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We initiate the study of gravitational wave (GW) signals from first-order phase transitions in

supersymmetry-breaking hidden sectors. Such phase transitions often occur along a pseudo-

flat direction universally related to supersymmetry (SUSY) breaking in hidden sectors that

spontaneously break R-symmetry. The potential along this pseudo-flat direction imbues

the phase transition with a number of novel properties, including a nucleation temperature

well below the scale of heavy states (such that the temperature dependence is captured

by the low-temperature expansion) and significant friction induced by the same heavy

states as they pass through bubble walls. In low-energy SUSY-breaking hidden sectors,

the frequency of the GW signal arising from such a phase transition is guaranteed to lie

within the reach of future interferometers given existing cosmological constraints on the

gravitino abundance. Once a mediation scheme is specified, the frequency of the GW

peak correlates with the superpartner spectrum. Current bounds on supersymmetry are

compatible with GW signals at future interferometers, while the observation of a GW

signal from a SUSY-breaking hidden sector would imply superpartners within reach of

future colliders.
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1 Introduction

If supersymmetry is a property of our universe, how will it be discovered? Conventionally,

searches for evidence of supersymmetry (SUSY) have focused on the Standard Model, look-

ing for supersymmetric partners of Standard Model particles in direct production at collid-

ers, scattering in dark matter experiments, and virtual effects in precision measurements.

Thus far, no evidence has emerged of supersymmetry as it relates to the Standard Model,

raising the prospect that it may lie outside the reach of the existing experimental program.

Although this would pose a challenge to supersymmetry as a fully natural explanation for

the scale of electroweak symmetry breaking, the abundance of remaining motivation (e.g.

gauge coupling unification, dark matter, and straightforward string-theoretic embedding)

favors continuing the search to shorter and shorter distances. While the LHC and pro-

posed future colliders are promising tools in this search, the immense technical challenges

of exploring energies far above the TeV scale in terrestrial experiments suggests casting a

broader net. It invites identifying both new ways of accessing shorter distances and new

sectors in which supersymmetry may be manifest.

A compelling avenue to shorter distances is to make use of the incredible energies

of the Big Bang, searching for the imprint of supersymmetric phenomena on the early

universe. In some sense, this is already the path taken by dark matter searches looking

for the population of stable superpartners produced in the early universe, but it is not

the only cosmological avenue for discovering SUSY. For example, spontaneous breaking

of supersymmetry during inflation raises the prospect of observing signals in the three-

point function of primordial curvature perturbations [1, 2], although the size of the signal

depends on the strength of couplings between SUSY multiplets and the inflaton.

As for new sectors, at least one is guaranteed to exist in a supersymmetric universe: the

sector responsible for breaking supersymmetry. Although there are many dynamical mecha-

nisms for breaking supersymmetry, they typically possess a number of generic or universal

features which can provide new ways of searching for supersymmetry even when super-

partners of the Standard Model are decoupled. These include the goldstino, a goldstone

fermion of spontaneous supersymmetry breaking (which becomes the longitudinal mode of

the gravitino, the supersymmetric partner of the graviton, once gravity is accounted for),

as well as a novel abelian global symmetry called the R-symmetry. The R-symmetry is

generically spontaneously broken by the same dynamics that breaks supersymmetry, giving

rise to a goldstone boson (the R-axion) and its scalar partner, a pseudo-modulus whose

flat potential is protected by supersymmetry. In theories with low-energy supersymmetry

breaking (LESB), in which the effects of SUSY breaking are communicated to the Standard

Model by forces stronger than gravitation, these states may be accessible on their own. For

example, the goldstino couples directly to Standard Model particles and may be produced

at colliders, although the current reach of the LHC makes these searches less promising

than continuing to look for Standard Model superpartners.

In this paper, we explore a new avenue for discovering supersymmetry in the physics of

the early universe: using the stochastic gravitational wave background (SGWB) produced

by a first-order phase transition to directly probe the sector responsible for breaking super-
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symmetry [3]. This makes use of the extraordinary opportunities afforded by the detection

of gravitational waves (GW) by the LIGO-Virgo collaboration [4], which has opened a

new era in the exploration of the early universe. Sensitivity of current and proposed GW

interferometers to stochastic gravitational wave backgrounds broadly motivates identifying

beyond-the-Standard Model (BSM) scenarios whose first-order phase transitions may gen-

erate such a signal and exploring the complementarity of GW interferometry with other

probes of new physics such as present and future colliders.1

Among the most compelling scenarios for SGWB are those in which a first order phase

transition (FOPT) is associated with the breaking of a global or gauge symmetry in the

early universe [7–12]. As we will show, the supersymmetry-breaking sector is a natural

candidate for such a phase transition because it generically possesses at least one pseudo-

flat complex scalar direction, the pseudomodulus. In our constructions, the phase of this

complex scalar direction is associated to the R-symmetry, which is in turn tied to the SUSY-

breaking dynamics by many known theorems about SUSY quantum field theories [13–15].

This complex scalar direction is lifted by quantum corrections and the resulting potential

is likely to possess a metastable minimum at the origin (where R-symmetry is preserved),

which will then decay to the true minimum through a FOPT in the early universe. At

the true minimum the R-symmetry is broken, consistently with a realistic SUSY spectrum

featuring Majorana masses for the fermionic partners of Standard Model gauge bosons.

In our framework, the SUSY-breaking scale
√
F correlates directly with the frequency

range of the SGWB, such that theories of low-energy SUSY breaking feature a peak

frequency accessible at LIGO-Virgo or proposed GW interferometers such as the Laser

Interferometer Space Antenna (LISA), Einstein Telescope (ET), Cosmic Explorer (CE),

DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), and the Big Bang

Observatory (BBO). In fact, a consistent cosmological history (in which the production

of gravitinos in the early universe is consistent with the present dark matter abundance

and small-scale structure constraints) guarantees that low-energy supersymmetry-breaking

phase transitions produce a peak frequency in the range accessible to current and future

interferometers [16–19].

Once a mechanism is specified to mediate supersymmetry breaking to the Standard

Model, the scale
√
F is also correlated with the spectrum of Standard Model superpart-

ners, allowing the possibility of cross-correlating GW and collider signals. As we will see,

the non-observation of SUSY particles at the LHC leaves open the opportunity for seeing

SGWB signatures from low-energy SUSY breaking, making this a leading avenue for the

discovery of supersymmetry. In return, the observation of a SGWB signal from a low-

energy supersymmetry breaking phase transition would imply the SUSY spectrum to be

within the reach of future colliders such as FCC-hh, SPPC, or a high-energy muon col-

lider, highlighting the strong complementarity between such SGWB signals and proposed

colliders.

Along the way, we identify a qualitatively new class of natural potentials capable of

1Note that the LIGO-Virgo collaboration already places direct constraints on SGWB [5, 6] beyond

existing indirect limits.
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generating large GW signals from a first-order phase transition, corresponding to the scalar

potential along the pseudo-flat direction associated with SUSY breaking. The size of the

vacuum energy gap between the metastable and the true vacuum is set by the SUSY-

breaking scale
√
F , which is necessarily smaller than the SUSY masses of other heavy

fields in the sector in order to avoid tachyonic directions. As a consequence, the thermal

corrections to the potential along the pseudomodulus direction are well described by a low-

T expansion. Another distinctive feature of the pseudomodulus potential is the flatness

at large field values, which is ensured by SUSY cancellations independently of the nature

of SUSY-breaking deformations around the origin. These features combine to give strong

first-order phase transitions, with the strongest transitions arising most naturally in models

with two distinct SUSY-breaking scales. As we will discuss, a large amount of tuning would

be necessary to realize a similar situation in non-SUSY scenarios, which explains why this

possibility has not been explored so far in the literature (see for instance [20] for a collection

of potentials giving raise to FOPT for the SM Higgs).

The organization of our paper is intended to highlight the qualitative connections

between low-energy supersymmetry breaking, first-order phase transitions, and stochastic

gravitational wave signals before progressing into explicit examples, and does not presume

deep familiarity with spontaneous supersymmetry breaking. We begin in Sec. 2 by giving

a broad overview of the phenomenology of low-energy SUSY breaking, the parametrics of

gravitational wave signals from first-order phase transitions, and the relationship between

the frequency of the SGWB signal and spectrum of SUSY particles. In Sec. 3 we discuss the

general features of the pseudomodulus potential and the properties of a first-order phase

transition along this direction, highlighting their novelty compared to commonly-studied

potentials for FOPT. We present a simple toy model that captures the main features

of concrete SUSY potentials, showing how a promising GW signal from FOPT requires

multiple SUSY-breaking scales.

We then proceed to develop a series of increasingly realistic SUSY-breaking hidden

sectors featuring FOPT in Sec. 4. In Sec. 4.1, we derive the phase diagram of the simple

O’Raifeartaigh model. In Sec. 4.2 we present the simplest single scale model featuring

a FOPT, which is a simple deformation of the O’Raifeartaigh model with explicit R-

symmetry breaking. Here, the FOPT takes place between the SUSY-breaking vacuum at

the origin (which enjoys an unbroken R-symmetry) and the R-symmetry breaking minimum

far away from the origin, where SUSY is restored unless coupled to an additional source

of SUSY-breaking. In Sec. 4.3, we develop a fully realistic model by introducing gauge

interactions to the O’Raifeartaigh model, such that SUSY is broken in both the metastable

vacuum at the origin and true vacuum. The presence of both F -term and D-term SUSY-

breaking naturally gives rise to strong GW signals.

In Sec. 5 we further comment on the phenomenology of our setup and the comple-

mentarity between GW observatories and colliders, highlighting the sense in which the

observation of a SGWB signal in our models would ensure further evidence for SUSY at

future colliders. We summarize our qualitative conclusions and future directions in Sec. 6.

Technical details are reserved for a series of appendices, including a review of the one-loop

thermal effective potential in App. A, approaches to the calculation of the bounce action
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Figure 1. Parameter space of low energy SUSY-breaking models in the (
√
F , βH) plane, with

α = 0.3 and Tr.h. =
√
F (see Sec. (2.2) for definitions). The GW reach is computed by requiring the

strength of the SGBW signal at the peak frequency to intersect with the PLI curve of a given GW

interferometer (see Appendix C.1 for details). The colored regions show the reach for a signal

generated from plasma waves which is generically the dominant one in our scenarios (see Sec. 2.2).

The cyan region with βH < 10 imples a large fine-tuning in our setups (see discussion around

Eq. (2.18), the parametric discussion in Sec. 3 and the explicit evaluation in the models of Sec. 4).

In the red shaded region gravitino pair production is excluded by a γ + MET search at LEP

with L = 0.24 fb−1 [21], the gray region is excluded by ATLAS bounds j + MET at
√
s = 8 TeV

and L = 10.5 fb−1 [22, 23]. The dotted gray and dotted red lines are the projection of the

γ + MET reach at FCC-hh with
√
s = 100 TeV and L = 30 ab−1 and a future high energy lepton

collider (HELC) with
√
s = 30 TeV and L = 100 ab−1. The dark green shaded region with dark

green arrows indicates the bound on the SUSY-breaking scale derived from the LHC bound on

gluinos mg̃ > 2 TeV, requiring the messenger sector to be perturbative. The two dark green and

light green bands show the impact of the present LHC bounds [24–27] and the future FCC-hh

reach on gluinos [28] for perturbative messenger sectors with gM ∈ (0.01, 0.1) (see Eq. (2.10) for

a definition of gM ). The region between these two lines will be naturally populated by the model

discussed in Sec. 4.3 and Sec. 5.2. The dark blue arrows on the right hand side shows the

ultralight gravitino window where m3/2 ≤ 16 eV and the gravitino does not poses any cosmological

challenge with κ = 1 (see Eq. (2.2) for a definition) and the gravitino dark matter window where

κ� 1 and the full gravitino mass is heavier than the gravitino mass contribution set by
√
F . The

dark cyan region marked as inaccessible in LESB is always excluded by a combination of gravitino

overabundance [29] and BBN constraints [30] (see Sec. 5 for details).

in App. B and inputs to our projections for GW interferometers in App. C.
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2 Detectable GW signals in low energy SUSY-breaking

In this section we illustrate the correlation between possible signals at present and future

GW interferometers and the phenomenology of low energy SUSY-breaking (LESB). The

underlying assumption is that the SGWB is produced through a first-order phase transi-

tion controlled by the SUSY-breaking hidden sector. As we will show, this connection is

relatively insensitive to the details of the dynamics in the hidden sector. In Sec. 2.1 we

summarize the structure and the parametric predictions of LESB theories, while in Sec. 2.2

we go through the field theory inputs that are necessary to compute the spectrum of GWs

from a FOPT. In Sec. 2.3 we combine the results of the preceding sections to delineate

the parameter space of possible gravitational wave signals from low-energy supersymmetry

breaking, illustrated in Fig. 1.

2.1 Low-energy SUSY-breaking

Here we briefly review the structure of LESB and its broad parametric predictions, remain-

ing agnostic as to the particular model realization. This general discussion is buttressed

by Sec. 5, where we will present the predictions of a simple, explicit model which gives

rise to GW signals. For the purposes of this paper, we adopt a phenomenological defini-

tion of low-energy SUSY breaking: LESB models are those in which the gravitino is the

lightest supersymmetric particle (LSP). This requirement has deep implications for collider

searches, precision observables, and cosmology, which we summarize in turn.

The first ingredient in low energy SUSY-breaking scenarios is a hidden sector at a

high scale m∗, which breaks supersymmetry (and R-symmetry) spontaneously. At energies

much below m∗, the spontaneous breaking of both supersymmetry and the R-symmetry

can be encoded in a model-independent manner through the F - and scalar components of

a single chiral superfield

〈X〉 =
fa√

2
e2ia/fa +

√
2θG̃+ θ2F , (2.1)

where fa is the order parameter for the R-symmetry breaking while
√
F is the SUSY

breaking scale, corresponding to an R-charge RX = 2 for the superfield X. The parameter θ

is a constant, complex anti-commuting two-component spinor enabling component fields of

different spin to be united into a single superfield. The Majorana fermion in the multiplet is

the Goldstino G̃, the goldstone fermion associated with spontaneous SUSY-breaking, while

the compact scalar field a is the R-axion, the goldstone boson associated with spontaneous

R-symmetry breaking.

Switching on gravity, the Goldstino becomes the longitudinal component of the grav-

itino via the super-Higgs mechanism [31] while the R-axion is lifted by an unavoidable

explicit symmetry-breaking contribution arising from the fine-tuning of the cosmological
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constant [32, 33]. The gravitino and R-axion masses can be written as

m3/2 =
F0√
3MPl

' 24 keV

(
1

κ

)( √
F

107 GeV

)2

, (2.2)

mgrav.
a = m3/2

[
63/2MPl

fa

]1/2

' 5.2 GeV
( m3/2

24 keV

)(107 GeV√
F

)(
1
√
εR

)
, (2.3)

where MPl = 2.4 · 1018 GeV is the reduced Planck scale and we have defined

κ
def
= F/F0 , εR

def
= 2F/f2

a . (2.4)

This reflects the fact that the gravitino mass is set by the sum of supersymmetry-breaking

contributions from all sectors, corresponding to a total SUSY-breaking scale
√
F0 that may

be larger than the scale
√
F in the LESB sector under consideration (i.e. κ . 1). Similarly,

the R-symmetry breaking scale fa may exceed the scale of supersymmetry breaking
√
F (i.e.

εR . 1), as is often the case in calculable hidden sectors. In writing the gravity contribution

to the R-axion mass in Eq. (2.3) we saturated the upper bound on the superpotential

vacuum expectation value (VEV) [34]. In the presence of a possible explicit R-symmetry

breaking term in the hidden sector ε/R, the R-axion mass will receive an extra contribution

m/R
a =

√
ε/RF ' 103 TeV

( ε/R
0.01

)1/2
( √

F

107 GeV

)
, (2.5)

making the R-axion heavier than the superpartners of Standard Model fields and hence

phenomenologically irrelevant.

Most of the universal phenomenological predictions of low-energy SUSY breaking fol-

low from the gravitino’s role as the LSP [35]. First, the gravitino is the endpoint of every

superpartner decay. In particular, the lifetime of the next-to-lightest supersymmetric par-

ticle (NLSP) is determined by its decay into the gravitino plus a Standard Model state,

τNLSP =
48π

cNLSP

M2
Plm

2
3/2

m5
NLSP

' 102 sec

(
1

cNLSP

)( m3/2

24 keV

)2
(

500 GeV

mNLSP

)5

, (2.6)

where cNLSP is an O(1) coefficient which depends on the particulars of the NLSP. Second,

the gravitino may be directly produced in pairs with a rate controlled by dimension-eight

contact operators suppressed by 1/F 2 in the msoft � m3/2 limit [21, 36]. These operators

lead to a total cross section at lepton colliders for pair production in association with a

photon of the form

σ(e+e− → G̃G̃γ) ' αems
3

160π2F 4

[
247

60
+ log

(
4E2

min

s

)]
log

(
1− cos θmin

1 + cos θmin

)
, (2.7)

where
√
s is the beam energy, Emin is the minimal photon energy, and θmin is the minimal

photon angle with respect to the beam direction. Here we have expanded in Emin �
√
s

(see Ref. [21] for the full formula). A similar formula can be derived for σ(pp → G̃G̃j) as
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shown in Ref. [22]. Using these formulas and rescaling the Standard Model backgrounds

to higher energies and luminosities, we may determine the sensitivity of missing energy

searches at future colliders gravitino pair production; see Sec. 5 for details. These searches

lead to projected direct constraints on the SUSY-breaking scale
√
F as shown in Fig. 1.

Finally, the stability of the gravitino LSP typically results in a cosmological hazard.

This is the well known “gravitino problem” of LESB theories [37–39]. For sufficiently

high reheating temperature (i.e. Tr.h. > 45m2
3/2MPl/M

2
3 , where M3 is the soft mass of

the gluino), the gravitino is in thermal equilibrium with the Standard Model bath. At

freeze-out, the gravitino is still relativistic and its abundance is bounded from above by

small-scale cosmological observables [40, 41]. The latter imply m3/2 . 16 eV, which cor-

responds to
√
F < 260 TeV. Alternately, if the reheating temperature is low enough, the

gravitino is never in equilibrium with the Standard Model bath but is typically overpro-

duced by a combination of UV scattering contributions [42–45], freeze-in from the decays

of superpartners [46], and decay of the NLSP relic abundance after freeze-out [47, 48].

In order for SUSY-breaking sectors to generate sizable GW signals, the hidden sector

needs to be reheated after inflation. Fixing the reheating temperature Tr.h. =
√
F and

requiring the gravitino to not overclose the universe implies

CUV
M2

3Tr.h.

m3/2
+ CF.O.

m3/2mNLSP

α2
eff

. 0.27TeqMPl , (2.8)

where CUV = 45
√

5f3/(8π
13/2g

3/2
∗ ) ' 4 · 10−5, g∗ ' 230, and f3 ' 18 encodes the thermal

corrections as computed in Ref. [45]; CF.O. = xF.O./(4π
√
g∗) = 0.12 for xF.O. = 23, and

αeff ' 0.01 is chosen to match the correct dark matter relic abundance in the pure Higgsino

case [49]. Eq. (2.8) reflects a similar expression in Ref. [29], although here we have dropped

the freeze-in contribution from superpartner decays because it is always subdominant com-

pared to UV scattering contributions.

For κ = 1, the only region where the gravitino is not overabundant for Tr.h. =
√
F

corresponds to
√
F < 260 TeV, while for κ � 1 one can decouple the gravitino mass and

push the SUSY-breaking scale to be as high as
√
F ' 5 · 107 GeV. In this case, the upper

bound is obtained by combining the overclosure bound, LHC bounds on Standard Model

superpartner masses, and the BBN bounds on NLSP decays into the gravitino through the

universal two-body decay in Eq. (2.6) as derived in Ref. [30]. This bound could slightly

vary depending on the NLSP type and the detailed features of the spectrum, but this does

not alter the primary message: requiring a reheating temperature Tr.h. =
√
F to obtain

sufficiently strong gravitational wave signals implies a quite stringent upper bound on
√
F

as long as the gravitino is required to be the LSP.

Thus far, our discussion has not correlated the scale
√
F of supersymmetry breaking

with the mass spectrum of Standard Model superpartners. Supersymmetry breaking in

the hidden sector is transmitted to the visible sector (which we will take to be the minimal

supersymmetric Standard Model, or MSSM, in this paper) through a mediation mechanism.

The simplest possibility is to assume that a certain number of messengers Nmess in a given

representation of the SM gauge group are coupled to the SUSY-breaking field X via the

superpotential Wmess = ymessXΦΦ̃. Given this coupling, the R-symmetry breaking scale fa
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controls the masses of the fermionic messengers, while the SUSY-breaking scale
√
F gives

an off-diagonal mass to the scalar messengers. The non-supersymmetric splitting between

scalar and fermionic messengers is then transmitted to MSSM superfields via Standard

Model gauge interactions. The resulting gaugino and squark masses are those of standard

gauge mediation [35],

MI =
αINmesssM

4π

(√
2F

fa

)
, m2

f̃
=
∑
I

Cf̃ (I)

(
αINmess

4π

)2
(√

2F

fa

)2

, (2.9)

where Cf̃ (I) is the quadratic Casimir of the representation of the MSSM sfermion f̃ under

the Ith Standard Model gauge group and for simplicity we have considered messengers

in the 5 + 5̄ representation of SU(5). The additional coefficient sM . 1 appearing in

the gaugino masses accounts for the phenomenon of “gaugino screening” [15, 50, 51]. In

the simple scenarios discussed here, the ratio between the gluino and squark soft masses

M3/mq̃ '
√
NmesssM . 1, so that the most relevant collider bounds at current and future

colliders can be framed purely in terms of the gluino mass, assuming the squarks to be

decoupled and the lightest gaugino to be the next-to-lightest SUSY particle (NLSP).

Writing the R-symmetry breaking VEV as in Eq. (2.4), the final gluino mass can be

simply written in terms of underlying parameters as

mg̃ ' 7 TeV
(gM

0.1

) √
F

107 GeV
, gM

def
= Nmess

√
εRsM

[
1 +

α3

4π
(9 + 6 log

Q

M3
)

]
, (2.10)

where we have collected various coefficients into a model-dependent prefactor gM which

encodes i) the suppression of the gaugino masses due to fa �
√
F (i.e.

√
εR � 1), ii)

the enhancement for Nmess � 1, iii) the gaugino screening controlled by sM . 1, and iv)

the relation of the gluino soft mass to its pole mass, correctly accounting for the one loop

running of the gluino soft mass at low energies in the limit of heavy squarks [52, 53].

Broadly speaking, Eq. (2.10) establishes an interesting relation between the SUSY-

breaking scale and the present and future collider bounds on the gluino. Given the current

LHC bound on gluino masses, which ranges between mg̃ & 2− 2.5 TeV [24–27], Eq. (2.10)

indicates the lowest values of the SUSY-breaking scale
√
F consistent with data.

Depending on the model, gM can span many orders of magnitude, but there are three

parametric regimes of interest:

• 1� gM . 160, which is realized in strongly-coupled messenger sectors that are at the

boundary of perturbativity. The upper bound on gM is indeed obtained by requiring

the SM gauge couplings and ymess to be perturbative at the scale of the hidden sector.

• gM ' 1, which is realized in weakly-coupled messenger sectors if Mmess '
√
F and

the gaugino masses are not screened. The latter requirement requires non-trivial

dynamics in the hidden sector, as shown in Ref. [15].

• gM � 1, which is typical of models where the soft masses are suppressed compared to

the SUSY-breaking scale because fa �
√
F and the gaugino masses may be further

screened compared to the squark masses. As we will show in Sec. 5, this is the typical

situation in simple, explicit setups featuring SGWB signals.
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One of the most appealing features of LESB mediated via gauge interactions is the

flavor-preserving nature of the MSSM superpartner spectrum. This is because the flavor-

blind contributions to superpartner masses transmitted by gauge interactions vastly ex-

ceeds the omnipresent, flavor-violating “gravity-mediated” contributions. However, these

gravity-mediated contributions reflect all contributions to SUSY breaking, while the gauge-

mediated contributions reflect only the SUSY-breaking in the sector of interest. Thus when

the gravitino mass is enhanced by κ� 1, the contribution from gravity mediation increases

relative to the contribution from gauge mediation, and may eventually run afoul of bounds

on flavor violation. In particular, this implies that κ is bounded from below by bounds

from flavor-changing neutral currents (FCNCs). For instance, considering the slepton con-

tributions to µ → eγ [54, 55] and the squark contributions to ∆mK [56, 57] leads to the

bounds

κ|µ→eγ & 10−9 ·
(

1

εR

)
, κ|∆mK & 10−9 ·

( √
F

107 GeV

)
·
(

1

εR

)3/4

, (2.11)

where κ and εR are defined in Eq. (2.4) and we set BR(µ→ eγ) < 4.2 · 10−13 and ∆mK =

(3.479 ± 0.001) · 10−12 MeV, asking for the squark contribution to be less then present

experimental uncertainty. These constraints give a robust upper bound on the gravitino

mass in our framework. Finally, even in the absence of flavor violating effects, the electric

dipole moments arising from the relative phase between gaugino and higgsino masses can

be probed in precision experiments such as ACME [58, 59]. The current limit are already

challenging a CP-violating phase of order 10−2 with gauginos below the TeV scale and the

future experimental program will sensibly improve this reach making it one of the most

interesting indirect probes of LESB [60, 61].

2.2 First order phase transitions and SGWB

Phase transitions in field theory are triggered by the nucleation of vacuum bubbles and

their subsequent percolation in the space-time volume. The vacuum bubbles can be found

in Euclidean signature as the stationary minimum-energy bounce solutions interpolating

between the false and true vacuum [62, 63]. In all cases we consider here, the thermal

fluctuations will dominate so that the total decay rate per unit volume can be approximated

as

Γ(T ) ' T 4

(
S3

2πT

) 3
2

exp (−S3/T ) , (2.12)

where S3 is the 3 dimensional Euclidean action for the O(3)-symmetric bounce [64, 65]. The

decay rate encodes the probability of true vacuum bubbles to be nucleated in a spacetime

region where the false vacuum dominates.

The time evolution of the phase transition can be described in terms of different tem-

peratures. First of all, a necessary condition for nucleation is that the universe reaches

temperatures below the critical temperature Tc, where the false and true vacuum are de-

generate. At the nucleation temperature Tn < Tc, one bubble will nucleate per Hubble
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volume, corresponding to2

Γ(Tn)

H(Tn)4
= 1 ⇒ S3(Tn)

Tn
' −9.2 log

g∗
230

+ 4 log
MPl

Tn
+

3

2
log

S3(Tn)

Tn
, (2.13)

where we assumed that the phase transition happens during radiation domination so that

H2(T ) = π2g∗T 4

90M2
Pl

and normalized g∗ to the number of the degrees of freedom in the MSSM.

In all the cases we will consider, the last term in Eq. (2.13) can be neglected together with

the constant term, so that solving

S3(Tn)

Tn
' C(Tn) , C(Tn)

def
= 104 log

(
107 GeV

Tn

)
(2.14)

is always a good approximation. Since C(T ) is a slowly-varying function of T , we can

further simplify this equation assuming C(Tn) ' C(Tc); this number is always going to be

O(102) in the temperature range of interest.

After one bubble per volume has been nucleated at Tn, the bubbles expand to fill the

space-time volume. The phase transition is considered to be completed at the percolation

temperature Tp, when a small fraction of the total volume remains in the false vacuum.

For fast phase transitions like the ones discussed here, one can show that Tp ' Tn so that

we can neglect this difference and take Tn as the temperature at which the phase transition

completes. This sets the relevant dimensionful scale controlling the frequency range of the

SGWB spectrum.

The shape and amplitude of the SGWB spectrum strongly depends on the amount

of energy released into GWs during the FOPT, the duration of the phase transition, and

the behavior of the bubbles in the cosmic fluid. The two first ingredients can be easily

quantified in terms of field theory data via the quantities

α(Tn) =
30

π2g∗T 4
n

(
∆V (Tn)− Tn

d∆V (T )

dT

∣∣∣∣
T=Tn

)
, (2.15)

βH(Tn)
def
=

β(Tn)

H(Tn)
= Tn

d

dT

(
S3

T

)∣∣∣∣
T=Tn

, (2.16)

where ∆V (Tn) is the potential energy difference between the true and the false vacuum at

Tn. The amount of energy released into GWs is quantified by α, the latent heat relative

to the radiation energy density ρR = π2g∗T 4

30 [66]. The duration of the phase transition

is quantified by βH , the inverse of the typical timescale of the transition normalized with

respect to Hubble; it is defined under the assumption that the nucleation rate rises expo-

nentially [64, 65] as S(t) = eβHH(t)(t−tn). Using the approximate nucleation condition in

Eq. (2.14) we can write

βH(Tn) ' S′(Tn)− C , (2.17)

where S′(Tn) & C in order for the nucleation rate to rise as a function of time, and

βH & C ∼ 100 unless there is some measure of fine-tuning between the first and the second

2The nucleation temperature is formally defined by the integral 1 =
∫ Tc

Tn

dT
T

Γ(T )

H(T )4
, which is well approx-

imated by Eq. (2.13) since Γ(T ) depends exponentially on the temperature.
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terms of the above expression. To evaluate the fine-tuning associated with βH in explicit

models, we define

∆βH
def
= Max{pi}∆

pi
βH

= Max{pi}

∣∣∣∣d log βH
d log pi

∣∣∣∣ , (2.18)

where ∆pi
βH

are the individual tunings with respect to the underlying parameters of the

theory pi. As we will discuss in Sec. 3, the parametric dependence of the fine-tuning can

be derived for our general class of models and then computed explicitly in the models of

Sec. 4. As a result, obtaining βH < 10 would imply a large amount of fine tuning (in the

sense of being a non-generic prediction of a given model). This is illustrated in Fig. 1,

where it provides a meaningful bound on the parameter space of GW signals in LESB .

The dominant production mechanism of gravity waves during the first-order phase

transition depends on the dynamics of the bubbles in the cosmic fluid. If the mean free

path of the particles is much longer than the width of the bubble wall, the velocity of the

wall vw can be determined by equilibrating the pressure on the bubble wall induced by

the difference in potential energy ∆V with the friction forces exerted by the surrounding

plasma [67, 68]. The latter are induced by states whose mass changes in passing from the

false to the true vacuum. For vw → 1, the total pressure can be derived in a quasi-classical

approximation [68–70] and reads

p = ∆V −∆PLO − γ∆PNLO , ∆PLO =
∆m2T 2

24
, ∆PNLO '

1

16π2
γg2∆mV T

3 , (2.19)

where the Lorentz gamma factor is γ = 1/
√

1− v2
w and the leading-order plasma friction

PLO depends on the change in the masses-squared ∆m2 of all the states in the thermal

bath [69]. Since ∆m2 = m2
true −m2

false, the approximate expression in Eq. (2.19) is only

valid when both γT & mtrue and T & mfalse. The first condition ensures that particles in

the false vacuum have enough energy to pass through the wall, while the second forestalls

Boltzmann suppression of the pressure [68]. The next-to-leading order radiation pressure

PNLO is instead induced by the change in mass of the vector bosons and it is γ-enhanced

for vw → 1, as first derived in [70].

The pressure in Eq. (2.19) determines both how much the bubble wall accelerates as a

function of the bubble radius [71, 72], and the fraction of the FOPT energy which is in the

bubble wall at the time of collision T∗ (traditionally called kcoll). Since we will be dealing

with fast phase transitions, we take T∗ ' Tp ' Tn.

In the absence of friction, the acceleration of the bubble wall grows linearly with the

bubble radius until the gamma factor reaches a terminal value

γ∗ '
2

3

R∗
R0
' 2.6 · 108

√
230

g∗(Tn)

(
100

βH

)(
107 GeV

Tn

)(
∆V (Tn)

T 4
n

)1/3

, (2.20)

where we took the initial radius to be R0 ' Rc =
(

3
2π

S3(Tn)
∆V (Tn)

)1/3
estimated in the thin

wall approximation [62], estimated R∗ as in Ref. [73], and assumed radiation domination.

The last term is O(1) in phase transitions which do not have a supercooling phase since

∆V (Tn)/T 4
n < 75.6(g∗/230).
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In the FOPTs discussed here, the bubble growth is generically stopped by plasma

effects from heavy states. This is due to a novel effect in which the relevant energy scale

for particles interacting with the wall reaches values ∼ γTn much larger than the intrinsic

scales associated with the bubble. This is particularly relevant for SUSY-breaking hidden

sectors, where there is a large separation of scales that can be spanned by these ultra-

relativistic effects. In particular, the bubbles expand and accelerate linearly with the

radius until the boost factor is large enough to allow heavy states of mass mtrue � Tn to

cross the bubble wall. The significant mass change of these states induces a new source of

LO friction,

∆P heavy
LO ' 1

24
(m2

true −m2
false)

2T 2
ne
−mfalse/Tn . (2.21)

If ∆V − ∆P heavy
NLO ≤ 0, the gamma factor of the bubble wall and the bubble radius at

equilibrium are approximately

γheavy
eq ' mtrue

Tn
, Rheavy

eq ' 3

2
γheavy

eq Rc . (2.22)

This effect is very similar to the pressure term from mixing discussed in Ref. [74], but here

we typically pay the Boltzmann suppression of mfalse.

The resulting fraction of the energy in the bubble wall at the time of collisions is

generically very suppressed,

kcoll '
Req

R∗

(
1− ∆PLO

∆V

)
' 4 · 10−9γheavy

eq

(
2.6× 108

γ∗

)(
1− ∆PLO

∆V

)
. (2.23)

As such, most of the energy released in the FOPT goes into the plasma, giving rise to sound

waves propagating through the cosmic fluid. These sound waves source gravitational waves

from the motion of the plasma with an efficiency determined by

ksw '
α

0.73 + 0.083
√
α+ α

, (2.24)

where we have expanded the general formula of Ref. [75, 76] for kcoll � 1. The resulting

GW spectral density is

Ω∗sw = 3.8

(
1

β2
H

)(
κswα

1 + α

)3/2( f

f∗sw

)3
[

1 +
3

4

(
f

f∗sw

)2
]− 7

2

, f∗sw = 1.2β∗HH∗ , (2.25)

where H2
∗ = π2g∗(T∗)

90
T 4
∗

M2
Pl

(1 + α) to account for the reheating of the plasma and β∗H is

normalized accordingly following Eq. (2.16). The sound wave spectrum is a broken power

law which drops like Ω∗sw ∼ f3 for f � f∗sw, as expected from causality in a radiation

dominated universe, and as Ω∗sw ∼ f−4 for f � f∗sw. The high frequency behavior of the

spectrum is likely to be affected by the turbulence contribution, whose size is still subject

to large theoretical uncertainties [11, 77]. Here, we include for simplicity only the sound

waves contribution to the GW spectrum in Eq. (2.25), which will mainly determine the
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Figure 2. The reach of future GW interferometers in the (α, βH) plane for two different scales of

FOPTs, assuming the signal is dominated by sound waves given by Eq. 2.25. The shaded regions

are obtain by requiring the signal at the peak in Eq. (2.28) to be inside the PLI curve of a given

experiment. Left: Tn = 105 GeV corresponds to LESB scenarios with an ultralight gravitino LSP

and κ = 1. Right: Tn = 107 GeV corresponds to LESB scenarios with gravitino DM and κ � 1.

We will exhibit calculable scenarios of this type in Sec. 4.

detectability of a given GW signal. After redshift is taken into account, assuming that the

entropy per comoving volume remains constant [66], the GW spectrum today reads

Ω0
swh

2 =

(
a∗
a0

)4(H∗
H0

)2

Ω∗sw = 2.8 · 10−5

(
230

g∗

)1/3

Ω∗sw , (2.26)

where the peak frequency and the power at the peak frequency scale as

f0
sw = f∗sw

(
a∗
a0

)
= 1.1× 102 Hz

( g∗
230

)1/6
(
βH
50

)(
Tn

107GeV

)(
1.3

1 + α

)1/4

, (2.27)

Ωsw,0
GWh2 ' 10−10

(
230

g∗

)1/3( 50

βH

)2 (κswα

0.08

)3/2
(

1.3

1 + α

)3/2

. (2.28)

Here we have taken T∗ ' Tn and normalized the scalings for α = 0.3, βH = 100 and

Tn = 107 GeV, which will be the typical values for FOPTs related to fully calculable

SUSY-breaking hidden sectors explored in the following sections.

Having derived the expected GW spectrum, we can determine the region in the (α, βH)

plane where we expect the SBGW to be detectable at future interferometers. Given the

fraction of energy density in GWs today in Eq. (2.26), the sensitivity of a given interfer-

ometer is controlled by the time integrated signal-to-noise ratio

ρ2 = tobs

∫ fmax

fmin

[
ΩGW(f, α, β, vw)

Ωnoise(f)

]2

, (2.29)
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where Ωnoise(f) is the effective noise of the interferometer within a given frequency band

(fmin, fmax) and tobs is the observation time. A detectable stochastic GW background

is defined to have ρ > 10. The Power Law Integrated (PLI) curves are generated by

considering a power law function of the frequency f for the GW signal shape in Eq. (2.29).

The PLI curves for each GW interferometer considered here are given in Appendix C for

completeness.

In Fig. 2 we show the regions in the (α, βH) plane where the power at the peak

frequency in Eq. (2.28) lies within the reach of future interferometers for two different

nucleation temperatures. Low nucleation temperatures such as Tn = 105 GeV can be

probed over a wide frequency range depending on βH (i.e. the duration of the FOPT) while

high nucleation temperatures such as Tn = 107 GeV will be accessible only at future high

frequency interferometers such as Advanced LIGO (A-LIGO) [16], the Einstein Telescope

(ET) [17] and the Cosmic Explorer (CE) [18, 19]. In the next section we show that Tn ∼
√
F

in our LESB scenarios, so that high nucleation temperatures in fully calculable SUSY-

breaking scenarios correspond to superpartners lying out of the reach of the LHC.

2.3 LESB in the future: GW interferometers vs. colliders

We are now ready to establish a connection between the SGWB signals and SUSY-breaking

phenomenology described in the previous two sections. The first step is to relate the

nucleation temperature relevant for the SGWB signal to the scales in a SUSY-breaking

hidden sector. As we will see, the nucleation temperature is essentially set by the SUSY-

breaking scale
√
F in our scenarios.

Focusing on FOPT where the barrier between the false and the true vacuum is present

at T = 0, S3 is bounded from below by a constant and we can define Tmin as the temperature

where

βH |T=Tmin = 0 ⇒ Tmin < Tn < Tc . (2.30)

If S3(T ) is monotonic for T > Tmin, the solution of the equation above is unique. The

nucleation temperature is then bounded from above by Tc, where βH → ∞ and α in

Eq. (2.15) is suppressed and dominated by d∆V (Tn)
dT . It is further bounded from below by

Tmin where βH → 0 and α is dominated by ∆V (Tn).

More importantly, Tn can be directly related to the SUSY-breaking scale
√
F which

sets the size of the O(3)-symmetric bounce action. A simple way of seeing this is to note

that the bounce action at Tn is itself set by the scale of relevant features in the potential,

S3(Tn) ' c3

√
F ⇒ Tn =

c3

C
√
F , (2.31)

where c3 is a model-dependent function of the parameters controlling the shape of the

potential which we assume to be temperature independent for simplicity (an approximation

that is certainly justified if Tn is close enough to Tmin). Here we assume that c3/C ∼ O(1),

an assumption that will turn out to be justified analytically in Sec. 3 and numerically in

the explicit models of Sec. 4.
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Having established a relation between Tn and the SUSY-breaking scale
√
F , we identify

two different viable regions of the LESB parameter space satisfying the following simple

requirements:

• the gravitino is the lightest supersymmetric particle (LSP) as required by LESB, and

• the reheating temperature Tr.h. is as high as
√
F to generate GW signals from the

hidden sector. We take Tr.h. =
√
F in Fig. 2.11 to maximize the allowed parameter

space.

The two viable regions satisfying the above requirements are

Gravitino Dark Matter window: where 260 TeV <
√
F . 50 PeV and κ� 1 so that

the gravitino mass is larger than the nominal value set by the F -term in Eq (2.1). The upper

bound on the SUSY-breaking scale is obtained by combining the constraints on gravitino

overabundance in Eq. (2.8), BBN constraints on NLSP decays, and the LHC bound on the

gluino mass mg̃ > 2 TeV. The precise upper bound is potentially dependent on further

model-building epicycles; the value here is meant to be indicative. In this window, the

gravitino abundance can match the observed dark matter relic abundance today, while

the soft masses are still dominated by the gauge mediation contributions in Eq. (2.9) so

that flavor constraints are under control when Eq. (2.11) is satisfied. Perturbative gauge

mediation models with fa &
√
F and gaugino screening will naturally live in the upper end

of this window for
√
F ' 1 − 50 PeV. As shown in Fig. 1, the future reach on gluinos at

FCC-hh [28] could provide a further direct test of these models. Future interferometers in

the LIGO frequency band such as A-LIGO [16], ET [17] and CE [18, 19] have the unique

opportunity to probe these scenarios as long as the thermal transition to the SUSY-breaking

vacuum is associated with a sufficiently strong FOPT (see Fig. 2). In the rest of the paper,

we discuss explicit scenarios of this type.

Ultralight gravitino window: where m3/2 < 16 eV and
√
F < 260 TeV. This region

has no cosmological issues for κ = 1, but it requires gM & 1 to satisfy the LHC bound

on the gluino mass given the low SUSY-breaking scale (see Eq. (2.10) for definition and

comments). A lower bound on the gravitino mass can be derived from direct searches for

gravitino pair production at LEP in γ + MET and at the LHC in j + MET. As shown

in Fig. 1, present direct bounds on the gravitino are not competitive with the bound on√
F obtained by requiring mg̃ > 2 TeV and perturbativity in the messenger sector. The

HL-LHC will not improve much on that. Future colliders – in particular, high energy

lepton colliders (HELCs) – can drastically improve the reach on gravitino pair production

and meaningfully probe this window even if MSSM superpartners remain inaccessible. As

shown in Fig. 2, these scenarios can be probed across a wide frequency range by future

GW interferometers depending on the strength and the duration of the FOPT. Building

explicit calculable models in this window presents challenges [78, 79], and we leave a study

of possible GW signals for a future work.
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3 Anatomy of the SUSY-breaking phase transition

In this section we describe the generic features of FOPT occurring in calculable SUSY-

breaking hidden sectors. First, we discuss how a large class of perturbative hidden sectors

can be encoded in the effective field theory of the universal pseudomodulus, which is the

scalar component x of the chiral superfield X in Eq. (2.1), universally related to the spon-

taneous breaking of supersymmetry [13–15].

Second, we show how the flatness of the pseudomodulus potential gives rise to a new

class of FOPTs with a very distinctive feature: the nucleation temperature is generically

small compared to the SUSY mass scale, Tn ≤ m∗, so that the thermal potential is well

approximated in the low-T expansion. As we will discuss, non-supersymmetric realizations

of this class of FOPT typically entail a large amount of fine-tuning.

Finally, we derive parametric estimates for Tn, α and βH for this new class of FOPTs

using the triangular barrier approximation [80, 81] and comment on a universal feature

of bubble dynamics in our FOPTs. The observations of this section will find a concrete

realization in the working examples of Section 4.

3.1 The SUSY-breaking pseudomodulus

The existence of flat directions is a trademark of hidden sectors with spontaneous SUSY

breaking. Here we focus on a large class of SUSY breaking sectors where the dynamics

of both SUSY and R-symmetry breaking can be embedded in a single chiral superfield X

parametrized as in Eq. (2.1)

X =
x√
2
e2ia/fa +

√
2θG̃+ θ2F , (3.1)

where the R-charges of the components are respectively R[x] = 2, R[G̃] = 1, R[F ] = 0. The

scalar component x (the universal pseudomodulus) tracks the breaking of the R-symmetry,

while 〈F 〉 sets the SUSY breaking scale.3 The phase transition occurs along x from a local

minimum at the origin x = 0 (where R-symmetry is preserved) to the T = 0 vacuum of the

theory where 〈x〉 = fa and R-symmetry is broken. Hence 〈x〉 = fa is the order parameter

of the phase transitions of interest here, parameterizing the spontaneous breaking of the

R-symmetry.

In hidden sectors which admit a weakly coupled description, the phase transition can

be fully described by studying the effective potential of the pseudomodulus x, whose mass

is typically well below the mass m∗ of the heavy SUSY states in the hidden sector. As we

will see, the unique features of the pseudomodulus potential leave a strong imprint on the

properties of the phase transition. The full effective potential for the pseudomodulus can

be written as

Veff(x) = V0(x) + VT (x) , (3.2)

3In more general scenarios there could be multiple different field directions associated to SUSY-breaking

and R-symmetry breaking [15] or even multiple pseudo-flat directions from multiple sources of F -term

SUSY breaking [82].
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Figure 3. Qualitative features of the pseudomodulus potential relevant to the FOPT in SUSY-

breaking hidden sectors. Left: Sketch of the zero-temperature potential as described in Sec. 3.1,

exhibiting the following features: i) the distance between the two minima is larger than their

potential difference, f4a & ∆V , and ii) the height of the peak between the two minima is loop-

suppressed compared to the potential difference, VP � ∆V . An explicit realization of this potential

is presented in Sec. 3.4. The tree level potential (dashed blue) generated by explicit R-symmetry

breaking destabilizes the origin, giving rise to a minimum at 〈x〉 = fa where the R-symmetry is

further spontaneously broken by the VEV of x. Quantum corrections (dashed red) generate a

local minimum at origin. Right: Behavior of the temperature corrections described in Eq. (3.5)

at T = 0, T = Tc, and T = Tn. The thermal corrections give a contribution to the potential at

the origin which at Tn is typically much smaller than F 2. The barrier and the true vacuum are

essentially unchanged. The approximations in Sec. 3.2 are then justified.

where V0(x) encodes the zero-temperature quantum corrections and VT (x) the thermal

ones.

The zero-temperature part of the effective potential V0(x) is flat at tree level, up to

explicit R-symmetry breaking effects. Along this so-called F -flat direction, the size of the

potential energy is set by supersymmetry breaking, V ∼ F 2. Interactions that explicitly

violate the R-symmetry typically destabilize the origin and give a slope to the pseudomod-

ulus potential at tree level, but these features are usually small compared to the scale
√
F .

At one loop, quantum corrections lift the pseudomodulus potential; these corrections are

present even in the absence of explicit R-symmetry breaking. The combination of tree-level

explicit R-symmetry breaking and one-loop quantum corrections give rise to the schematic

zero-temperature potential shown in Fig. 3. Assuming the quantum corrections exceed the

R-symmetry breaking effects, at zero temperature this creates a metastable vacuum at the

origin that is separated by a barrier from the true vacuum at 〈x〉true = fa. The energy

difference between the two vacua ∆V is proportional to the SUSY-breaking scale. The

barrier is located at a distance xP from the origin; at this point, the barrier height is VP .

The essential features characterizing the zero temperature potential are:

• The potential is flat. This means that the distance fa in field space between the false

vacuum and the true vacuum is larger than the size of the potential energy difference

∆V :

f4
a > ∆V , (3.3)
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where this hierarchy assumes that R-symmetry breaking effects are parametrically

smaller than the loop corrections. This will be manifest in the toy model of Sec. 3.4.

Under this assumption, the flatness of the potential is a direct consequence of the fact

that SUSY loop corrections asymptote to a logarithm at large field values (see for in-

stance [83]). Obtaining similar quantum corrections in non-supersymmetric theories

with a field-independent mass gap is notoriously difficult without fine-tuning.4

• The barrier between the two vacua is small. Given that the potential is generated by

loop effects (and subleading R-symmetry breaking effects), the size of the barrier VP
is one-loop suppressed with respect to the energy difference between the true and the

false vacuum ∆V :
VP
∆V

=
λ2

eff

16π2
, (3.4)

where λeff ∼ O(1) should be thought of as the effective coupling determining the

height of the barrier. The position of the barrier xP is model-dependent, but will not

play a critical role in the determination of the bounce action as long as Eq. (3.3) is

satisfied.

We now turn to the finite temperature corrections. First, as it is well known, finite

temperature effects break SUSY and thus significantly modify the pseudo-modulus poten-

tial. The thermal effects are dominated by the loops of heavy fields in the SUSY hidden

sector coupled to x, whose mass is of order m∗. Since m∗ is by construction larger than

the SUSY-breaking scale
√
F setting the zero-temperature potential, the relevant temper-

atures for the phase transition are smaller than the mass scale m∗ of the particles running

in thermal loops. This implies that the correct approximation of the thermal potential

is the low temperature expansion (see Appendix A for explicit formulas). This makes the

finite-temperature potential of the pseudomodulus qualitatively different from ordinary

non-SUSY models, where the high temperature approximation applies since the typical

scalar potential curvature is of the same order of the highest mass scale in the theory.

The effect of thermal corrections on the pseudomodulus potential takes the schematic

form

VT (x) ' −N T 4

(
λ2x2 +m2

∗
(2πT )2

)3/4

e
−
√
λ2x2+m2∗

T2 , (3.5)

where we assumed the presence of N degrees of freedom with masses-squared ∼ λ2x2 +m2
∗.

Notice that N counts all the heavy degrees of freedom, both bosonic and fermionic, which

contribute with the same sign to the thermal potential. This enhances the importance

of thermal effects compared to zero-temperature loops, where cancellations occur between

states of different statistics.

The thermal correction constitutes a negative contribution to the potential which is

maximal (in absolute value) at the origin of the pseudomodulus, when x ∼ 0 and the

4A well studied example of a flat potential is that of the dilaton of spontaneously broken conformal

symmetry. Here, however, the mass gap is field-dependent and as a consequence the theory becomes

strongly coupled at the origin [84]. The features of the dilaton phase transition are consequently very

different from the one described here.
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Boltzmann suppression factor is minimized. As a consequence, thermal corrections in our

scenarios have an exponentially larger impact at the origin relative to the true vacuum

or the barrier. This behavior is explicitly shown in the right panel of Fig. 3. As we will

show in Sec. 4 small deviations from this generic feature can be induced by heavy states

becoming lighter at large field values of the pseudomodulus.

3.2 First order phase transitions in the low-T expansion

Given the shape of our potential as shown in Fig. 3, we can approximate the bounce

action in the triangular barrier approximation [80, 81]. Within this approximation, we will

be able to capture the parametric behavior of the FOPTs analytically and in Sec. 4 we

will show how the full analytical solution in explicit models reflects the general features

explored here. A more in-depth discussion about the computation of the bounce action in

the various cases can be found in Appendix B.

Taking the false vacuum to be at the origin of field space, we can write the bounce

action in the triangular barrier approximaton as

S3

T
=

144
√

2π

5

(VP − V+)5/2

(VP − V−)3

f3
a

T
f(rλ) , for

fa
xP

> g(rλ) , (3.6)

where we have defined the variables

rλ
def
=
λ−
λ+

, λ−
def
=
VP − V−
fa − xP

, λ+
def
=
VP − V+

xP
, (3.7)

and the functions

f(rλ) =
r3
λ(1 + rλ)

3
√

3(3 + 2rλ − 3(1 + rλ)2/3)3/2
'

rλ→0
1 +

5

3
rλ , (3.8)

g(rλ) = 1 +
rλ

3 + 2rλ − 3(1 + rλ)2/3
'

rλ→0

3

rλ
+

7

3
. (3.9)

The expansion for rλ → 0 is justified as long as both Eq. (3.3) and Eq. (3.4) are satisfied

and the true vacuum VEV fa sets the largest scale in the pseudomodulus potential. The

triangular barrier approximation can be extended beyond the region set by fa/xP > g(rλ),

but the range of validity of Eq. (3.6) is sufficient to capture the parametrics of the phase

transitions of interest. We give the full expression of the triangular barrier approximation

in Appendix B.

The triangular barrier approximation depends in general on only five parameters char-

acterizing the potential : the three values of the potential at the critical points, V±, VP ,

and the position of the two critical points, fa, xP . For a given theory we can compute these

temperature-dependent quantities explicitly, and find that the bounce action in Eq. (3.6)

is an excellent match to the full numerical result.5

At the leading order in the rλ → 0 expansion, the bounce action is independent of

xP ; our analytical estimates will assume that this holds. To further simplify our analytical

5Throughout this paper we make use of the Mathematica package FindBounce [85] for our numerical

analysis, which we further validate using CosmoTransitions [86].
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treatment, we approximate the thermal potential in Eq. (3.5) by only including thermal

corrections at x = 0, where the exponential suppression is minimized, and neglecting the

temperature dependence of V− and VP . Within this approximation we obtain

V+ = V 0
T , V 0

T
def
= VT (x = 0) , V− = −∆V , (3.10)

where we set V+ to be exactly zero at zero temperature so that its (strictly negative) value

is purely controlled by the thermal corrections at the origin. The value of the potential at

the true vacuum is −∆V , and independent of temperature in this approximation.

With these approximations, the bounce action becomes simply

S3

T
' 144

√
2π

5T

(VP − V 0
T )5/2f3

a

(∆V )3
,

3V 0
T

∆V
+ 1 > 0, (3.11)

and we are now ready to describe the shape of S3/T as a function of T . First we define

the critical temperature Tc, where the thermal corrections at the origin balance the zero-

temperature potential difference between the two minima:

|V 0
Tc | ' ∆V ⇒ Tc '

2

5

m∗

W
(

0.13
(
N m4

∗
F 2

)2/5
) , (3.12)

where W(x) is the Lambert function, defined as the solution to the equation W(x)eW(x) =

x. At large x the functionW(x) behaves approximately like 3/4 log(1 +x), and this simple

approximation can be used for all practical purposes here (see Appendix A for a short

summary of the properties of the Lambert function). Using this, the low-T expansion will

apply in regions of parameter space where

Tc . m∗ ⇒
√
F . 0.8

(
N

10

)5/8

m∗ , (3.13)

where we have normalized the number of degrees of freedom in the thermal loops to the

typical order of magnitude we will find in the explicit examples of Sec. 4. The low-T ap-

proximation is then valid whenever Eq. (3.13) is satisfied, making it a generic feature of the

pseudomodulus potential where the vacuum energy is protected from quantum corrections

induced by heavy SUSY states.

From the definition of Tc in Eq. (3.12), we can immediately see that the triangular ap-

proximation in Eq. (3.11) breaks down in this regime and should be extended (see Appendix

B). However, the nucleation temperature in our setup is generically very far from Tc, so

that Eq. (3.11) is always a good approximation at the temperatures relevant for the FOPT.

As the temperature decreases below T < Tc, S3/T decreases as long as |V 0
T | > VP , since

|V 0
T | decreases exponentially with the temperature. When the temperature approaches

Tmin defined in Eq. (2.30), then |V 0
T | ' VP and S3/T attains a minimum value. As the

temperature decreases further below Tmin, S3/T grows as 1/T .

Plugging the simplified bounce action in Eq. (3.11) into the Tmin definition in Eq. (2.30),

we can easily obtain an analytic expression for Tmin which reads

Tmin =
2m∗

3

1

W
(

52/3

3π

(
N m4

∗
VP

)2/3
) ⇒ Tmin

Tc
. 0.2 , (3.14)
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where to obtain the first expression we assumed Tmin . 0.48m∗ and the second inequality

follows from approximating the Lambert function W (x) ' 3/4 log(x + 1), assuming N ∼
O(10) and using the Eq. (3.4) for the scaling of VP with λeff ∼ O(1) and ∆V ∼ F 2. Higher

values of λeff or a suppressed value of ∆V will lead to a reduction of the hierarchy between

Tmin and Tc. The latter cases are less interesting from the point of view of the expected

GW signal.

We are now ready to verify that there exists a nucleation temperature Tn where S3/T

satisfies the nucleation condition Eq. (2.14). As discussed in Eq. (2.30), the nucleation

temperature is always within the interval (Tmin, Tc). Scenarios where Tn is closer to Tmin

have a larger α (see Eq. (2.15)) and a smaller βH (see Eq. (2.16)), favorable for generating

an observable GW signal. Understanding the scaling of Tn with respect to Tmin and Tc
thus provides valuable information about the strength of the FOPT.

Even approximating the nucleation condition in Eq. (2.14) with a constant C, solving

the equation analytically with respect to T using S3/T given by Eq. (3.11) is not possible.

We may, however, expand in VP /|V 0
T | � 1 and solve for Tn order by order in this expansion.

This is always a good approximation as long as Tn does not approach Tmin too closely. At

first order, writing Tn = T 0
n(1 + δT 1

n) we find

Tn ' T 0
n

(
1− 7

C2/5

VP
m4
∗

(
T 0
n

m∗

)3/5(
fam

3
∗

∆V

)6/5
)
, (3.15)

where

T 0
n = 0.48m∗

1

W
(

0.32
(
N5

C2

)2/21 (
fam3

∗
∆V

)4/7
) , (3.16)

and we have again assumed T 0
n < 0.48m∗. Given that the argument of the Lambert function

is much larger than one, T 0
n depends only logarithmically on the parameters N, C, fa,∆V ,

and can be taken proportional to m∗ for simplicity.

The leading scaling of Tn with respect to the parameters shaping the potential is

captured by the leading corrections proportional to VP in (3.15). Indeed, we observe

that by increasing VP (i.e. the height of the barrier), or by increasing fa, the nucleation

temperature decreases, approaching the region of parameter space where nucleation does

not occur. The border between the nucleation and the non-nucleation areas is the portion

of parameter space which is optimal for gravitational waves, since it is where βH is minimal.

This behavior is in good agreement with the numerical results of Sec. 4, and one can verify

that Eq. (3.15) reproduces the behavior of the full numerical result when properly matched

to the models in Sec. 4 up to an overall scaling of the bounce action.

3.3 α, βH and fine-tuning

Now we can use our prediction for Tn to compute the parameters characterizing the FOPT:

• Within our analytical approximation, the temperature corrections only affect the

potential at the origin of field space and are exponentially suppressed for T < m∗.
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Therefore, we approximate α as

α ' 30

g∗(Tn)π2

∆V

T 4
n

, (3.17)

where the scaling of Tn can obtained by using (3.15). Within this approximation,

∆V is temperature-independent and the largest values of α correspond to Tn closer

to Tmin.

• The inverse time scale of the phase transition can be computed explicitly from (3.11),

giving

βH ' C

(
1.1N

C2/5
e−

m∗
Tn

(
Tn
m∗

)11/10(fam3
∗

∆V

)6/5

− 1

)
. (3.18)

One can easily verify that if Tn = Tmin, then βH ' 1 within the small VP expan-

sion. Moreover, the exponential dependence on Tn makes βH very sensitive to the

underlying parameters.

We now use the approximate βH formula in Eq. (3.18) to estimate the βH -tuning defined in

Eq. (2.18). We compute first the tuning with respect to VP , which is encoded in Eq. (3.18)

through the dependence of Tn on VP . At leading order in VP /m
4
∗ � 1 we obtain∣∣∣∣d log βH

d log VP

∣∣∣∣ =

∣∣∣∣(1− β0

βH

)∣∣∣∣ & ∣∣∣∣4 CβH
∣∣∣∣ (3.19)

where in the last step we used the fact that

β0 ' C
(
−1 +

5

2

m∗
T 0
n

)
& 4C (3.20)

since T 0
n < 10

21m∗ and βH . C in the interesting region of parameter space. The tuning

associated with the barrier height is the dominant one, given that the tuning with respect

to vacuum distance fa is suppressed by an extra factor of T 0
n/m∗. As in Eq. (2.17), we see

that the natural value of βH is βH ' C(Tn) ' 100 for the scales of interest in this study.

Smaller values of βH can be obtained at the price of fine-tuning the barrier height at the

percent level. This might imply an even larger tuning with respect to the fundamental

parameters of a given model, as we will show in a concrete example in Section 4.2.

3.4 A toy example: fine-tuning vs. single SUSY-breaking scale

We now present a simple toy model which captures most of the features of the pseudomod-

ulus potential in the explicit SUSY-breaking hidden sectors we will encounter in Sec. 4.

We take the zero-temperature potential to be

V0(x) = κ2
D

(
F − ε/Rx

2
)2

+
λ2

32π2
|F |2 log

(
λ2x2 +m2

∗
m2
∗

)
, (3.21)

which reproduces the shape of the potential sketched in Fig. 3. The first term captures

tree-level effects, while the second term captures one-loop quantum corrections. The x
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potential is flat at tree-level up to R-symmetry breaking operators parametrized by ε/R.6

SUSY-breaking corrections induced by heavy fields lift the x potential around the origin,

giving a mass to the pseudomodulus, but ultimately become subdominant for x �
√
F

where SUSY is restored in the direction associated to the F -term. This large-field behavior

is a unique characteristic of SUSY models.

As long as the explicit R-symmetry breaking is parametrically small, the position of

the true vacuum and the zero temperature difference energy between the true vacuum and

false vacuum are

〈x〉true = fa =

√
F

ε/R
, ∆V = (κDF )2 , (3.22)

where we have introduced the parameter κD to allow the scale controlling the difference

in vacuum energy to vary relative to the scale controlling the loop corrections along the

pseudomodulus potential. We will exhibit a concrete realization of such a model in Sec. 4.3.

Requiring the potential to be flat as in Eq. (3.3) requires ε/R < 1/
√
κD.

Following the triangular barrier prescription, we need to find the position of the barrier

and the value of the potential at the barrier; for the toy model these take the form

xP '
λ

8πκD
fa , (3.23)

VP '
λ2F 2

32π2

(
2 log

(
λ2fa

8πκDm∗

)
− 1

)
. (3.24)

From the last equation we see that the loop suppression of the zero-temperature barrier

VP , as assumed in Eq (3.4), is here an automatic consequence of the fact that the pseudo-

modulus direction is lifted by quantum corrections. For a single-scale model (i.e. κD = 1)

the position of the peak xP is fixed in terms of the one of the true vacuum fa, while for a

two-scale model, κD � 1 can enhance the hierarchy between xP and fa.

We are now ready to use the triangular barrier approximation in Eq. (3.6) to compute

the bounce action and the features of the FOPT between the origin and the true vacuum.

For ε/R < 1/
√
κD, fa is the largest scale in the problem and the approximation in Eq. (3.11)

is justified. If the general features of the bounce action characterize the FOPT in the low-T

expansion discussed above, this simple toy model allows us to say something more precise

about the scaling of the energy released during the FOPT. From Eq. (3.17) we have

α =
30

g∗(Tn)π2

(
κDF

T 2
n

)2

∼ 10−2κ2
D

(
F

m2
∗

)2( 230

g∗(Tn)

)
, (3.25)

where we normalized the number of relativistic degrees of freedom at Tn to be close to

the MSSM value and we substituted Tn ∼ T 0
n ∼ 0.5m∗, which is the natural value of the

nucleation temperature unless either VP or fa are tuned to suppress it (see Eq. (3.15)). In a

6As shown in Sec. 4.2, the potential controlled by ε/R can be obtained from a marginal operator breaking

R-symmetry in the superpotential. Similarly, one could study explicit R-breaking operators of arbitrary

dimension in the superpotential W/R =
ε/RX

n

nΛn−3 which correspond to tree level potentials of the form V (x) =(
F − ε/Rx

n−1

Λn−3

)2

. These types of operators would naturally be generated by UV dynamics as in Ref. [87].
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single-scale model where κD = 1, tuning Tn �
√
F is the only way to enhance the strength

of the FOPT. The same tuning will allow βH to be small. Conversely, in a two-scale model

of SUSY-breaking, having κD � 1 can compensate the suppression in Eq. (3.25) without

any tuning. We will show an explicit example of this class of hidden sectors in Sec. 4.3.

These are clearly the best candidates to be probed by future GW interferometers.

4 Explicit Models

In this section we provide two working examples of the general idea described in the previ-

ous sections. Both models are straightforward deformations of the minimal O’Raifeartaigh

model, which is the simplest theory of chiral superfields that breaks SUSY spontaneously [88].

The O’Raifeartaigh model involves three chiral superfields, namely the SUSY-breaking field

X containing the pseudomodulus and two messenger fields Φ1,2. The dynamics are deter-

mined by three parameters: the SUSY-breaking scale
√
F , the SUSY-preserving mass m of

the messengers, and the coupling λ between the three fields. To set the stage for our anal-

ysis, we begin in Sec. 4.1 by determining the phase diagram of the minimal O’Raifeartaigh

model which can be described as a function of the dimensionless parameter

yF
def
=
λF

m2
. (4.1)

The model exhibits a rich phase structure as a function of temperature and the underlying

parameters; for yF ∼ 1 the origin of the pseudomodulus is the global minimum at all T

and no interesting phase transitions occur, while for yF � 1 a second minimum develops

away from the origin that may become the global minimum at intermediate temperatures,

leading to a variety of phase transitions. Unfortunately, as we will see, none of these

phase transitions are sufficiently strongly first-order to generate an observable GW signal.

However, this minimal O’Raifeartaigh model serves as the foundation for SUSY-breaking

hidden sectors that do generate observable GW signals.

In Sec. 4.2, we present the simplest SUSY-breaking hidden sector featuring a strong

FOPT like the ones describe in Sec. 3. This hidden sector involves a marginal deformation

in the superpotential of the minimal O’Raifeartaigh model, breaking the R-symmetry ex-

plicitly and obtaining a pseudomodulus potential very similar to the one described in the

toy model in Sec. 3.4. We show that in such a simple single-scale model, α will be gener-

ically suppressed as predicted in Eq. (3.25), and discuss quantitatively the fine-tuning of

βH defined in Eq. (2.18). Phenomenologically, this model is unsatisfactory since the global

minimum restores SUSY, although this may be remedied by the introduction of external

SUSY-breaking effects.

In Sec. 4.3, we show how both the shortcomings of the simple model of Sec. 4.2 are

resolved in hidden sectors with two SUSY-breaking scales, in keeping with our expecta-

tions from Sec. 3.4. We make this concrete by gauging a U(1) flavor symmetry of the

messengers in the minimal O’Raifeartaigh model, which admits an additional source of

SUSY breaking via the Fayet-Iliopoulos term. This additional “D-term” supersymmetry

breaking provides a second SUSY-breaking scale, which both ensures that supersymmetry
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is broken everywhere on the pseudomoduli space and increases α, leading to observable

GW signals.

4.1 Warm up: The O’Raifeartaigh model at finite temperature

In the minimal O’Raifeartaigh model, the pseudo-modulus is stabilized at the origin by

quantum corrections. Since the R-symmetry is unbroken in the global minimum at T = 0,

one would expect that including finite temperature corrections will not induce any phase

transitions. Instead, the dynamics of the O’Raifeartaigh model at finite temperature

presents rich features that we discuss here in detail (see Refs. [89, 90] for earlier works

on related issues).

Having in mind applications to gauge mediated SUSY breaking, we consider the vector-

like version of the minimal O’Raifeartaigh model, which is described by the superpotential

W = −FX + λXΦ1Φ̃2 +m(Φ1Φ̃1 + Φ2Φ̃2) , (4.2)

encoding the interactions of the SUSY-breaking chiral superfield X and two vector-like

sets of messenger superfields Φi, Φ̃i (i = 1, 2). The first term is a tadpole ensuring that

supersymmetry is broken at the scale
√
F , while the second term encodes interactions

among the fields with strength λ. We take the masses of the two pairs of messengers

to be equal for simplicity. The superpotential above enjoys an unbroken R-symmetry

under which X carries R[X] = +2, as well as a U(1)D flavor symmetry under which the

messengers Φ and Φ̃ have opposite charges (see Fig. 4 right for a summary table with the

full charge assignment).

The potential for the scalar components of the chiral superfields is

V = |F − λφ1φ̃2|2 + |λXφ̃2 +mφ̃1|2 + |λXφ1 +mφ2|2 + |mφ1|2 + |mφ̃2|2 , (4.3)

where X = x√
2

denotes the scalar component of the pseudomodulus in the notation of

Eq. (3.1). For λF ≤ m2, the tree level vacuum of the theory is at φi = φ̃i = 0 with x

undetermined, and SUSY is broken at a scale
√
F . Radiative corrections from loops of

the messenger fields φ and φ̃ generate a potential for x that stabilizes it at the origin, and

thus the global vacuum at zero temperature lies at φi = φ̃i = 0 and 〈x〉 = 0. Note that

the one-loop corrections have the shape described in Sec. 3, being polynomial close to the

origin of the pseudomodulus potential and logarithmic for large field values. Expanding

for yF ≡ λF
m2 ∼ 1 we obtain

V 1-loop
x→0 ' λ3F

16π2
(log 4− 1)x2 − λ4

384π2
(12 log 2− 7)x4 +O(x6) , (4.4)

V 1-loop
x→∞ '

λ2F 2

16π2
log

(
x2

m2

)
, (4.5)

where we have fixed the renormalization scale to the messenger mass m. The thermal

corrections to the x potential can be added with standard formulas that we review in the

Appendix A.
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Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model

as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the

fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line

shows T? for this particular benchmark, where the new vacuum induced by thermal corrections

becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral

superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in

Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

λ2x2

4

(
1±

√
1 +

8m2

λ2x2

)
=

{
m for x→ 0

∼ x±2 for x→∞
, (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2 +λF,m2−λF}. The behavior of the full spectrum

as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ∼ λ2F 2

16π2 . For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ∼ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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Figure 5. Phase diagram of the O’Raifeartaigh model at fixed F/m2 = 4. For large λ the quantum

corrections dominate and the origin is the global minimum at all temperatures. For small λ, at

T = T? a new vacuum develops as a consequence of the interplay between the thermal and the

loop corrections as shown in Eq. (4.7). In dark red we show the range of temperatures where a

barrier is present between the origin and the true minimum, in light red we show the range of

temperatures where the barrier disappears. At lower temperatures, the origin again becomes the

global minimum, and the second minimum decays back into the origin. In blue we show the range

of temperatures where a barrier separates the two minima and in light blue the region when the

barrier disappears.

The thermal corrections compete with the loop corrections in the large x region (see

Eq. (4.5)), eventually leading to a minimum of the potential at

x? '
2
√

2πT

λyF
, T? ∼ 0.23

√
yFm , (4.7)

where x? is obtained using the high-T expansion for the thermal potential up to T 2, as-

suming 2 bosons and 2 fermions with masses-squared ' 2m4

λ2x2 , and T? is an estimate of the

temperature where the new minimum can be the global one. The latter is estimated by

requiring the temperature corrections at x? to be comparable to the height of the one loop

potential. If T? is close to m, then the neglected contributions from the states whose masses

grow with x2 lifts again the minimum at x?, which will then never be the global minimum

at any temperature. In conclusion, we expect that depending on the hierarchy between λF

and m2, the minimum at x? could become the global minimum in a certain temperature

range around T?. This complicated phase diagram is well summarized in Fig. 5, where we

have fixed the ratio F
m2 to a representative value and explore the dynamics of the model
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as a function of the temperature and coupling λ.

For large λ, corresponding to yF ∼ 1, the minimum at X? is never the global minimum

of the scalar potential (green region in the plot). For small λ, i.e. yF � 1 two phase

transitions occur while lowering the temperature. Specifically, at very high temperature

the global minimum is at the origin, as explained above. At intermediate temperatures

the global minimum is at X?, and finally at zero temperature the global vacuum is again

at the origin. The corresponding two phase transitions can be first or second order. We

have explored the parameter space of the model for different values of yF and λ, and found

that these phase transitions are never strongly first order (i.e. small βH and large α) in

the regime of perturbative λ.

Although the minimal O’Raifeartaigh model is itself not a good candidate for a strong

FOPT, it nonetheless provides the foundation for simple variations that are. We explore

these variations in the following subsections, restricting our attention to the region of pa-

rameter space in which the minimal O’Raifeartaigh model exhibits a simple thermal history

corresponding to the green region in Figure 5. Deformations of the minimal O’Raifeartaigh

model will endow this region with phase transitions as a function of temperature, while

avoiding the complications of new minima arising from the interplay of thermal and loop

corrections shown in the red and blue regions.

4.2 O’Raifeartaigh model with explicit R-symmetry breaking

Now we turn to a simple, concrete realization of a SUSY-breaking hidden sector whose

pseudomodulus potential exhibits the properties exlpored in Sec. 3. This model simply

amounts to deforming the minimal O’Raifeartaigh model studied in the previous section

with the following marginal, R-symmetry-breaking term in the superpotential:

W�R(X) =
1

3
εX3 . (4.8)

The complete tree-level scalar potential of the model is

V = | − F + εX2 + λφ1φ̃2|2 + |λXφ̃2 +mφ̃1|2 + |λXφ1 +mφ2|2 + |mφ1|2 + |mφ̃2|2 (4.9)

and assuming yF ≤ 1, the global minimum sits at 〈x〉true =
√

2F
ε and φi = φ̃i = 0.

In contrast to the minimal O’Raifeartaigh model, the R-symmetry-breaking deformation

destabilizes the origin at tree level and restores supersymmetry in the true vacuum.

The radiative corrections are identical to the ones in the O’Raifeartaigh at zeroth order

in ε, and they tend to stabilize the pseudo-modulus at x = 0, competing with the tree-level

contributions induced by the ε deformation. Close to the origin, the effective potential for

the pseudomodulus obtained by integrating out the φi and φ̃i fields reads (up to quartic

order)

V0(x) '
x→0

F 2 +
m2

eff

2
x2 − λeff

4
x4 ,

 m2
eff =

(
λ3

8π2 (log 4− 1)− 2ε
)
F

λeff = λ4

96π2 (12 log 2− 7)− ε2
, (4.10)
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where again we have approximated the loop corrections in the leading order in yF = λF
m2 ∼ 1.

For ε < λ3

16π2 (log 4− 1), the radiative corrections are sufficient to create a metastable

vacuum at the origin of x. In this regime, the ε contribution to the quartic is always

negligible. Along the pseudomodulus direction, there is now a true vacuum created by the

R-symmetry-breaking deformation and a false vacuum created by radiative corrections.

The height and location of the barrier between these two vacua may be approximated as

VP − V+ '
m4

eff

4λeff
∼ 24π2

λ4

(
λ3

8π2
(log 4− 1)− 2ε

)2

F 2 xP '
meff√
λeff

, (4.11)

This approximation is valid if xP . m
λ , that is if there is a cancellation between the two

terms in m2
eff such that m2

eff . λ3

96π2F . The global minimum far away from the origin is

not modified by the quantum corrections since SUSY is effectively restored there (we will

come back to this point in Sec. 4.2.2) and stays at 〈x〉true =
√

2F
ε , so that ∆V = F 2.

In summary, this hidden sector provides a concrete realization of the toy model dis-

cussed in Sec. 3.4. A direct consequence of having a single SUSY-breaking scale
√
F is that

the potential difference ∆V and the quantum corrections determining the barrier are both

controlled by the same scale. This corresponds to κD = 1 in the toy model of Sec. 3.4,

and typically leads to suppressed α as we will show below. The formulae above allow

straightforward matching of the model parameters onto the variables entering in the tri-

angular barrier bounce action of Sec. 3.2. In the following, we will compare our analytical

expectations with the full numerical analysis of the FOPT from the origin to the 〈x〉true

vacuum.

4.2.1 First order phase transition dynamics

We now study the model at finite temperature with an eye towards the dynamics of the

phase transition associated to R-symmetry breaking. The thermal corrections to the X

potential are equivalent to the ones that we studied in the simplest O’Raifeartaigh model,

up to small corrections proportional to ε. The main difference is that the thermal effects

are added on top of a zero-temperature potential described in the previous section, where

the global minimum is far away from the origin. If we restrict to the parameter space where

λF/m2 ∼ 1 (the green region of Fig. 5), the role of the thermal corrections is to stabilize the

origin at high temperature. Lowering the temperature, the thermal history is very similar

to the one described in section 3: the negative thermal contributions at the origin decrease

in absolute value until we reach Tc, where the minimum at x = 0 is degenerate with the

minimum at xtrue. An analytic estimate of this temperature can be obtained following

Eq. (3.12). By further lowering the temperature, the thermal corrections become more and

more negligible and one recovers the zero-temperature potential with a local minimum at

the origin separated from the true vacuum by a loop-induced barrier.

Bounce action and nucleation temperature The next step in determining the phase

transition dynamics is to compute the bounce action and the nucleation temperature. In

the left panel of Fig. 6, we show the numerical result for the nucleation temperature Tn as a

function of the two dimensionless couplings of the model, having fixed yF ≡ λF/m2 = 3/4
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Figure 6. From the left to the right, we show the behavior of Tn/
√
F , βH and α in the

O’Raifeartaigh model with explicit R-symmetry breaking described in Eq. (4.8). We fix yF = 3/4

and F = 30 PeV so that the entire parameter space of the model can be shown in the (λ, ε) plane.

The black dashed contours in the left plot show Tn/
√
F . The red-to-blue gradients show

contours of tn as defined in Eq. (4.12) (left), of βH as defined in Eq. (2.16) (center) and of α as

defined in Eq. (2.15) (right). The GW signal weakens going from red to blue. Above the green

dashed line, the barrier separating the false and true vacua disappears at zero temperature. The

grey regions are not considered in our numerical scan because βH is too large (top left) or λ is

non-perturbative. In the white region the nucleation condition in Eq. (2.13) cannot be satisfied.

and the scale of SUSY breaking to
√
F = 30 PeV for concreteness. Numerically we see

that Tn ∼
√
F as assumed in the general discussion around Eq. 2.31. As can be seen from

the explicit formula in Eq. 3.15, this feature is a consequence of the fact that F cannot be

arbitrarily decoupled from m2 if we require yF ∼ 1 and perturbativity of λ.

Keeping ε fixed, we see that the nucleation temperature Tn decreases when λ increases,

up until reaching the no-nucleation zone. Indeed, increasing λ makes the barrier between

the two vacua higher, and the bounce action larger, decreasing the likelihood that the

phase transition completes. When the bounce action increases, the nucleation temperature

lowers, approaching Tmin at the border of the no-nucleation region. Conversely, decreasing

λ at fixed ε shifts the nucleation temperature towards Tc. In Fig. 6 we plot the quantity

tn
def
= min

(
Tc − Tn
Tc

,
Tn − Tmin

Tmin

)
, (4.12)

which indicates whether Tn is closer to Tc or Tmin. As we will see this quantity is strongly

correlated with the strength of the signal.

The main effect of ε on the pseudomodulus potential is to set the distance in field space

between the origin and the true vacuum. The barrier is also ε-dependent, but away from

the region where the effective mass in Eq. (4.10) changes sign, the effect of varying ε is

negligible. Decreasing ε makes xtrue = fa larger. From Eq. (3.11) we see that the bounce

action grows, making it more difficult for the phase transition to occur. This explains why
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lowering ε at fixed λ causes the nucleation temperature to decrease until the no-nucleation

region is reached.

The interesting area of the parameter space is the sliver between the no-nucleation

region and the region where there is not a barrier at T = 0. Within this sliver, λ3

16π2 ∼ ε

and the effective mass of the pseudomodulus in Eq. (4.10) is small and positive (in units of√
F ∼ ∆V 1/4). The whole region shrinks for small ε because the true vacuum is pushed to

large field values, and there is no nucleation unless the effective mass at the origin is tuned

to be small.

The scaling of Tn/
√
F with the Lagrangian parameters can be captured by the analytic

approximations presented in Sec. 3. We match the generic parameterization of Sec. 3 using

the expressions in (4.10) and (4.11), giving

Tn ∼
40
√
λF

63

1

log
(

1 + 0.76 λ6/7

C4/21ε2/7

) (1 − 0.015

(
λ9

C2ε3

)1/5
)
, (4.13)

where we have approximated the radiative corrections for yF ∼ 1. This expression quali-

tatively reproduces the left panel of Fig. 6, up to an overall normalization of the bounce

action (corresponding to a shift in C).
For large ε, the rightmost term in parentheses in (4.13) is always O(1), and hence the

variation of Tn is largely controlled by the prefactor. The ∼
√
λ scaling of the numerator

is balanced by the log λ scaling in the denominator, and the resulting prefactor of Tn
is essentially flat in λ and only decreases with decreasing ε. In the small ε region, the

rightmost term in parentheses in (4.13) becomes smaller than 1 and controls the shapes of

the Tn contours, in agreement with the left panel of Fig. 6.

α, βH and fine-tuning The microscopic properties of the FOPT dynamics are encoded

in the two parameters α and βH , which correspond to the energy release and the duration

of the phase transition. In the central and rightmost panels of Fig. 6, we show the behavior

of βH and α in the (λ, ε) plane. Here the scaling of α is essentially dictated by the scaling

of Tn/
√
F , since α ∼ 30

g∗π2
∆V
T 4
n

and ∆V ∼ F 2. We see that in the parameter space explored

here, we cannot reach large values of α except in the thin sliver towards small ε and λ

where Tn ∼ Tmin and Tmin is minimized with respect to
√
F . This unfortunate feature is a

generic prediction of a single-scale SUSY-breaking hidden sector, as discussed in Sec. 3.4.

As shown in Fig. 6, βH is small in the regions of the parameter space at the border of

the no-nucleation zone where Tn ∼ Tmin. Getting closer and closer to this boundary, one

can achieve βH . 100 at the price of a large tuning of the model parameters as discussed

in Sec. 2.2. The fine-tuning is dominated by the tuning of the barrier VP between the

two minima. Substituting the dependence of VP on the Lagrangian parameters, we can

estimate the the tuning of βH with respect to λ as

∂ log βH
∂ log λ

& 8

(
C(Tn)

βH

)
. (4.14)

The same fine-tuning can be computed numerically using the prescription of Eq. (3.19).

We show the results in Fig. 7, where we see that βH . 100 corresponds to ∆βH ∼ 103,
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Figure 7. Behavior of βH (black solid curve) and the associated fine-tunings defined in Eq. (2.18)

as a function of λ for m2/F = 4 and
√
F = 30 PeV. The left and right plots correspond to two

different values of ε. The black dashed curve shows the fine tuning w.r.t. λ, which dominates

over the fine tuning w.r.t ε shown as a red dashed curve. The λ fine-tuning corresponds to the

total fine-tuning ∆βH shown as a light blue solid line.

which is larger than the estimate derived above. The numerical results also confirm our

expectation that the tuning associated with the λ parameter (setting the height of the

barrier) dominates relative to the tuning associated with the ε parameter (setting the

location of the true vacuum). Comparing the left and right panels in Fig. 7, it is apparent

that the tuning grows in the region of small ε, where α is larger.

4.2.2 Phenomenological Challenges

As discussed in the previous section, the model presented here is not optimal for generating

a sizable SGWB signal. Indeed, by comparing the resulting values of α and βH in Figure

6 to the values displayed in Figure 2, it is clear that the typical value of α is too small

to lead to a detectable signal. Of course, this issue can be resolved by going in a tuned

region of the parameter space where a very small ε and an appropriately fine-tuned λ

give T ∼ Tmin and a suppressed Tmin compared to
√
F . However, it is fair to say that,

in general, a perturbative single-scale SUSY-breaking hidden sector cannot lead to strong

SGWB signals. For this reason, we do not display the SGWB for this model, although it

may easily be inferred from the α, βH , Tn plots in Figure 6.

As shown in the simple toy model of Sec. 3.4, the suppression of α is a consequence of

the fact that in a single-scale SUSY-breaking hidden sector one cannot significantly separate

∆V from T 4
n . Notice that this conclusion hinges on requiring yF ∼ 1, which is necessary

to avoid the region shown in Fig. 5 where thermal corrections at high temperatures induce

new minima. A more careful study of the dynamics of single scale models for yF � 1 is

left for future work.

In addition to the α suppression, the true vacuum in this model restores SUSY, so
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that the phase transition is not genuinely a “SUSY-breaking phase transition”; this sector,

as presented, cannot be responsible for the SUSY breaking transmitted to the MSSM.

However, this is not a fatal obstruction, as the vacuum energy in the true vacuum far from

the origin can be easily lifted by coupling to another source of SUSY breaking, very much in

the spirit of [91]. If we require the new source of SUSY-breaking to not significantly affect

the dynamics of the phase transition, the parametrics of the model will not significantly

deviate from those presented here and the resulting α will be still suppressed. Interestingly,

our analysis seems to point towards SUSY-breaking hidden sectors with multiple dynamical

field directions and scales. In the next section, we will exhibit the simplest model of this

type, leaving a more thorough exploration of the different possibilities for future study.

4.3 O’Raifeartaigh model with gauge interactions

In the previous subsection we analyzed a simple model displaying a first order phase tran-

sition associated with the breaking of the R-symmetry. However, there were two aspects

that were not completely satisfactory: i) SUSY breaking in the global minimum had to

be added as a further deformation, and ii) the phase transition was generically not strong

enough to generate a sizable signal. Both issues were related to the fact that there was

only one SUSY breaking scale in the problem. In this subsection we resolve these issues

in a hidden sector where the global minimum breaks both SUSY and R-symmetry spon-

taneously and the presence of two SUSY breaking scales leads to a strong FOPT from the

origin to the true minimum.

It is well-known that adding gauge interactions to SUSY breaking models with chiral

superfields modifies the potential and typically leads to a new SUSY- and R-symmetry-

breaking vacuum at large field values (see e.g. [14]). As a prototype of this class of models

we consider the simplest realization, which consists of the vector-like O’Raifeartaigh model

of the previous sections where the anomaly-free U(1)D flavor symmetry defined in the right

panel of Fig. 4 is gauged. The model we consider has been studied at zero temperature

in [92]. The qualitative features that we find here are generic to models where SUSY is

broken through the interplay of F - and D-term effects.

The field content and superpotential are the same as those introduced in (4.2). The

gauging of the U(1)D symmetry contributes new terms in the scalar potential from the

D-term contribution. The F - and D-term contributions to the potential together give

VF + VD = |F − λφ1φ̃2|2 + |λXφ̃2 +mφ̃1|2 + |λXφ1 +mφ2|2 + |mφ1|2 + |mφ̃2|2 +

+
g2

2

(
D

g
+ |φ1|2 − |φ̃1|2 + |φ2|2 − |φ̃2|2

)2

, (4.15)

where g is the gauge coupling of the U(1)D symmetry and we have also included a UV

Fayet-Iliopoulos (FI) termD/g. This FI term contributes a second source of SUSY breaking

that will strengthen the GW signal. Note that the model contains, in addition to the

O’Raifeartaigh degrees of freedom, a gauge boson and gaugino associated with the U(1)D
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vector multiplet. We focus on the regime where yF . 1 and we do not discuss the origin

of the FI term here.7

The scalar potential at zero temperature As a first step, we analyze the zero-

temperature vacuum structure and map it onto the parameterization of Section 3. Ne-

glecting the gauge dynamics, the tree-level potential has a minimum at φi = φ̃i = 0 where

SUSY is broken everywhere along the F -flat pseudomoduli space parameterized by X. In-

cluding the gauge interactions, the minimization of the D-term part of potential favors

configurations where the φ̃i fields acquire a VEV to compensate for the FI term D/g. This

results in a tension between the minimization of the F -term and D-term contributions to

the potential. While the F -term can never be set to zero, one can find a runaway direction

in field space which leads, asymptotically, to the vanishing of the D-term.

First, we can solve for the F -terms of Φ1 and Φ̃2 by taking

φ̃1 = − λ
m
Xφ̃2 , φ2 = − λ

m
Xφ1 . (4.16)

On this solution the scalar potential simplifies to

V = |F 2 − λφ1φ̃2|2 + |mφ1|2 + |mφ̃2|2 (4.17)

+
g2

2

[
|φ1|2

(
λ2|X|2

m2
+ 1

)
− |φ̃2|2

(
λ2|X|2

m2
+ 1

)
+
D

g

]2

. (4.18)

Note that φ1, φ̃2 have vanishing R-charge, so the only direction where the R-symmetry is

spontaneously broken is along x. In order to visualize the shape of the scalar potential and

the approach to the runaway, we show in Fig. 8 the tree level scalar potential as a function

of x, as well as the values of φ1 and φ̃2 as a function of x.

The scalar potential is flat around the origin and then turns to the runaway direction

along which the D-term diminishes. The turning point along x is where the fields φ1 and

φ̃2 acquire a non-vanishing VEV. The VEV of φ1 is different from zero since the potential

energy is most efficiently minimized if φ1 partially cancels the first term in (4.18) as well as

minimizing the D-term. The VEV of φ1 is suppressed by a factor ∼ gF
λD with respect to the

VEV of φ̃2. An analytic estimate of the scalar potential can then be captured by working

at zeroth order in the VEV of φ1. In this approximation, and focusing on the parameter

region where gD/m2 < 1, the effective mass-squared for the φ̃2 field is X-dependent,

m2
φ̃2

= m2 − gD − λ2gD

2m2
x2 ⇒ x2

trans '
2m2(m2 − gD)

λ2gD
(4.19)

and turns negative at the transition point xtrans where the field φ̃2 develops a VEV.

7The inclusion of a fundamental FI term is not strictly required to obtain a strong FOPT. A very similar

potential for the pseudomodulus can be obtained by considering two different masses for the messengers

and working in the regime where λF > m1m2. Models with multiple F -terms would also lead to similar

conclusions.
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The potential for x is flat for x ≤ xtrans , while for x ≥ xtrans it can be obtained by

integrating out φ̃2,

Vtree(x) '

 F 2 + 1
2D

2 = V+ x < xtrans

F 2 + 1
2D

2 − λ4D2(x2−x2
trans)

2

2(2m2+λ2x2)2 x > xtrans

. (4.20)

Since we work in the small-g regime, radiative corrections from the gauge sector may

be neglected, such that the 1-loop corrections are the same as the ones discussed in the

previous sections (see Eq.s (4.4) and (4.5)). They have two effects, namely i) they create

a local minimum at the origin, and ii) they generate a global minimum at large x values

along the D-flat direction.

The barrier between the two vacua is approximately at x ' xtrans where we can

estimate the one-loop potential simply by the large field behaviour in (4.5), giving

VP − V+ '
λ2F 2

16π2
log

(
x2

trans

m2

)
, xP ' xtrans . (4.21)

Combining the approximate tree level potential in (4.20) with the loop corrections in (4.5),

we find that the true vacuum at large field values lies at

〈x〉true = fa '
4
√

2π

λyF

√
D

g
, ∆V ' 1

2
D2 , (4.22)

where the difference in potential energy between the two minima is dominated by the

D-term contribution. This completes the matching of the potential of this model to the

general discussion of Section 3. Note that here the SUSY-breaking F -term controls the

height of the barrier in Eq. (4.21), while the SUSY-breaking D-term sets the potential

energy difference as in Eq. (4.22) . This implies that the phase transition can have sizable

values of α, as we will see in the numerical analysis.

4.3.1 First order phase transition dynamics

We now turn to the finite-temperature corrections and compute the parameters associated

with the phase transition. Note that the spectrum is similar to the O’Raifeartaigh model

with the addition of the gauge boson and the gaugino of the U(1)D symmetry. These

additional states are massless in the false vacuum and massive in the true vacuum, so they

contribute to making the origin the global minimum at high temperatures.

We numerically evaluate the one-loop and the thermal corrections to the scalar po-

tential, and then compute the bounce action for tunneling from the false vacuum to the

true vacuum. In Appendix B.1.2 we present the triangular barrier approximation for this

model and compare it with the full numerics. Even though the bounce profile in field space

involves three different fields, i.e. (x, φ1, φ̃2), in our numerical scan, we approximate the

bounce as one-dimensional, neglecting the contribution from the φ1, φ̃2 directions. As de-

tailed in Appendix B.2, we checked the single field approximation against the full 3d bounce

action computed numerically with both FindBounce [85] and CosmoTransitions [86]. As

a result, the single field approximation gives a good description of the bounce as long as

– 36 –



� �� �� ��

�-

�

��

��

��

� / �

�
(�
)
/
�
�

�����

�����=�
�+
�

�
��

�
����

�����

��

��

�� � �� �� �� �� �� �� �� �� �� �� ��
���

���

���

���

���

� / �

〈ϕ
〉
/

�

ϕ�

ϕ

�

Figure 8. Left: Tree level and one-loop scalar potential as a function of the pseudomodulus

direction x minimizing the directions φ1 and φ̃2. The dashed blue line shows the tree level

potential which is flat around the origin and develops a runaway at xP ' xtrans (see Eq, (4.19)).

Quantum corrections generate a local minimum at the origin as shown by the black solid line in

the small quadrant and a global minimum far away in field space indicated with a green dashed

line. The difference in energy density is ∆V ' 1
2D

2. Right: The VEVs of the fields φ1 and φ̃2
while moving along the x-direction. Interestingly, both VEVS increase only at the barrier and they

are otherwise quite small compared to
√
F . For reference, the benchmark used in both plots has

(F = 1 ,m = 2 , D = 6 , λ = 2.9 , g = 1).
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Figure 9. From the left to the right we show the behavior of Tn/
√
F , βH and α in the

O’Raifeartaigh model with gauge interactions described in Eq. (4.18). We fix F = 30 PeV, yF = 3/4

and yD = 1/5 so that the entire parameter space of the model can be shown in the (λ, g) plane. The

black dashed contours in the left plot show Tn/
√
F . The red-to-blue gradients show contours

of tn as defined in Eq. (4.12) (left), of βH as defined in Eq. (2.16) (center) and of α as defined in

Eq. (2.15) (right). The GW signal weakens going from red to blue. In the gray shaded region at

the bottom R1d/3d > 0.5 and as described in Eq. (B.29) our 1d approximation is expected to break

down. The grey region on the left is excluded by the perturbativity of λ below m. In the white

region the nucleation condition in Eq. (2.13) cannot be satisfied.
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φ1, φ̃2 are smaller than X at the bounce release point (defined as the starting point of the

tunneling set at r = 0, where the kinetic terms of all the fields are exactly zero). In order

to estimate where we expect sizable deviations from the multidimensional contribution,

we borrow some intuition from the triangular barrier approximation, where S3/T scales as

∼ X3, and define

R1d/3d
def
=

X3(r)(
X2(r) + φ2

1(r) + φ̃2
2(r)

)3/2

∣∣∣∣∣∣∣
r=0

, (4.23)

where X(0), φ1(0) and φ̃2(0) are the field distances from the origin computed at the release

point r = 0. In Fig. 9 we show the region where R1d/3d > 0.5 and we expect deviations of

50% or more from our one-dimensional estimate of the bounce action. As we can see, this

region is not phenomenologically relevant since it is quite far from the interesting region

for GW signals.
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Figure 10. Same as in Fig. 9 but in the (λ,D/F ) plane, fixing F = 30 PeV, yF = 3/4 and g = 0.1.

The parameter space of this model can be explored at fixed F , after fixing the two

ratios

yF
def
=
λF

m2
, yD

def
=
gD

m2
. (4.24)

In Fig. 9 we show the behavior of Tn, α, and βH in the (λ, g) plane, having fixed
√
F = 30

PeV and yF = 3/4 as in the previous model and set yD = 1/5. Keeping fixed the ratios in

Eq. (4.24), the triangular barrier parameters scale as

fa ∼
1

g
√
λ

,
∆V

F 2
∼ λ2

g2
,

VP
F 2
∼ λ2 ,

m∗√
F
∼
√
λ . (4.25)

As a consequence of these scalings, using Eq. (3.11) it is straightforward to see that for

fixed λ the boundary of the nucleation region is reached for large g, while for fixed g the

boundary lies at small λ. The shape of the nucleation temperature Tn can be captured by
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a simple analytic formula after rewriting Eq. (3.15) in terms of the theory parameters:

Tn ∼ 0.73
√
λF

1

log
(

1 + 22.5
C4/21

( g
λ

)4/7)
(

1− 20.5

(
g6

C2λ6

)1/5
)
. (4.26)

This expression reproduces the contours in Fig. 9 (left) up to overall normalization.

In the middle and right panels of Fig.9 we show the contours for βH and α, respectively.

The main difference compared to the model in Sec. 4.2 is that even if Tn ∼
√
F , it is possible

to obtain sizable values of α because ∆V is here controlled by the D-term. Approaching

the boundary of the nucleation zone without fine-tuning the theory parameters by more

than O(1) we can reach βH ∼ 100 and α ∼ 0.3− 0.4, which we use as a benchmark for our

summary plot in Fig. 1.

The interplay of the two SUSY-breaking scales
√
F and

√
D is an essential ingredient

for a strong FOPT. This is illustrated in Fig. 10, where we show the behavior of Tn, α,

and βH in the (λ,D/F ) plane, having again set
√
F = 30 PeV and yF = 3/4, and now

fixing g = 0.1. In this scaling the FOPT is essentially independent of λ, and one can see

clearly that the separation of D from F is the crucial ingredient for a sufficiently strong

phase transition. Notice that the required separation is O(1) and therefore not obviously

in tension with theoretical bounds on large D-terms [93]. Strictly speaking, these bounds

do not apply to our simple model, where a tree level Fayet-Iliopoulos term makes the

Ferrara-Zumino multiplet not gauge invariant [94]. However they would have applied if

we were to UV complete this model to a full-fledged model of dynamical SUSY-breaking

or for instance if we were to explore the second branch of the model with two different

messengers masses and λF > m1m2.

4.3.2 Gravitational Wave spectrum and phenomenology

Having shown that a strong FOPT can be achieved without fine-tuning in a SUSY-breaking

hidden sector with at least two SUSY-breaking scales, we now turn to the gravitational

wave signal itself, again using the simple model presented in the previous section as a

benchmark. As discussed in Sec. 2.2, computing the SGWB signal requires understanding

the macroscopic dynamics of the vacuum bubbles expanding in the plasma. This is essen-

tially determined by the balance of the energy ∆V released in the FOPT and the pressure

effects from the plasma (see Eq. (2.19)). If pressure effects stop the bubbles before they

collide, most of the SGWB signal will be sourced by the energy released in the plasma.

In Sec. 2.2 we described a quite unique friction mechanism at work in our class of mod-

els. This mechanism is a direct consequence of two peculiar features of the pseudomodulus

potential: i) the nucleation temperature Tn ∼
√
F is set by exponentially suppressed tem-

perature corrections to be smaller than the typical scale of the heavy states in the theory

m, and ii) the true vacuum VEV is typically the larger scale in the problem and controls

the mass variation ∆m2/m2 ∼ λ2f2
a/m

2 � 1 of the heavy states from the false to the

true vacuum. These two properties together imply that when the vacuum bubbles accel-

erate enough, γTn > mtrue and the heavy states can cross the bubble wall. Their crossing

switches on a new pressure effect which is generically larger than ∆V and immediately

stops the bubble runaway.
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Figure 11. Predicted SGWB in the O’Raifeartaigh model with gauge interactions. We show the

prediction for various values of the SUSY-breaking scale
√
F = 1, 10, 30 PeV and choose the theory

parameters such that α ' 0.3 and βH ' 50. As discussed in the text, achieving these values does

not require any tuning in this model. The SUSY-breaking scale correlates with the peak frequency

of the GW spectrum, which is always dominated by sound waves as shown in Eq. (4.28).

This last statement can be checked explicitly with the parametric dependence of the

simple model described here. The heavy state pressure term in Eq. (2.21) scales as

∆P heavy
LO ∼ 4π2

3y2
F g
FDe−mfalse/

√
F , (4.27)

where we used the scaling of the true vacuum as a function of the theory parameters in

Eq. (4.22) and approximated Tn '
√
F for simplicity (this approximation is numerically

correct up to an O(1) factor as shown by the dashed contours in Fig. 9). Inside the

exponential, we should take the lightest heavy states in the plasma mfalse ∼
√
m2 − λF

which are of course less Boltzmann suppressed and dominate the friction. Comparing this

quantity with the energy released in the phase transition ∆V = D2/2 we can get the range

of the gauge coupling g such that this friction prevents the bubble runaway,

g .
8π2

3yF

F

D
e−mfalse/

√
F . (4.28)

Plugging in the typical numbers for our phase transition (F/D ∼ 1/5, yF ∼ 3/4 and

mfalse/
√
F .

√
λ . 2.5) indicates that the vacuum bubbles are always stopped in the

range of interest for the gauge coupling g for perturbative values of λ. The predicted boost
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factor at equilibrium in this case is

γheavy
eq =

mtrue

Tn
∼ λfa√

F
, (4.29)

where again fa is defined in this model by Eq. (4.22). As a final remark, we notice that

the NLO friction induced by gauge degrees of freedom radiated through the wall never

dominates over the one from heavy states in the interesting range of the gauge coupling g.

Given that the bubble runaway is always prevented, the dominant SGWB comes from

sound waves in the plasma. The predicted energy fraction as a function of frequency at GW

interferometers has been discussed in Eq. (2.25) and below. Putting everything together,

in Fig. 11 we compare our model predictions with the PLI curves for future GW interfer-

ometers derived in Appendix C.1. This clearly demonstrates that SUSY-breaking hidden

sectors with multiple SUSY-breaking scales can generate stochastic signals detectable at

future GW interferometers. Moreover, it makes explicit the expected correlation between

the SUSY-breaking scale and the peak frequency of the resulting SBGW. All that remains

is to explore the full range of viable SUSY-breaking scales (and hence signal frequencies),

as well as the correlation between signals at GW interferometers and other experiments.

In the next section, we will bound the SUSY-breaking scale from above around ∼few tens

of PeV by computing the gravitino cosmological abundance. By specifying a mediation

mechanism, we will also use the explicit hidden sector presented here to show how the

SUSY-breaking scale determines the spectrum of MSSM superpartners, thereby correlat-

ing signals at GW interferometers and future colliders.

5 Phenomenology

Having demonstrated that the first-order phase transition in a SUSY-breaking hidden sec-

tor can generate an observable GW signal, we now turn to complementary aspects of hidden

sector phenomenology that shape the motivated parameter space and suggest additional

experimental tests in the event of a signal at GW interferometers. We begin with universal

features that are intrinsic to the hidden sector itself and independent of the mediation

mechanism that connects the hidden sector to the MSSM. This includes key aspects of

gravitino cosmology, where we will see that the requirement Tr.h. =
√
F implies an upper

bound on
√
F even if m3/2 receives extra contributiosn from other SUSY-breaking sectors

as in Eq. (2.2). We also explore the prospects for collider searches for the gravitino (in-

dependent of the MSSM spectrum), finding that future high energy lepton colliders could

probe almost the entirety of the light gravitino window (i.e. m3/2 < 16 eV) by directly

producing gravitino pairs. We then relate the parameters of the hidden sector to the spec-

trum of the MSSM, which requires specifying details of the mediation mechanism. Here

we consider the prototypical example of gauge mediation via vector-like messengers, where

the parameter space for observable GW signals generates a superpartner spectrum within

reach of future proton-proton colliders such as FCC-hh.
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Figure 12. Parameter space of low energy SUSY-breaking in the (m3/2,
√
F ) plane. The gray

shaded region is excluded by gravitino overabundance and the requirement m3/2 < mNLSP, having

fixed mNLSP = 500 GeV. The red dashed line shows the region where Ω3/2 = ΩDM for different

values of the gluino soft mass. The colored regions show the sensitivities of different GW interfer-

ometers to signals with fixed α = 1 and βH = 50. The two dark green and light green bands

show the impact of the present LHC bounds [24–27] and the future FCC-hh reach on gluinos [28]

for perturbative messenger sectors with gM ∈ (0.01, 0.1) (see Eq. (2.10) for a definition of gM ). The

dark blue dashed lines show the values of κ = F/F0, the ratio between the total SUSY-breaking

scale F0 and one controlling the soft masses (see Eq. (2.2)). As discussed in Eq. (2.11), we expect

constraints on flavor changing neutral currents to exclude κ . 10−8 as indicated by the dark blue

arrows. The dark magenta thick line indicates the BBN bound on the higgsino NLSP decaying

to gravitino plus hadrons as obtained in [30].

5.1 Gravitino cosmology vs future colliders

The gravitino overabundance is a well known problem of LESB scenarios [37–39]. This

problem is exacerbated in our setup, because having sizeable GW signals from the SUSY-

breaking hidden sector requires the reheating temperature Tr.h. to be at least as high as

the SUSY-breaking scale, enhancing the gravitino production from scattering as detailed

in Eq. (2.8). In light of this tension, here we delve into further detail about the two viable

scenarios sketched Sec. 2.3. Since Tr.h. ∼
√
F , which is much larger than the scale of the

soft masses, the main player in determining the final gravitino abundance is the production
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from UV scattering computed in [42–45]. The final yield can be written as

Y UV
3/2 = CUV

M2
3

√
F

m2
3/2MPl

, CUV =
45
√

5f3

8π13/2g
3/2
∗
' 4× 10−5 , (5.1)

where the production through gluon-gluino scattering dominates over the other channels

and we have substituted Tr.h. '
√
F , which is the lowest reheating temperature compatible

with our scenario. Following Eq. (2.2), we assume that the gravitino mass m3/2 is set by

an independent SUSY-breaking scale F0 = F/κ, possibly higher than the one setting the

soft spectrum (i.e. κ� 1).

Ultralight gravitino window vs. pair production at future colliders If the grav-

itino mass and the soft spectrum are set by the same SUSY-breaking scale
√
F , the yield

scales as Y UV
3/2 ∼ MPl/

√
F . For sufficiently low SUSY-breaking scales, the yield becomes

just the equilibrium one, Y UV
3/2 > Yeq, where Yeq = neq

3/2/s = 1.8× 10−3. The gravitino is a

thermal relic as long as
√
F .

(
3
45MPlM

2
3

)1/3
, which corresponds to

√
F . 8.6× 107 GeV

for M3 = 2 TeV. Moreover, since
√
F � m3/2, the gravitino is relativistic at freeze-out

and its abundance today is constrained by measurements of the matter power spectrum at

short scales [40, 41]. The current bounds imply

m3/2 . 16 eV , F . 260 TeV . (5.2)

The above requirement identifies the ultralight gravitino window. Although it is unquestion-

ably challenging to decouple the soft spectrum from the LHC in this window (see [78, 79]

for attempts in this direction), it is interesting to ask whether future colliders can test this

window in a model-independent fashion through direct pair production of the longitudinal

component of the gravitino, the goldstino. This production rate depends directly on
√
F

even when the MSSM superpartners are decoupled, and so provides a direct experimental

test of the SUSY-breaking sector.

The projected sensitivity to gravitino pair production at both hadron and lepton col-

liders is displayed in Figure 1. For the bound at future lepton colliders, we consider a high

energy lepton collider operating at
√
s = 30 TeV. Assuming minimal cuts on the photon

kinematics (Eγ > 50 GeV, |ηγ | < 2.4), the signal cross section from Eq. (2.7) is

σ30TeV(`+`− → G̃G̃γ) ' 487 fb

(
10 TeV√

F

)8

. (5.3)

Applying the same minimal cuts on the photon, the SM background (estimated with Mad-

Graph5 [95, 96]) is σSM ' 2pb. In contrast to LEP, at high energy lepton colliders the SM

background is dominated by WW fusion while the Drell-Yan process with an ISR photon

is negligible. We can then derive a lower bound on the scale of SUSY breaking as displayed

in Figure 1 given an assumed integrated luminosity, namely

√
F & 25 TeV

(
L

100 ab−1

)1/16

, (5.4)
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which is still an order of magnitude away from entirely closing the ultralight gravitino

window. However, improved analyises and new cosmological data could strengthen the

gravitino mass bound by an order of magnitude, potentially closing the ultralight gravitino

window completely. For instance, Ref. [97] already claims a bound on the gravitino mass of

m3/2 < 4.7 eV; although the robustness of this bound is subject to interpretation, improved

limits from Planck data are likely to be comparable.

In order to estimate the reach of future hadron colliders, we perform a rescaling of the

limits discussed in [23], based on the mono-photon search of ATLAS [98], which constrain√
F & 850GeV with 20.3fb−1 at

√
s = 8 TeV.8 As at lepton colliders, the signal cross

section for gravitino pair production in association with a photon σ(pp→ G̃G̃γ) scales as

s3/F 4 at hadron colliders [22]. To estimate the limit attainable at
√
s = 100 TeV, we first

compute the ratio of the signal cross sections at
√
s = 100 TeV and

√
s = 8 TeV, taking

the partonic signal cross section to scale as σsig ∼ ŝ3/F 4 and assuming that the pT,γ ≥ 125

GeV cut at
√
s = 8 TeV is increased to pT,γ ≥ 1 TeV at

√
s = 100 TeV. We additionally

compute the ratio of background cross sections, assuming the partonic background cross

section scales as σbkg ∼ 1/ŝ. Using the
√
s = 8 TeV signal and background predictions in

[98] and the above ratios, we find the expected limit at
√
s = 100 TeV to be

√
F & 12 TeV

( √
s

100 TeV

)3/4( L
30 ab−1

)1/16

, (5.5)

which is the one displayed in Figure 1. Even with this aggressive estimate, the reach of high

energy hadron colliders is limited compared to the reach of high energy lepton colliders

because the signal cross section at the former only grows with ŝ3, while at the latter it

grows as s3.

Gravitino Dark Matter window If the SUSY-breaking scale
√
F0 setting the gravitino

mass exceeds the scale
√
F of the hidden sector, we can treat m3/2 as a free parameter and

access an interesting region where the gravitino is never in thermal equilibrium with the SM.

This could arise naturally from additional sequestered sectors that break supersymmetry

at higher scales. As shown in Fig. 12, we also require this new source of SUSY-breaking to

not spoil the defining phenomenological features of LESB, namely i) the gravitino is still

the LSP, and ii) the soft masses are dominated by the flavor-diagonal contribution from

gauge mediation.

Requiring the gravitino avoid thermalization, Y UV
3/2 < Yeq, we obtain an upper bound

on
√
F at fixed gravitino mass which can be cast as an upper bound on the ratio between

the two SUSY-breaking scales, κ = F/F0:

Y UV
3/2 < Yeq ⇒ κ < 0.02

(
F

107 GeV

)1/4(0.1

gM

)
, (5.6)

Here we have used the expression for the gravtino mass in Eq. (2.2) and the one for

the gluinos in Eq. (2.10), where the parameter gM encodes the model-dependence of the

8The bounds from mono-jet searches are comparable [23], but involve backgrounds from a mix of both

quark- and gluon-initiated processes that are less amenable to simple rescaling. Thus we focus on the

mono-photon signal for simplicity.
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latter. If the gravitino is never in thermal equilibrium, we can assume (as usual in freeze-in

scenarios) that the gravitino sector is not directly reheated after inflation and the gravitino

abundance is frozen-in through scattering of SM states with their superpartners. Setting

the gravitino abundance to explain the DM abundance today, we can predict the gluino

mass in the (m3/2,
√
F ) plane,

M3 ' 2 TeV

(
107 GeV√

F

)1/2 ( m3/2

2.5 GeV

)1/2

' 2 TeV

( √
F

107 GeV

)1/2(
10−5

κ

)
, (5.7)

which corresponds to the red lines of Fig. 12 where the gravitino accounts for the total

DM abundance today at fixed gluino mass. The current LHC bounds on the gluino mass

set a boundary of our parameter space, which is shown in Fig. 12.9 The second scaling

in Eq. (5.7) shows the value of κ required to achieve a given gluino mass. As shown in

Fig. 12, the parameter space of interest has κ between (10−8, 10−4), where smaller values

of κ would not open up more parameter space and in any event would be in tension with

FCNC constraints as discussed in Eq. (2.11).

The bound at larger gravitino masses (the gray band on the r.h.s. on Fig. 12) is

given by the requirement that the gravitino be the LSP. A stronger bound is derived from

BBN constraints on the freeze-out abundance of the NLSP decaying into gravitinos. We

have computed the NLSP freeze-out abundance assuming the NLSP is a pure higgsino

NLSP and applied the BBN bound of Ref. [30] given the NLSP lifetime in Eq. (2.6). The

triangular-shaped region where the gravitino could be DM can be probed by both GW

interferometers and future colliders, as shown in Fig. 12. This highlights the potential for

future colliders to determine whether a SUSY-breaking phase transition is the source of a

SGWB signal observed at GW interferometers.

5.2 A complete model of gauge mediation

Finally, we can correlate the GW signals of the SUSY-breaking hidden sector with the

superpartner spectrum of the MSSM by specifying a mediation mechanism. In order to

embed the model of Sec. 4.3 into a successful model of gauge mediation, we work in terms

of a simple generalization of the gauged O’Raifeartaigh model which allows a natural

embedding of both the gauged U(1)D symmetry and the SM gauge group into the flavor

symmetry of the messengers. This requires M copies of the vector-like messengers Φ

and Φ̃ coupled to the singlet X, so that the superpotential is identical to the one of the

O’Raifeartaigh model in Eq. (4.2), but where now the fields are intended as vectors with

M components. The minimal setup requires M = 6 so that the superpotential enjoys an

SU(6) symmetry, where a U(1) subgroup of the SU(6) is the gauged U(1)D with a non

vanishing Fayet-Ilipoulos term, while the SM gauge group lies inside the remaining global

SU(5) such that the messengers can be taken to transform in the 5 + 5̄ representation of

SU(5) as in standard gauge mediation scenarios [35].

9Strictly speaking, the gluino mass here is the soft mass at computed at the high scale; since the low-scale

pole mass will be larger, we generously show the parameter space up to M3 = 1 TeV.
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The mass matrix of the messenger fields is

Mmess =

(
λfa√

2
m

m 0

)
, (5.8)

where fa is the VEV of the pseudomodulus given in Eq. (4.22). Integrating out the messen-

gers, one can compute the soft masses for the MSSM following the general formulas in [99].

The scalar masses follow the standard gauge mediation scaling discussed in Eq. (2.9),

while it is worth explicitly writing the parametric dependence of the gluino soft mass in

the notation of Eq. (2.9):

M3 =
α3

4π

√
2F

fa
sM , sM =

y2
F

6
. (5.9)

Here we have expanded in λfa � m & F and identified the gaugino screening factor sM in

this model. Since we typically have yF ∼ 1 in our scenarios (in order to remain in the green

region of Fig. 5) the gaugino screening factor does not provide significant suppression, but

interestingly it is generic for models like ours where the messengers mass matrix is never

singular along the pseudomodulus direction [15, 51]. Abandoning this requirement, one

could avoid gaugino screening at the price of opening up messenger field directions where

the SM gauge group is spontaneously broken in the UV [100].

Substituting the value of fa in Eq. (4.22) and taking as benchmark values a typical

point with α ∼ 0.3 and βH ∼ 100 from Fig. 9, the gaugino pole mass is

mg̃ ' 2 TeV

(
F

30 PeV

)1/2 ( yF
0.75

)3
(

F

2.5D

)1/2(λ
4

)( g

0.4

)
. (5.10)

This shows that the band between the the present exclusion at the LHC and the future

reach of FCC-hh can be populated with simple, concrete models featuring strong SGWB

signals within the reach of future high-frequency interferometers such as A-LIGO, ET and

CE.

6 Conclusions

We began by asking if future gravity wave detectors could provide a new window into

supersymmetry by probing SUSY-breaking hidden sectors in a region not yet excluded by

LHC searches. The answer to this question is well summarized in Fig. 1, which shows

the complementarity of future gravitational wave interferometers and colliders in probing

scenarios of low-energy supersymmetry breaking (LESB). Fortuitously, the cosmological

history of the gravitino – a key degree of freedom in LESB scenarios – bounds the SUSY-

breaking scale from above, so that the viable parameter space lies within reach of both

high-frequency GW interferometers and high-energy colliders.

The underlying assumption in Fig. 1 is that the SUSY-breaking hidden sector ac-

tually undergoes a strong first-order phase transition. The remainder of the paper has

been devoted to demonstrating, on general grounds, the circumstances under which strong

– 46 –



FOPTs can be produced in SUSY-breaking hidden sectors. We have focused on phase

transitions along the pseudomodulus direction, which as a universal feature of spontaneous

SUSY-breaking is guaranteed to exist in a vast class of SUSY-breaking hidden sectors. Re-

markably, the generic features of the pseudomodulus potential gave rise to a parametrically

new way of realizing strong first-order phase transitions in field theory.

The novelty of the pseudomodulus FOPT is a consequence of the flatness of the tree-

level potential accompanied by the presence of a mass gap for the heavy states, which makes

the theory calculable everywhere in field space. Since the mass gap is supersymmetric, it

does not destroy the flatness of the potential at large field values. The two resulting features

of this setup are that i) the nucleation temperature is well below the scale of the heavy

states, so that the low-T expansion applies, and ii) the pressure from Boltzmann-suppressed

heavy states in the plasma is responsible for stopping the vacuum bubble runaway. The

dominant GW signal then comes from the energy released in the plasma during the phase

transition.

The strength of the GW signal depends on finer details of the hidden sector dynamics.

However, we found that multiple SUSY-breaking scales in the hidden sector are a necessary

condition for generating strong GW signals without fine tuning of the theory parameters.

This result is quite general and can be obtained analytically without reference to a specific

model. For the sake of concreteness, we presented an explicit model for a hidden sector

generating a strong GW signal, where SUSY is broken by both an F -term and a D-

term. Detailed predictions for the GW signal and superpartner spectrum in this model

substantiate the general phenomenological observations of Fig. 1.
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A The effective potential

The effective scalar potential is given by a sum of quantum and thermal contributions

Veff(x, T ) = V0(x) + VT (x, T ). (A.1)

The temperature independent potential can be written as V0(x) = Vtree(x)+VCW(x), where

VCW(x) is the one loop Coleman-Weinberg potential at zero temperature which in the MS
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scheme is given by

VCW(x) =
∑
i

(−1)F
gim

4
i (x)

64π2

(
log

m2
i (x)

m2
0

− ci
)
, (A.2)

where F = 1 (0) for fermions (bosons), the number of degrees of freedom associated with

the particle i is gi = 1/2/3 for real scalars, fermions and vectors, respectively, and ci = 3
2 (5

2)

for scalars/fermions (vectors). The thermal one-loop potential is given by

VT (x, T ) =
T 4

2π2

∑
i

(−1)F giJB/F

(
m2
i (x)

T 2

)
, (A.3)

where the thermal functions for both species are

JB/F

(
z2
)

=

∫ ∞
0

dxx2 log[1∓ exp(−
√
x2 + z2)], (A.4)

with zi ≡ mi/T . These functions can only be fully evaluated numerically, but admit

analytical approximations for large and small |z2|. In the high-temperature limit,
∣∣z2
∣∣� 1

and the thermal functions are

JB
(
z2
)
≈ Jhigh−T

B

(
z2
)

= −π
4

45
+
π2

12
z2 − π

6
y3 − 1

32
z4 log

(
z2

ab

)
, (A.5)

JF
(
z2
)
≈ Jhigh−T

F

(
z2
)

=
7π4

360
− π2

24
z2 − 1

32
z4 log

(
z2

af

)
, for

∣∣z2
∣∣� 1,

where ab = π2 exp (3/2− 2γE) and af = 16π2 exp (3/2− 2γE). The low temperature limit

(i.e.
∣∣z2
∣∣ � 1) can be approximated in terms of modified Bessel functions of the second

kind

JB
(
z2
)

= J̃
(m)
B

(
z2
)

= −
m∑
n=1

1

n2
z2K2(zn), (A.6)

JF
(
z2
)

= J̃
(m)
F

(
z2
)

= −
m∑
n=1

(−1)n

n2
z2K2(zn), for

∣∣z2
∣∣� 1 ,

where m is high enough such that the series converge. For T low enough, we can take only

the first term in the series and further expand the modified Bessel function to the leading

order Kν(z) '
z→∞

√
π
2z e
−z to get

JB
(
z2
)

= −JF
(
z2
)
'

z→∞
−
(
πz3

2

)1/2

e−z . (A.7)

Within this approximation we can obtain a simple expression for Vth(x, T ) which is valid

at the leading order in the low-T expansion:

VT (x, T ) ' −T 4
∑
B/F

gi

(
mi(x)

2πT

)3/2

e−mi(x)/T , (A.8)

where it is important to notice that bosons and fermions contribute with the same (nega-

tive) sign to the effective potential. The approximation above is used in Section 3 to derive

an analytical scaling of the dynamics of FOPTs.
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Lambert function As a consequence of the low-T expansion the equations we will be

dealing with have the typical form

Az−ae−z −B = 0 , z = aW

[
1

a

(
A

B

)1/a
]
, (A.9)

where W(z) is the Lambert function, which is defined such that W(z)eW(z) = z. Without

entering into the details of the interesting properties of this function, we restrict our interest

to finding a good approximation for it using simpler functions. First, we will consider

W(z) for strictly positive arguments. Second, we note that W → 0 for z → 0 and that

W(z) ∼ log z for z → ∞. By inspection one finds that a good approximation of W(z) is

given simply by

W(z) ' 3

4
log (1 + z) . (A.10)

The relative difference between the Lambert function and the approximation with the

logarithm in (A.10) is at most ∼ 1/4 (for z → 0 and z → ∞) and smaller (in absolute

value) in intermediate regions. For practical purposes in analytic estimations of relevant

quantities, we will hence often consider the approximation in (A.10).

B Bounce action computation schemes

The transition of a quantum system from a meta-stable vacuum state to the true vacuum

can be driven either by quantum tunneling or by thermal fluctuations. In the FOPTs

describe in this paper the latter are always dominant. The probability of thermal tunnelling

is described semi-classically by Eq. 2.12 and it is exponentially dependent on the classical

O(3)-symmetric bounce solution [64, 65]. In this appendix we review both the analytical

and the numerical approaches we used to study the behavior of the O(3)-symmetric bounce

in our FOPTs.

First, in Sec. B.1, we describe in detail the triangular barrier approximation introduced

in Ref. [80] and its generalization to the O(3)-symmetric case [81]. We compare this

approximation with the behavior of the full bounce action computed numerically with the

FindBounce package [85, 101] and the CosmoTransitions code [86]. In Sec. B.1.1 we discuss

an optimization of the triangular barrier approximation which leads to excellent agreement

with the full numerical computation. In Sec. B.1.2 we consider the O’Raifeartaigh model

with gauge interactions of Sec. 4.3 as our main case study.

Second, in Sec. B.2 we discuss the single field approximation of the bounce action in

the model of Sec. 4.3. We study numerically the behavior of the bounce action in the full

three-dimensional field space and compare it with the single field approximation, deriving

where we expect the latter to deviate sensibly from the full solution.

B.1 Triangular barrier approximation of the bounce action

The d-dimensional Euclidean action for n scalar fields φi is

Sd = Ωd

∑
i

∫ ∞
0

rd−1dr

[
1

2
φ̇i

2
+ V (φi)

]
, (B.1)
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where Ωd = 2πd/2/Γ(d/2) and the equations of motion for φi are

φ̈i +
(d− 1)

r
φ̇i = V ′(φi) . (B.2)

The boundary conditions defining the bounce solution are

φ̇i(r = 0) = 0, φi(r →∞) = φif and φ̇i(r →∞) = 0 , (B.3)

where the conditions at r → ∞ ensures that the solution starts with zero kinetic energy

from the false vacuum and stops at r = 0 with zero kinetic energy. Here, we are interested

in solving this equation for a single field (n = 1) and in d = 3.

The idea behind the triangular barrier approximation is to approximate the potential

as a piecewise linear function anchored at three points: the false vacuum, the top of the

barrier and the true vacuum. In the following, we review in some details the derivation of

the 3d bounce action in the triangular barrier approximation, and we refer to the original

paper [80] for more details and to [102] for the derivation in arbitrary dimensions.

Following the notation of [80], we define the false vacuum to be at the field position

φ+ with potential V+; the peak of the triangular barrier to be at φP with potential VP ;

and the true vacuum to be at φ− with potential V−. It is then convenient to define the

magnitudes of the gradients of the potential by

λ±
def
=

∆V±
∆φ±

, (B.4)

so that V ′(φ) = ±λ± on either side of the barrier, precisely

V (φ) =

{
V+ + λ+(φ− φ+) for φ < φP
V− + λ−(φ− − φ) for φ > φP

(B.5)

In order to solve the equation of motions we have to specify the boundary conditions.

At a large radius R+ the field attains the false vacuum, so we have

φ (R+) = φ+ φ̇ (R+) = 0 , (B.6)

Then, we have to specify the boundary conditions at the start of the tunneling. There are

two possibilities:

1. The field immediately start to roll at r = 0 and hence we impose

φ(0) = φ0 φ̇(0) = 0, (B.7)

where the initial field value φ0 is the undetermined release point. This is the valid

regime if one finds that φ0 ≤ φ−.

2. Otherwise, the field sits in the true vacuum for r < R0 and then starts rolling. In

this second case the boundary conditions are

φ(r) = φ− 0 < r < R0 (B.8)

φ(R0) = φ− φ̇(R0) = 0, (B.9)
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We begin with the analysis of the first case. Imposing the previous boundary conditions

one finds the following solutions for the equations of motion in the different radius intervals

φ(r) =

{
φR(r) = φ0 − λ−

6 r
2 0 < r < RP

φL(r) = φ+ + λ+

6

(
r2 − 3R2

+ + 2
R3

+

r

)
RP < r < R+

(B.10)

Then we impose that the two solutions match at RP and also that their first derivatives

match at RP , obtaining the following conditions

φ0 = φP +
λ+R

2
P

6
(B.11)

R3
F = (1 + rλ)R3

P (B.12)

R2
P =

6∆φ2
+[

3 + 2rλ − 3 (1 + rλ)2/3
]

∆V+

(B.13)

where we have introduced rλ ≡ λ−
λ+

. Then we insert into the action the solutions (B.10)

and we integrate from r = 0 to r = R+ with the appropriate potential (see (B.5)). From

this computation we have to subtract the action for the case in which the field sits at the

false vacuum from r = 0 to r = R+, that is we compute all in all

STBA3 = S3[φ(r)]− S3[φ+] (B.14)

Using the equations in (B.13) we can rewrite the result as a function of the parameters of

the potential to obtain(
S3

T

)
TBA

=
16
√

6π

5

1

T

(1 + rλ)[
3 + 2rλ − 3 (1 + rλ)2/3

]3/2

(
∆φ3

+√
∆V+

)
, (B.15)

The condition to select the first case (i.e. φ0 > φ−) can also be rewritten by employing

again formula (B.13) as

∆φ−
∆φ+

≥ rλ

3 + 2rλ − 3 (1 + rλ)2/3
. (B.16)

We then analyse the second case. Imposing the boundary conditions we get the solu-

tions

φ(r) =


φR(r) = φ− 0 < r < R0

φR(r) = φ− − λ−
6

(
r2 − 3R2

0 + 2
R3

0
r

)
R0 < r < RP

φL(r) = φ+ + λ+

6

(
r2 − 3R2

+ + 2
R3

+

r

)
RP < r < R+

(B.17)

By imposing matching of the fields and the derivative at R = RP we get the following

equations for the unknown parameters R0, RP , R+

R3
P =

rλR
3
0 +R3

+

1 + rλ
(B.18)

∆φ− =
rλλ+(R0 −RP )2(2R0 +RP )

6RP
(B.19)

∆φ+ =
λ+(R+ −RP )2(2R+ +RP )

6RP
(B.20)
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We then compute the bounce action by inserting the solutions and integrating from r to

R+, and after some rearrangements we get(
S3

T

)
TBA

=
8π

15

1

T

(
R3

+∆φ+ − rλR3
0∆φ−

) ∆V+

∆φ+
(B.21)

where R+ and R0 are functions of parameters of the scalar potential through the implicit

equations (B.20).

So we conclude that in both possible cases, the computation of the bounce action in

the TBA approximation only needs to specify the critical points of the potential, that is

the metastable vacuum, the peak of the barrier and the true vacuum. For the scenarios

studied in this paper the first case (B.15) is the relevant one, and the validity condition

is reported also in (3.6) (note that in the conventions in the main text we always choose

the metastable vacuum to be at the origin of the field space). In this Appendix we have

nevertheless reviewed both cases for completeness.

In the following we will compute the TBA bounce action by both evaluating the poten-

tial numerically and approximating it analytically. These approximations can be compared

with the results of the full-fledged numerical bounce action computation.

B.1.1 Optimized triangular bounce

Studying the evolution of the bubble profiles for the actions computed numerically we note

that the release point φ0 is typically closer to the potential barrier than to the true vacuum

at φ− in our setups. Therefore, we introduce here a modified version of the TBA that

takes into account this feature, leading to a better agreement with the full numerics than

the analytic formulas presented above. The idea is to allow the minimum of the potential

to be a free parameter rather than to fix it at the true vacuum, allowing the TBA to more

closely represent the shape of the potential, where the slope is closer to linear.

The TBA bounce action is computed by replacing φ− → φ0 and V−(φ−) → V−(φ0),

where φ0 is now an arbitrary point along the potential in the interval φeq < φ0 < φ− (here

φeq > φP is the point after the potential barrier where V (φeq) = V+). This procedure

defines a function S3/T (φ0) that we can minimize over φ0 in the allowed interval. The

resulting minimum is the sought bounce action, that we have dubbed the optimal TBA.

B.1.2 Triangular bounce for the O’Raifeartaigh model with gauge interactions

In this section, we specify the discussion to the triangular barrier approximation for the

model of Sec. 4.3 and compute the inputs needed for the TBA bounce action. We denote

the usual combination of parameters as yF ≡ λF
m2 and yD ≡ gD

m2 .

The local minimum at the origin is approximated as

φ+ = 0 , (B.22)

V+(T ) = F 2 +
1

2
D2 −

3T 5/2e−
m
T

(
128m2 + 240mT

)
128
√

2π3/2
√
m

(B.23)

+
m4

32π2

[
(1 + yF )2 log (1 + yF ) + (1− yF )2 log (1− yF )− 3y2

F

]
,
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Figure 13. Bounce action computed using different approximations in the O’Raifeartaigh model

with gauge interactions of Sec. 4.3. The benchmarks on the left and on the right are distinguished

by the size of rλ. The black lines are the full numerical computation of the bounce action.

In blue we show the TBA computed using the numerical scalar potential and optimized with the

procedures explained in the text. The red lines are the standard TBA approximations as described

in Appendix B.1. The green line is the standard TBA evaluated on the analytic approximation of

the scalar potential (as detailed in the text) and taking only the zeroth order term in the expansion

for small rλ (as in Eq. (3.6)). This last approximation is the one used in Section 3 to derive analytic

estimates.

The peak of the barrier is located at

φP '
F

m

√
2− 2yD
yF
√
yD

, (B.24)

VP (T ) ' F 2 +
1

2
D2 +

m4

16π2
y2
F log

(
1− yD
yD

)
−
T 5/2e−

m
T

(
128m2 + 240mT

)
32
√

2π3/2
√
m

,(B.25)

Finally, the true vacuum location and energy are given by

φ− '
F

m

4π

g

√
2yD
y2
F

, (B.26)

V− ' F 2 +
m4

16π2
y2
F log

(
16π2

g2

yD
y2
F

)
, (B.27)

where we set the renormalization scale µ = m. Within our approximation the thermal

effects only enter at the origin, and at the top of the barrier, where they act to lower the

potential relative to the true vacuum, and the potential difference between the top of the

barrier and origin, respectively.

In Figure 13 we consider two benchmarks with very different rλ at Tn and show the

bounce action S3/T as a function of the temperature, computed in different approximations.

The black line is computed using the fully numerical thermal effective potential and the

mathematica package “FindBounce” [85]. The blue line is obtained with the TBA evaluated

on the full-numerical scalar potential and optimized with the procedure explained above.

The red line is the TBA (as computed in Appendix B.1) evaluated on the full-numerical

scalar potential. Finally, the green is the TBA evaluated on the analytical approximation

of the critical points of the scalar potential as explained above, and moreover keeping only
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the leading order term in the small rλ expansion in Eq. (3.6). This is the approximation

used to derive the analytic formulas in Section 3.

First, we see that the optimal TBA reproduces almost perfectly the numerical bounce

computation. The standard TBA can predict well the location of Tmin but the overall

normalization can be off up by a factor of ∼few, and in particular it does not agree with

the numerical result in the vicinity of Tc. However, the different trend in the overall shape

of the bounce action in the two benchmarks (e.g. very flat around Tmin in the left one) is

also captured in the standard TBA approximation.

Then, we note that the simplest approximation of the standard TBA reproduces very

well the TBA when rλ is small. This was not obvious a priori since, besides expanding the

TBA at leading order in small rλ, we have: i) assumed that the only temperature depen-

dence is in the height of the potential at the origin; ii) employed the low-T approximation

of the scalar potential to estimate it. The agreement between the red and green curve in

the left panel of Fig. 13 hence confirms the fact that low-T is the correct approximation

to employ, as discussed at length in Section 3. When rλ is larger (right plot) the sim-

plest approximation (green line) clearly deviates from the standard TBA (red line), but

nevertheless capture approximately the location of Tmin and the shape of the numerical

results. It is important to observe that even if the normalization of the bounce action and

its raising towards Tc are not exactly reproduced by the approximations employed, they

can still track the changes of the bounce action (shape deformations and overall size) as

a function of the fundamental parameters of the model. This elucidates why the analytic

estimates obtained in Section 3 can capture the scaling of Tn in the different models as

discussed in Section 4.2 and 4.3.

B.2 Single field approximation of the multi-field bounce action

As discussed previously, the model presented in Sec. 4.3, contains more than one dynamical

degree of freedom that actually enters into the bounce action computation. Namely, the

fields X,φ1 and φ̃2 vary along the minimal potential energy trajectory in field space which

connects the two minima of the potential. This implies that the full bounce solution is that

of a three field problem, which is in general only solvable numerically. In this Appendix we

explain why in the model under study the bounce action can be effectively approximated

with a one field problem and what is the regime of validity of such approximation.

The bounce action involving the three fields is

S3 =
2π3/2

Γ(3/2)

∑
i

∫ ∞
0

r2 (Ti + V (φi)) (B.28)

=
2π3/2

Γ(3/2)

∫ ∞
0

r2

(
1

2
Ẋ2 +

1

2
φ̇1

2
+

1

2
˙̃
φ2

2 + V (X,φ1, φ̃2)

)
,

where Ti is the kinetic energy associated with each field, which is an additive quantity.

In our analysis we approximate this action by minimizing V (X,φ1, φ̃2) along all three

directions and by solving the bounce equation only for X. This corresponds to neglect the

contribution from the kinetic energy of the other two fields φ1 and φ̃2. Since the kinetic
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Figure 14. Left: Bubble profiles for the single field and three field bounce actions as a function of

the bubble radii. The release point for the single field (pseudo flat) direction is practically identical

in both schemes, while the contribution coming from motion along the other field directions is

generally small, but non-zero. Right: The bubble trajectory in field space for the single field and

three field bounce action. The x-axis represents motion along the pseudo flat direction while the

y-axis represents motion along the larger of the other two field directions (φ̃2). It is clear from both

plots that the motion along the pseudo flat direction is mostly unaffected by the motion along the

other directions, and therefore the single field path approximation is viable.

energy of these fields is related to the potential energy along the same directions by the

equation of motion, we expect that the kinetic energy contributions of φ1 and φ̃2 can be

consistently neglected if their VEVs along the bounce trajectory are small compared to the

one of X.

This is typically what happens in this model as we show in the left panel of Figure 14,

where we plot the bubble profiles of the full three field problem computed using FindBounce

(red, blue and green line). We also show for comparison (in dashed black) the bubble profile

that we obtain for the single-field bounce solution for X, which is essentially identical to the

one in the three-field solution. In the right panel of Figure 14 we show a two dimensional

slice of the field path along the bounce solution, in the X, φ̃2 plane (we show φ̃2 since the

φ1 vev is smaller and hence it has even a smaller impact on the value of the bounce action).

We see that the X trajectory is almost unchanged by the addition of the second field. We

hence conclude that it is typically a robust approximation in this model to neglect the

kinetic contribution of the fields φ1 and φ̃2 and to solve the one-field problem.

Nevertheless, we would like to estimate the range of validity of our approximation. As

mentioned, we expect the difference to come from the kinetic terms of φ1 and φ̃2, which

will be non negligible if the size of the φ1 and φ̃2 VEV’s compared to the one of X is not

negligible. In particular, we would like to estimate the impact of this approximation in the

overall bounce action. We hence use intuition from the TBA where the size of the bounce

action is proportional to the cubic power of the field displacement. We define the following
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ratio

R1d/3d
def
=

X3(r)(
X2(r) + φ2

1(r) + φ̃2
2(r)

)3/2

∣∣∣∣∣∣∣
r=0

, (B.29)

where X(0), φ1(0) and φ̃2(0) are the field distances from the origin computed at the release

point r = 0. The ratio R1d/3d provides a measure of the relative error of the single-field

bounce action computation against the full three-field one. Indeed, we have also cross-

checked numerically in several benchmarks that the difference in the values of the bounce

action is negligible when R1d/3d is small. In the main body of the paper, we will define the

region where the 1-field approximation breaks down as when the quantity R1d/3d > 0.5,

corresponding approximately to a relative error of ∼ 50% of the single field approximation

compared to the full three field solution.

C Sensitivity of GW interferometers

In this section we briefly discuss the interpretation and generation of the sensetivity curves

used to define detection of a GW signal. We follow standard definitions and conclusions

obtained in [103–106], see also [107] and references therein. The detection sensitivity for

GW background for a given experimental setup, is given by the integrated signal-to-noise

ratio (SNR) over an observation time interval tobs as

ρ =
〈S〉
〈N1/2〉

=

[
ndettobs

∫ fmax

fmin

df

(
SS(f)

Seff
N (f)

)2
]1/2

, Seff
N (f) =

DN(f)

R(f)
, (C.1)

where 〈S〉 is the mean signal, 〈N1/2〉 =
√〈

S2
IJ

〉
− 〈SIJ〉2 is the average noise, I, J = 1, 2

indicate coupled detectors, ndet distinguishes between experiments that aim at detecting

the signal by means of an auto-correlation of a single detector (ndet = 1) or a cross-

correlation of a couple of detectors (ndet = 2) measurement. The effective noise strain can

be written in terms of the noise strain power spectrum DN(f) and the frequency dependent

detector response function R(f). The latter quantities are the ones typically reported by

the experimental collaborations. The detector response becomes more intricate in the case

of correlated detectors [106], where an overlap detection function must be computed. We

perform the appropriate procedure when computing the relevant SNR. The signal/noise

strains can be rewritten in terms of the signal/noise spectrum density as

ΩS/N(f) =
2π2f3

3H2
0

SS/N(f) , (C.2)

so that Eq. (C.1) becomes

ρ =

[
ndettobs

∫ fmax

fmin

df

(
ΩS(f)

ΩN(f)

)2
]1/2

, (C.3)

where in this paper ΩS(f) will be the energy density of a SGWB produced by the SUSY-

breaking FOPT in the early universe redshifted till today (see Eq. (2.26)). The frequency
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interval (fmin, fmax) is determined by the bandwidth of each experiment, typically related

to the length scale of each detector. This integrated quantity will imply detection if it

surpasses a predefined threshold value ρ2 ≥ ρ2
thr set by baysian probabilistic measures [103],

usually taken between 3 and 10.

By defining a frequency dependent shape function which models the expected signal

one can define the sensitivity of a given experiment even though this procedure does not

provide a precise statistical indication of the expected sensitivity as the signal to noise

ratio in Eq. (C.3). Depending on how well the signal shape is approximated, sensitivity

curve based on the shape function approximation can provide an instructive visual tool for

estimating detection in a frequency dependent way. In the following section we discuss the

most common method of generating sensitivity curves for 1OPT GW signal detection.

C.1 PLI curves

Power Law Integrated (PLI) curves are generated by considering a power law function of

the frequency f for the GW signal shape. The most common assumption, is a power law

of the form

h2ΩS(f) = h2Ω̃S,b(f̃)

(
f

f̃

)b
, (C.4)

where b is known as the spectral index. Taking this assumption we obtain the integrated

SNR as [108, 109]

h2Ω̃S,b(f̃) > h2Ω̃thr
GW,b(f̃) ≡ ρthr√

tobsndet

∫ fmax

fmin

df

(
(f/f̃)b

h2ΩN(f)

)2
−1/2

. (C.5)

Finally, we can define the PLI sensitivity curve by maximizing the integrated SNR over

the spectral index b, that is

h2ΩPLI(f̃) ≡ h2 max
b

[
Ω̃thr

S,b(f̃)
]
, (C.6)

which gives the threshold value for the signal at each frequency. A curve which crosses the

threshold value at a given frequency will therefore represent a detectable signal, assuming

an approximate power law behavior. Given that GW signals from FOPTs have a broken

power law shape, the method described here is typically appropriate to visualize the sensi-

tivity of a given experiment. In Fig. 15 we summarize the PLI curves for the different GW

interferometers considered here.

C.1.1 Experimental parameters

For completeness we recompute here the PLI curves as described in the previous section for

ground based interferometers such as The Laser Interferometer Gravitational Wave Obser-

vatory (LIGO) [16], the Einstein Telescope (ET) [17], the Cosmic Explorer (CE) [18, 19]

and the Atom Interferometer Observatory and Network (AION) [118], as well as for space

based detectors such as The Laser Interferometer Space Antenna (LISA) [110], the Big
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Figure 15. PLI curves for the different experiments considered here with the threshold value for

the signal to noise ratio is conservatively fixed to ρthr = 10. The required data to derive a PLI

curve for every experiment are collected in Table 1.

ndet tobs(months) ∆f (Hz) R(f),ΓIJ(f), Dnoise(f), Snoise(f)

LISA 1 48 [10−5, 1] [11, 77, 110]

DECIGO 2 48 [10−3, 10] [111, 112]

BBO 2 48 [10−3, 10] [109, 113]

CE 1 60 [4.98, 5000] [18]

ET 2 60 [1.12, 7066.72] [17]

LIGO 2 20 [4.98, 4978] [16, 109, 114–116]

AEDGE 2 60 [0.006, 14.83] [117]

AION 1 60 [0.1, 1.84] [118]

Table 1. Summary of the experimental parameters used in generating PLI curves for GW detection

in this work. Auto/cross-correlation measurement is indicated by ndet = 1(2), the observation time

and bandwidth for each experiment are presented above. The detector response R(f), multiple

detector overlap function ΓIJ(f) and noise strain spectrum Dnoise(f), Snoise(f) are extracted from

the references herein.

Bang Observer (BBO) [113], the Deci-Hertz Interferometer Gravitational-Wave Observa-

tory (DECIGO) [119–121] and the Atomic Experiment for Dark Matter and Gravity Ex-

ploration (AEDGE) [117]. While many more experiments are planned in the future, such

as AIGSO [122, 123], AMIGO [124], Taiji [125], TianGO [126], TianQin [127, 128] and

more, we focus on the ones cited above as representatives of the potential detection range

in coming years.
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In order to determine the reach of a given experiment, we need to know the frequency

band, the response function of the detector R(f) within this band, the measured noise

at every accessible frequency DI
noise (f), the time of observation tobs and the number of

coupled detectors ndet. We report the extracted parameters for the various experiments in

the Table 1.
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