary ingredients to carry out the resummation for these observables up to NNLL.

An interesting observation is that the calculation is carried out in the same framework

and regularization scheme for SCETI and SCETII theories, hence keeping track of the

analogies and differences between the two limits. Previous work in the literature which

explored the transition between the SCETI and SCETII regimes for angularities is that of

Refs. [15, 56]. These papers study the anomalous dimension in the SCETII case (a = 1

in our notation) as a limiting case of the SCETI anomalous dimension by exploiting the

fact that the factorization theorem is continuous at the transition point. In this article we

took an orthogonal point of view and formulated the resummation in SCETI in a way that

resembles that of the SCETII case, which provides a useful viewpoint on the connection

between the two effective theories.

Although we used angularities to illustrate the structure of the anomalous dimensions

in the presence of the extra UV regulator, the considerations apply more broadly to any

SCETI observable defined through the particles’ final state momenta. In future work it will

be interesting to explore further the structure of the zero-bin subtraction for SCETI in the

presence of the extra UV regulator, mainly in the context of multi-leg processes where our

observation suggests that the observable dependence in the anomalous dimensions arises

from a quantity that is diagonal in color space. Moreover, a proof of the cancellation of the

ν dependence between the soft and collinear sectors at the operator level would be highly

desirable. Finally, we stressed that the introduction of the extra UV regulator makes real

radiation integrals UV finite, and therefore makes the effective theory suitable for numerical

calculations. A practical advantage of this observation is that the complicated observable

dependence can be separated out from the renormalization procedure. As a result, the

observable dependence of the anomalous dimensions is to a large extent isolated into finite

integrals which can be also evaluated numerically. An alternative avenue to exploit this

fact is via the numerical resummation algorithm presented in Ref. [23, 24].
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A Double soft squared amplitude

In terms of the variables introduced in Section 6, the double soft tree-level squared matrix

element reads

M2
s,0(ka, kb) = (4παsµ

2ε)2 8CF
m2(m2 + k2

t )
Cab(ka, kb) , (A.1)

where

Cab(ka, kb) = CA(2Ss.o. +Hg) + nfHq . (A.2)

The contribution due to two final-state quarks in Eq. (A.2) has been multiplied by two, to

compensate for the overall 1/2 factor in Eq. (6.18). The three functions Ss.o., Hg and Hq
are the 4− 2ε-dimensional counterparts of the homonymous terms defined in Ref. [66] and

they are taken from Ref. [16]. They depend only on the dimensionless variables z, φ and

µ2 ≡ m2/k2
t . It is also useful to introduce the rescaled momenta ~ui = ~qi/kt, such that

u2
a = 1 + 2

√
1− z
z

µ cosφ+
1− z
z

µ2 , u2
b = 1− 2

√
z

1− z
µ cosφ+

z

1− z
µ2 . (A.3)

In terms of these variables, we have

2Ss.o. =
1

z(1− z)

[
1− (1− z)µ2/z

u2
a

+
1− zµ2/(1− z)

u2
b

]
(A.4a)

Hg = −4 + (1− ε)z(1− z)
1 + µ2

(
2 cosφ+

(1− 2z)µ√
z(1− z)

)2

+
1

2(1− z)

[
1− 1− (1− z)µ2/z

u2
a

]
+

1

2z

[
1− 1− zµ2/(1− z)

u2
b

]
(A.4b)

Hq = 1− z(1− z)
1 + µ2

(
2 cosφ+

(1− 2z)µ√
z(1− z)

)2

. (A.4c)
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