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We show that the Pomeron exchanges play a unique role in vector charmonium scatterings. Such a 
mechanism can provide a natural explanation for the nontrivial structures in the di- J/ψ spectrum 
observed by the LHCb Collaboration. The narrow structure X(6900), as a dynamically generated resonance 
pole, can arise from the Pomeron exchanges and coupled-channel effects between the J/ψ- J/ψ , 
J/ψ-ψ(2S) scatterings. A pole structure near the di- J/ψ threshold is also found. Meanwhile, we predict 
that X(6900) can produce significant threshold enhancement in the J/ψ-ψ(2S) energy spectrum which 
can be searched for at LHCb.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Very recently, the LHCb Collaboration reported the observation 
of a tetraquark candidate X(6900) with a configuration of ccc̄c̄ in 
the di- J/ψ invariant mass spectrum [1]. Its mass and width are 
about 6.9 GeV and 80 ∼ 170 MeV, respectively. In addition to this, 
it shows that there exist a broad structure above threshold ranging 
from 6.2 to 6.8 GeV, and some vague structures around 7.2 GeV. 
The narrow enhancement X(6900), if confirmed, should be one of 
the best candidates for the QCD exotics. This observation immedi-
ately attracts attention from the community, and also raises very 
crucial questions on the underlying dynamics.

Tetraquarks of fully-heavy systems, such as ccc̄c̄ and bbb̄b̄, are 
peculiarly interesting due to their unique properties. Since the light 
quark degrees of freedom are absent in the leading order inter-
actions, the short-distance color interactions between the heavy 
quarks (antiquarks) become dominant and they may favor to form 
genuine color-singlet tetraquark states rather than loosely bound 
hadronic molecules which in many cases involve long-distance 
light hadron exchanges as the binding mechanism. The interaction 
between the heavy-quarks (antiquarks) via the color exchanges are 
referred as short-distance interactions. Regarding that the typical 
size of a charmonium is about 0.3 ∼ 0.5 fm, it is smaller than the 

* Corresponding author at: Institute of High Energy Physics, Chinese Academy of 
Sciences, Beijing 100049, China.

E-mail addresses: gongchang@ihep.ac.cn (C. Gong), dumc@ihep.ac.cn (M.-C. Du), 
zhaoq@ihep.ac.cn (Q. Zhao), zhongxh@hunnu.edu.cn (X.-H. Zhong), 
bzhou@ihep.ac.cn (B. Zhou).
https://doi.org/10.1016/j.physletb.2021.136794
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
interaction range of the pion exchange of about 1 fm as well as 
the QCD renormalization scale, r � 1/mπ � 1/�Q C D .

Based on different prescriptions for the heavy quark and/or 
antiquark interactions early theoretical studies of the fully-heavy 
systems can be found in the literature [2–7]. In recent years the 
experimental progresses have initiated intensive explorations and 
systematic investigations of the fully-heavy tetraquarks [8–28]. 
However, some of the major conclusions from these studies turn 
out to be very controversial. For instance, in Refs. [9–16] the T(ccc̄c̄)
or T(bbb̄b̄) states were predicted to have masses below the thresh-
olds of heavy charmonium or bottomonium pairs. It means that 
they would be “stable” since direct decays into heavy quarko-
nium pairs via quark rearrangements are forbidden. In contrast, 
some studies showed that stable bound tetraquark states made 
of ccc̄c̄ or bbb̄b̄ are unlikely to exist [2,6,18–26,29] since the pre-
dicted masses are larger than the thresholds of the corresponding 
heavy quarkonium pairs. The main difference between these two 
groups of calculations in the potential quark model seems to be 
the treatment of the linear confinement potential. It shows that an 
explicit inclusion of this potential will increase the eigenvalues of 
the ground states significantly and lead to resonance solutions as 
shown in Refs. [24,29].

Since the observation of X(6900) there have been various inter-
pretations based on different phenomenological prescriptions [29–
46]. In potential model calculations the enhancement X(6900) is 
interpreted as either first radial excitation states of 0++/2++ or 
the first orbital excitation state of 0−+/1−+ according to their 
mass locations in the spectrum. However, for any of these pos-
sibilities it is nontrivial to answer why the width of X(6900) is 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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quite narrow taking into account its mass is far above the di- J/ψ
threshold. Moreover, it is difficult to answer why only one state 
stands out significantly in the di- J/ψ spectrum while most of the 
others are hard to identify.

While these controversies indicate our lack of knowledge on 
the non-perturbative QCD in a broad range of physics, we pro-
pose in this work that X(6900) can be a pole structure produced 
by the Pomeron exchange mechanism between vector charmonia, 
i.e. between J/ψ-ψ(2S) (below, we note ψ(2S) by ψ ′). Such a 
mechanism introduces a novel and observable dynamics to the 
fully-heavy tetraquark system and can naturally explain why only 
a few of structures appear in the spectrum due to the coupled-
channel interactions.

As follows, we first briefly introduce the Pomeron exchange 
dynamics and explain why it can play a crucial role in vector char-
monium scatterings. We then introduce a coupled-channel formal-
ism to extract the pole information driven by the strong J/ψ- J/ψ
and J/ψ-ψ ′ interactions. Discussions and conclusions will be pre-
sented in the last part.

1.1. Formalism

The production of di- J/ψ through the double-parton scattering 
(DPS) processes [1] suggests that the J/ψ pairs are mainly pro-
duced by separate J/ψ production processes. Thus, it is natural 
to consider both direct J/ψ productions and feed-down contribu-
tions from other heavier charmonium productions which can con-
tribute to the di- J/ψ spectrum. Since the charmonium exchanges 
are highly suppressed and the single pion exchange is forbidden 
at the leading order chiral expansion, we are left with the multi-
gluon interactions. A successful phenomenology describing such a 
dynamic process is the so-called Pomeron exchange model and it 
may play a leading role in this special case.

It should be mentioned that Ref. [45] implemented the unitarity 
and causality constraints to investigate the coupled-channel effects 
arising from the J/ψ- J/ψ , J/ψ-ψ ′ , and J/ψ-ψ(1D) channels. By 
assuming that the vector charmonium scatterings are driven by a 
separable short-distance potential the di- J/ψ spectrum can be fit-
ted by pole structures which are dynamically generated. However, 
it is not clear what would be the origin of such a short-distance 
potential.

In our approach we stress that it is crucial to understand the 
mechanism accounting for the J/ψ- J/ψ interactions. Therefore, 
instead of assuming an effective potential for the charmonium in-
teractions, we explicitly study the origin of the dynamics for the 
near threshold vector charmonium scatterings. We state in ad-
vance that the Pomeron exchange dynamics can naturally explain 
the di- J/ψ spectrum. Moreover, there are novel dynamic features 
arising from the Pomeron exchange mechanism in the two vector 
charmonium scatterings.

The Pomeron exchange model has been successfully applied to 
account for the diffractive behaviors in hadron collisions and vec-
tor meson photo or electroproductions on the nucleon [47–52]. It 
is different from the t-channel pole contributions since it does not 
have a pole in the positive angular momentum complex plane. It 
behaves rather like a positive charge conjugation isoscalar pho-
ton, i.e. J P C = 1−+ , and different from those t-channel meson 
exchanges.

The Regge trajectory of the Pomeron exchange is

iG(s, t) = (α′s)α(t)−1 , (1)

where α(t) = 1 + ε′ + α′t with ε′ = 0.08 a small positive quantity 
indicating the dominance of the C = +1 Pomeron exchange in the 
t channel, and α′ = 0.25 GeV−2 as commonly adopted value [50–
52].
2

Fig. 1. Illustrative diagrams for (a) t channel and (b) u channel Pomeron exchanges 
in J/ψ ψ ′ → J/ψ ψ ′ .

The Pomeron coupling to the vector charmonia ( J/ψ or ψ ′) is 
parametrized out as a commonly adopted form [50,53]:

t̃νσα(V ) = FV (t)((pα
2 + pα

4 ) gνσ − 2pσ
2 gνα), (2)

where the superscripts ν and σ are the Lorentz indices for the 
initial and final vector currents of the constituent quarks to be cou-
pled to the initial and final vector charmonia; α is the index for 
the Pomeron-constituent quark coupling; FV (t) is the form fac-
tor describing the momentum transfer dependence of the coupling 
strength.

We adopt a commonly used form [54,55] as follows:

FV (t) = (2βc)exp(
t

2λ2
V

), (3)

where βc = 1.169 GeV−1 is the coupling between Pomeron and the 
c quark in meson. It is determined by fitting the experimental data 
for J/ψ photoproduction [56]. The parameter λV = 1.2 GeV is a 
typical energy scale reflecting the Pomeron-valence-quark interac-
tion range.

It should be noted that for the two identical vector meson 
scatterings into a pair of identical mesons, the t and u channel 
scatterings in Fig. 1 will contribute the same and a factor of 2 due 
to the constraint of Bose symmetry will be subtracted in the calcu-
lations of the single channel cross sections. If the initial states are 
not identical, the presence of the u channel will introduce contri-
butions from relatively hard gluon exchanges in the amplitude and 
their effects cannot be neglected.

As an example, the J/ψ-ψ ′ scattering amplitude can be ex-
pressed as:

TP
t = t̃μρ

α (ψ ′)t̃νσα( J/ψ)G(s, t) εψ ′μ ε J/ψν ε∗
ψ ′ρ ε∗

J/ψσ

= [gμρ gνσ (2s + t − p2
1 − p2

2 − p2
3 − p2

4) − 2pσ
2 gμρ gνσ

× (pν
1 + pν

3) − 2pρ
1 (pμ

2 gνσ − 2pσ
2 gμν + pμ

4 gνσ )]
× F J/ψ(t)Fψ ′(t)G(s, t) εψ ′μ ε J/ψν ε∗

ψ ′ρ ε∗
J/ψσ

TP
u = t̃μσ

α (ψ ′)t̃νρα( J/ψ)G(s, u) εψ ′μ ε J/ψν ε∗
ψ ′ρ ε∗

J/ψσ

= [gμσ gνρ(s − t) − 2gμσ pρ
2 (pν

1 + pν
4)

−2pσ
1 (pμ

2 gνρ − 2pρ
2 gμν + pμ

3 gνρ)]
×F J/ψ(u)Fψ ′(u)G(s, u) εψ ′μ ε J/ψν ε∗

ψ ′ρ ε∗
J/ψσ , (4)

where εψ ′μ , ε J/ψν , ε∗
ψ ′ρ , and ε∗

J/ψσ denote the polarization vectors 
for the initial and final vector charmonia, respectively.

Our attention is paid to the near-threshold region of the di-
charmonium scatterings where the S-wave coupling is the most 
important contribution. Note that the S-wave couplings between 
two vector charmonia have access to J P C = 0++ , 1++ and 2++ . 
Thus, we extract the S-wave vertex functions using the following 
projection operators

P(0) = 1
εμ(p1)ε

μ(p2)εν(p3)ε
ν(p4),
4
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P(1) = 1

2
[εμ(p1)εν(p2)ε

μ(p3)ε
ν(p4)

−εμ(p1)εν(p2)ε
ν(p3)ε

μ(p4)],
P(2) = 1

2
[εμ(p1)εν(p2)ε

μ(p3)ε
ν(p4)

+εμ(p1)εν(p2)ε
ν(p3)ε

μ(p4)]
−1

4
εμ(p1)ε

μ(p2)εν(p3)ε
ν(p4). (5)

Note that for the 1++ projection channel, if the two initial scat-
tering states are the same the two terms in the expression of P (1)

actually cancel each other as a reflection of the Bose symmetry.
For the kinematic region between the di- J/ψ and di-ψ ′ thresh-

old, the threshold mass difference is much smaller than the mass 
of di- J/ψ . Therefore, we can further simplify the problem by as-
suming that the main contributions from the Pomeron exchanges 
are within the kinematic region close to be on-shell, and the ver-
tex couplings read

TP
t = [gμρ gνσ (2s + t − p2

1 − p2
2 − p2

3 − p2
4)]

× F J/ψ(t)Fψ ′(t)G(s, t)εψ ′μ ε J/ψν ε∗
ψ ′ρ ε∗

J/ψσ

TP
u = [gμσ gνρ(s − t)] F J/ψ(u)Fψ ′(u)G(s, u)

× εψ ′μ ε J/ψν ε∗
ψ ′ρ ε∗

J/ψσ . (6)

The strong couplings near the thresholds of di-charmonium 
via the Pomeron exchanges also call for the implementation of 
unitarity and causality in the description of the near-threshold 
S-wave interactions between the charmonia. Note that explicit t-
dependence appears in the Pomeron exchange potential. This will 
increase the difficulty in the unitarization of the scattering am-
plitude. Since we only focus on the S-wave amplitudes in the 
vector charmonium scatterings we adopt the technique developed 
by Ref. [57,58] to define an effective separable potential by inte-
grating out the angular part of the Pomeron exchange:

V (s) = 1

2

∫
V (s, t)d(cos θ), (7)

where V (s, t) is the sum of the t and u channel amplitudes. The 
coupled-channel T -matrix can then be expressed as

T (s) = V (s)

1 − G̃(s)V (s)
, (8)

where the loop function G̃(s) [59,60]

G̃ =
∫

d4q

(2π)4

i2 exp (−2�q2/�2)

[q2 − M2
J/ψ + iε][(P − q)2 − M2

ψ ′ + iε]

= i

4M J/ψ Mψ ′

[
− μ�

(2π)3/2
+ μk

2π
exp (−2k2/�2)

× [er f i(

√
2k

�
) − i]

]
, (9)

where a cut-off function exp (−2�q2/�2) has been included to reg-

ularize the divergence; k ≡
√

2μ(
√

s − M J/ψ − Mψ ′), with μ ≡
M J/ψ Mψ ′/(M J/ψ + Mψ ′) as the reduced mass; � = 0.7 GeV is the 
form factor parameter, and er f i(

√
2k
�

) is the imaginary error func-
tion. The parameter � = 0.7 GeV corresponds to the typical size 
of charmonia, i.e. ∼ h̄c/� � 0.3 fm. We also mention that if larger 
values for � are adopted, the X(6900) peak will become broader.

For three coupled channels, i.e. J/ψ- J/ψ , J/ψ-ψ ′ , and ψ ′-ψ ′ , 
the potential can be expressed as,
3

V (s) =
⎛
⎝ V 11 V 12 V 13

V 21 V 22 V 23
V 31 V 32 V 33

⎞
⎠ , (10)

where V ij denotes the Pomeron exchange potentials including both 
the t and u channels for each process. The loop integral function 
G for { J/ψ J/ψ, J/ψψ ′, ψ ′ψ ′} is written as

G(s) =
⎛
⎝ G1 0 0

0 G2 0
0 0 G3

⎞
⎠ . (11)

To evaluate the coupled-channel contributions to the di- J/ψ chan-
nel at LHCb, we adopt the same prescription of the energy spec-
trum as Ref. [45], and the transition amplitude (labeled as channel 
1) is written as

M1 = P (
√

s)(1 +
∑

ri Gi(s)Ti1(s)), (12)

with Ti1(s) being the element of the T -matrix in Eq. (8). The 
ratios ri describe the different production strengths for different 
channels, which can be a complex quantity. The function P (

√
s)

parametrizes out the energy spectrum of the short-distance pro-
duction as follows:

P (
√

s) = αe−βs, (13)

with β = 0.0123 GeV −2 [45] and α as an adjustable parameter. 
The di- J/ψ spectrum is then calculated by

(s) = |�p J/ψ |
8π s

|M1|2, (14)

where �p J/ψ is the three-momentum of the final J/ψ in the center 
of mass frame of the initial states.

2. Results

We first search for the pole structures in the T -matrix for sin-
gle channels. It shows that resonance poles can be produced by 
the Pomeron exchange potential for the vector charmonium pairs. 
For both J P C = 0++ and 2++ the resonance poles are located at 
the same position due to the approximation made in Eq. (7). For 
the di- J/ψ and J/ψ-ψ ′ system, the resonance poles are located 
at 6278 − i80 and 6860 − i74 MeV, respectively, on the second 
and fourth Riemann sheet in respect of the di- J/ψ and J/ψψ ′
thresholds. Here, the Riemann sheets are defined by the signs of 
the imaginary parts of the momenta carried by the open-threshold 
meson pairs in the c.m. frame. Namely, on the second Riemann 
sheet, the imaginary parts of the c.m. momenta k1 and k2 of the 
di- J/ψ and J/ψψ(2S) channels, respectively, have Im(k1) < 0 and 
Im(k2) > 0, while on the fourth Riemann sheet, both are negative. 
Similarly, we obtain a resonance pole for the ψ ′-ψ ′ system which 
is located at 7427 − i73 MeV. However, there is no pole struc-
ture found for 1++ . It should be emphasized that although more 
elaborate treatment of the potential may change the exact pole 
positions, their locations remain to be near the thresholds of the 
corresponding single channels.

In Fig. 2 (a) and (b) the spectra for the single channel scatter-
ings, i.e. J/ψ J/ψ → J/ψ J/ψ and J/ψψ ′ → J/ψψ ′ , respectively, 
are illustrated for these three quantum numbers. Strong thresh-
old enhancements are produced for both 0++ and 2++ , while the 
spectrum for 1++ turns to be smooth. Such a behavior can be un-
derstood due to the cancellation between the two terms in the 
1++ projection operator in Eq. (5). For J/ψ- J/ψ and ψ ′-ψ ′ final 
states, the amplitudes actually vanish as a reflection of the Bose 
symmetry.
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Fig. 2. Scattering cross section for (a) J/ψ J/ψ → J/ψ J/ψ and (b) J/ψψ ′ → J/ψψ ′ via the Pomeron exchange with partial wave 0++ (dot-dashed), 1++ (dotted), and 2++
(dashed), respectively. Note that the 1++ wave vanishes in (a).

Fig. 3. (a) The coupled-channel di- J/ψ energy spectrum compared with the LHCb data [1]. (b) Prediction for the J/ψ-ψ ′ energy spectrum. Spectra for the exclusive partial 
waves, i.e. 0++ , 1++ , and 2++ , are denoted by the dot-dashed, dotted, and dashed lines, respectively. The total cross sections are shown by the solid lines. The dot-dot-dashed 
line in (a) is the background extracted from the LHCb data [1].
Proceeding to the numerical calculations of the di- J/ψ spec-
trum, we note that the unknown parameter are ri introduced in 
Eq. (12) and α. In Ref. [45] ri = 1 is adopted which means that 
the coupled channels have the same strengths contributing to the 
di- J/ψ channel. In our case we require that the X(6900) struc-
ture is saturated by the coupled-channel results. This will change 
the relative strengths of ri . It is also possible that ri carry complex 
phases to each other if one notices that many higher resonance 
channels can feed down to the di- J/ψ spectrum via the DPS pro-
cesses.

In Fig. 3 (a) we plot the coupled-channel di- J/ψ spectrum with 
r1 : r2 : r3 = 1 : 2e−iπ/2 : 1. It shows that the X(6900) enhancement 
can be well reproduced and another peak X(6300) can be identi-
fied. Due to the interferences between the two poles for either 0++
and 2++ a dip structure appears around 6.8 GeV which seems to 
be consistent with the data. One also notices that the 2++ partial 
wave contributions are smaller than the 0++ ones. This is because 
the cross sections have taken into account the spin average for the 
initial states with fixed quantum numbers.

It should be pointed out that since we have only considered 
the S-wave scatterings we do not expect to describe the whole 
spectrum in our model. The cross section deficit in Fig. 3 (a) can 
be filled by other contributions. In particular, as shown by vari-
ous model studies [15,20,24,25,27,29], a dense tetraquark spectrum 
seems to be inevitable. They may not be narrow enough for ob-
servation, but can contribute to the smooth cross sections as a 
background.

It is natural to make a prediction of the J/ψ-ψ ′ energy spec-
trum based on our coupled-channel formalism and the ampli-
tude is

M2 = P (
√

s)(1 +
∑

ri Gi(s)Ti2(s)) . (15)
4

The calculation results are shown in Fig. 3 (b). Although the back-
ground effects are not considered, we predict the existence of an 
enhancement around 6.9 GeV in the J/ψ-ψ ′ spectrum which can 
be studied at LHCb in the future.

In Fig. 3 the di-ψ ′ channel does not produce significant en-
hancements in both channels of di- J/ψ and J/ψψ ′ . Apart from 
the form factor suppression via exp (−2�q2/�2) with the relatively 
larger momentum |�q| in ψ ′ψ ′ → J/ψ J/ψ , the Pomeron trajectory 
will also introduce suppressions as shown by Eq. (1) at higher en-
ergies and larger values of |t|. In contrast, for a single channel of 
ψ ′ψ ′ → ψ ′ψ ′ we confirm that a threshold enhancement similar to 
Fig. 2 exists.

3. Conclusion

Based on the scenario of the Pomeron exchanges in the vec-
tor charmonium scatterings near the thresholds of J/ψ- J/ψ , 
J/ψ-ψ ′ , and ψ ′-ψ ′ , we provide a dynamic explanation for the en-
hancement X(6900) observed by LHCb in the di- J/ψ spectrum 
in a coupled-channel model. We find that X(6900) can be ex-
plained as a dynamically generated resonance pole structure due 
to the coupled-channel interactions between J/ψ- J/ψ , J/ψ-ψ ′
and ψ ′-ψ ′ . The Pomeron exchange mechanism has a novel fea-
ture in the two different heavy quarkonium system that both the 
t and u-channel Pomeron exchanges can contribute to the tran-
sition amplitude. This is crucial for the interactions between the 
two heavy quarkonia since it introduces a much stronger short-
distance contribution to the interaction potential for those two-
body heavy quarkonium systems. Note that in such systems the 
light quark exchanges are forbidden at leading order, and in most 
cases they are unable to provide strong enough couplings. More-
over, this mechanism can evade controversial difficulties between 
the observation of very few near-threshold structures and the rich 
spectra expected by potential quark models. Further implications 



C. Gong, M.-C. Du, Q. Zhao et al. Physics Letters B 824 (2022) 136794
of this novel mechanism in other processes will be explored and 
can be searched for in future experiments.
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